基于FPGA的卫星姿态控制系统的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿态控制系统设计是现代卫星平台的一项关键技术。本文以三轴稳定卫星姿态控制为应用背景,研究了基于FPGA的姿态控制器与星载设备的串口通信以及控制器的硬件实现。
     采用四元数描述卫星姿态,建立卫星姿态运动学与动力学模型,采用星敏感器/陀螺作为测量元件,零动量飞轮作为执行机构。为便于对比研究基于FPGA的控制器的有效性,设计PID控制器,并进行闭环姿态控制系统的数学仿真。
     通过分析通用异步串行收发器的特点,根据串行协议的接口特性设计发送模块和接收模块,并进行ModelSim时序仿真,为将硬件控制器接入星载设备进行硬件在回路仿真做准备。
     将PID算法数字化,综合考虑运行速度和占用资源的平衡,设计了PID控制算法电路以及基于Booth算法的乘法器逻辑电路,基于Verilog HDL语言,采用状态机方法编写程序,实现基于FPGA的卫星姿态控制器的硬件设计,并与数学仿真结果进行对比研究,验证其有效性与可实现性。
     本文设计并实现了基于FPGA的PID控制器在卫星姿态控制系统硬件回路中的应用,为姿态控制系统的研究提供新的思路。
Attitude control system design is one of the key technologies of modern satellites. This paper taking the three-axis stabilizing satellite as an example, studies serial communication between attitude control system and equipment on satellite and control on hardware based on FPGA.
     Using quaternion to describe satellite attitude, it sets up the attitude kinematics and dynamic models, which uses star sensors/ gyros as measurement sensors, zero momentum flywheels as actuators. Based on classic control theory, a PID controller is designed; this conclusion is proven by the result of simulation. According to analyze the features UART, the UART module is parted two submodule: transmitter module and Receive module. Simulation results show it can achieve prearrange function.
     Considering running speed and occupiers resource balance, designs PID controller algorithm circuit and Multiplier logic circuit based on booth algorithm. Using Verilog HDL to write program, it implement the hardware design of satellite attitude control FPGA-based. Compared the simulation based hardware with the simulation of matlab, the result shows that the PID controller based on FPGA is effective.
     This controller FPGA-based subsystem reserved the serial interface of attitude sensor, which can be directly connected with actual system. It can reduce the burden of satellite computer because of hardware processing instead of software processing. This paper provides a new way for satellite attitude control system.
引文
1钱勇.高精度三轴稳定卫星姿态确定和姿态控制系统研究.西北工业大学博士学位论文. 2002.6:21~35
    2黄圳圭.航天器姿态动力学.国防科技大学出版社. 1997:79~80
    3杨大明.空间飞行器姿态控制系统.哈尔滨工业大学出版社. 2000:100~158
    4 J. Sjober, Q. Zhang, L. Ljung, et a1. Nonlinear black-box, modeling in system identification: a unified overviews.Automatica,1995, 31(12):1691~1702
    5 M. D. Shuster. A Survey of Attitude Representations. Journal of Astronautical Sciences, 1993, 43(3): 439~514
    6章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社. 2005:137~184
    7冷宗圣.光纤陀螺的研究发展及其应用.中国科技信息. 2006, (6): 116~117
    8周海波,刘建业,赖际舟,李荣冰.光纤陀螺的发展现状.传感器技术. 2005, 24(6): 1~3
    9王晓东.大视场高精度星敏感器技术研究.中科院长春光学精密机械与物理研究所博士学位论文. 2003.6:15~32
    10李葆华.用于姿态控制的星敏感器快速星图识别算法研究.哈尔滨工业大学博士学位论文. 2006.6:25~41
    11田春华,马广富等.三轴稳定卫星姿态控制系统的一般性问题.自动化技术与应用. 2001, (9): 9~12
    12余涌涛,梁加红.基于SIMULINK的卫星姿控系统的仿真实现.计算机仿真. 2006, 23(11):71~74
    13刘达,龚建容.基于ISE开发系统的FPGA器件的设计与实现.微电子技术. 2003, (2):14~18
    14 T. Panagiotis, M. L. James. A New Parameterization of the Attitude Kinematics. Journal of Astronautical Sciences, 1995, 43(3):243~262
