用户名: 密码: 验证码:
航天器主动隔振及精确定向控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于智能作动器的多自由度主动隔振和精确跟踪定向在空间望远镜、预警卫星、空间激光通信、遥感卫星等先进航天器有着广泛应用。相对传统被动隔振,主动隔振对低频振动和随机振动有更好的抑制效果,并且智能作动器组成的多自由度平台可以对敏感载荷精确微操作,弥补本体姿态控制的不足。随着航天技术的飞速发展,现有的隔振技术难以满足敏感载荷对苛刻力学环境的要求,并且鲁棒性较差,智能作动器的精确建模和控制也需要深入研究,本文对航天器敏感载荷的多自由度主动隔振及精确定向展开研究。
     分析证实主被动混合隔振可以实现零刚度或无穷大刚度,但这在控制上是一种对消方法,需要系统精确的参数值,并且性能的鲁棒性差,此外混合隔振主动杆的PID控制器对随机扰动的抑制也不满足要求,于是采用加速度反馈,考虑建模不确定性及其他约束条件,采用回路整形技术和加权函数法设计了多目标鲁棒H∞控制器,它对谐波和随机振动都有较好的隔振性能。当对象参数未知时,用多项式法设计了模型参考自适应控制器,自适应控制对随机振动具有更好的隔振性能和鲁棒性。由于其低频位移信号被放大,于是增加PID位移反馈构成MRAC-PID复合控制,抑制了低频位移振动,并进行跟踪定向。
     作动器运动控制时需要考虑磁滞非线性,本文研究了Preisach磁滞模型的记忆效应,基于奇异值分解,采用最小二乘法对Preisach模型进行参数辨识,仿真证实具有较好的收敛性能,但是计算时间长,不利于实时估计。本文提出一种奇异值分解的在线修正方法,以离线辨识结果为初始值,实时估计参数值,辨识精度更高。利用参数辨识结果,设计了一种逆Preisach前馈补偿,线性化Preisach磁滞效应。并把这种辨识和补偿方法扩展到带有输入Preisach非线性的作动器,当磁滞输出不可测量时,首先采用低频输入信号辨识Preisach磁滞的参数值,然后对线性动力学部分进行辨识,最后采用逆Preisach补偿线性化磁滞效应,提高了参考跟踪性能。
     对于四杆平台,采用MRAC-PID控制器对敏感载荷进行Tip/tilt二自由度主动隔振,用来镇定光束,取得较好的性能。对于Stewart平台,首先建立其动力学模型,并设计了多变量鲁棒H∞控制器进行六自由度主动隔振。此外,为了精确定向,并抑制姿态角抖振,采用H∞-PID复合控制,而第二章中的MRAC-PID复合控制也可以达到相似的性能,但是需要更大的计算能力和更高的执行带宽。此外,本文还分析了机械振动和航天器姿态抖振对图像的扭曲和模糊机理,仿真证实六自由度主动隔振可以提高成像质量。
     本文研究了航天器精确定向问题,并指出姿态控制器设计时需要对扰动和传感器噪声进行折衷考虑。当小角度定向时,采用欧拉角描述姿态,并设计了模型匹配鲁棒H∞控制器,但是传感器噪声产生姿态抖振。针对柔性航天器轨道、姿态和柔性结构动力学的耦合特性,设计了状态反馈和输出反馈控制器进行大角度机动,此外为了减少噪声对微分环节的影响,设计了相应的微分器。为了克服大角度机动控制后的姿态抖振,设计了二级姿态控制系统,通过Stewart平台对敏感载荷局部六自由度主动隔振和姿态微操作,抑制了姿态抖振,达到了高精度跟踪定向的目标。
Multi degree-of-freedom(DOF) active vibration isolation and precision track-ing/pointing can be widely used in advanced spacecrafts, such as space telescopes, de-fense satellites and space laser communication. Compared with traditional passive isola-tion, active isolation can efficiently suppress random and sinusoid vibrations at low fre-quencies. Moreover, the accurate micro-steering of sensitive payload can also be providedby multi-DOF platform consisting of smart actuators, which overcomes the drawback ofattitude control of spacecraft body. With fast developing of astronautic technologies, itis difficult to satisfy strict requirements in dynamic environment only using current tech-niques of vibration isolation, and their robustness is not sufficient. Moreover, the accuratemodeling and control of smart actuators also needs to develop. In this thesis, multi-DOFactive vibration isolation and precision pointing of sensitive payloads are studied.
     The analysis indicates that hybrid vibration isolation can provide zero and infinitestiffness. However, this is equivalent to a cancellation approach in control, which needsaccurate value of parameters and its robustness is not adequate. The isolation performanceof random vibrations using PID control for hybrid isolator is not satisfied. Then, withacceleration feedback, multi-objective robust H∞control is designed using loop shapingand weighting function techniques, which can isolate sinusoid and random vibrations withbetter performance. When the parameters of plant are unknown, model reference adaptivecontrol (MRAC) is designed using polynomial method, which has better performance androbustness. On the other hand, the displacements at low frequencies are amplified. Then,with additional displacement feedback, the MRAC-PID composite control suppresses thedisplacements at low frequencies and tracks the reference signal, simultaneously.
     The hysteresis in smart actuators is one nonlinearity to consider while designing mo-tion controller. The memory characteristics of