    15 W. Tang, L. Yip. Hardware Implementation of Genetic Algorithms Using FPGA. Proc. 47th IEEE. Midwest Symposium on Circuits and Systems (MWSCAS), Hiroshima, July 25-28, 2004:549~552
    16 L. Shack, G. Snider. High-performance, pipelined, FPGA-based genetic algorithm mathine, Kluwer Academic, 2001, 2(1):33~60
    17 L. John, H. William, M. Smith. Enhanced FPGA Reliability Through Efficient Run-Time Reconfiguration. IEEE Transactions on Rellability, 2000, 49(3): 296~304
    18汪毅,朱振才. FPGA在微小卫星姿态控制系统中的应用.红外. 2005, (11):34~38
    19杨雅,卫新国,高洁,施敏华.新一代FPGA在星载嵌入式计算机中的应用.上海航天. 2005, (2):47~50
    20周军.航天器控制原理.西北工业大学出版社. 2001:113~134
    21 R. Robinett, G. Parker. Spacecraft euler parameter tracking of large-angle maneuvers via sliding mode control. Journal of Guidance, Control and Dynamics, 1996, 19(3):702~703
    22 W. Halle. Neuronal network application on board the micro-satellite bird.IAA Conference on Small Satellite for Earth Observation.1996,11
    23陈雪芹.基于在轨标定的卫星姿态确定与控制系统研究.哈尔滨工业大学硕士学位论文. 2005.6:25~48
    24 A. Ruth. Satellite Angular Rate Estimation from Vector Measurements. Journal of Guidance, Control and Dynamics, 1998, 21(3):450~457
    25 P. Samir. Verilog HDL数字设计与综合.电子工业出版社. 2006:7~134
    26杜勇,刘帝英. MATLAB在FPGA设计中的应用.电子工程师. 2007, (1):10~11
    27 C. D. Michael. Verilog HDL高级数字设计.电子工业出版社. 2005:393~596
    28 M. E. Pittelkau. Kalman Filtering for Spacecraft System Alignment Calibration. Journal of Guidance, Control, and Dynamics. 2001, 24(6): 1187~1195
    29 J. Deutschmann, I. Y. Bar-Itzhack, Extented Kalman Filter for the Ocean Topography Experiment Satellite. Flight Mechanics and Estimation Theory Symposium, CP-3050, NASA, 1989: 333~345
    30 M. D. Shuster. Efficient Estimation of Attitude Sensor Coalignments. Proceedings of the AIAA/AAS Astrodynamics Conference. AIAA, Washington, DC. 1994: 45~53
    31 A. Krasniewski. Application-dependent testing of FPGA delay faults. IEEE EUROMICRO Conference 25th. 1999
    32 J. Chen, J. Kuang, D. Zhang. Verilog HDL Compiler for RTL Combinational Circuits. Journal of Hunan University Natural Sciences.2001, (28):99
    33夏宇闻. Verilog数字系统设计教程.北京航空航天大学出版社. 2003:40-120
    34袁本荣,刘万春,贾云得,朱玉文. Verilog HDL进行FPGA设计的一些基本方法.微计算机信息. 2004, (6): 93~94
    35 A. Visioli. Tuning of PID controllers with fuzzy logic. IEEE Preference Control Theory Application. 2001, 148(1)
    36 W. H. Steyn. Comparison of Low-Earth-Orbit Satellite Attitude Controllers Submitted to Controllability Contraints. J. of Guidance, Control, and Dynamics. 1994, 17(4): 795~804
    37 L. Tu, M. Zhu. The Hardware Impementation of a Genetic Algorithm Mode 1 with FPGA. IEEE. 2002, 2(02): 374~377
    38 Xilinx,Virtex-II Datasheet.http://direct.xilinx.com/bvdocs/publications/ds015.pdf
    39刘春阳.基于FPGA的串行通信实现与CRC校验.北京化工大学硕士学位论文. 2006.6:14~17
    40杨文超.基于FPGA的PID控制器设计研究.江苏大学硕士学位论文. 2006.6:18~25
    41杨锋.三轴稳定卫星姿态确定及控制系统的研究.西北工业大学硕士学位论文. 2006.3:25~31
    42张延顺,王海,陈家斌等.卫星三轴姿态确定系统的光纤陀螺/星敏感器组合技术研究.中国惯性技术学报. 2003, 11(2):1~4
    43 W. Bong, B. David and H. Christopher. Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 96~104
    44 D. Mortari. Euler-q algorithm for attitude determination from vector observations. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 328~334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700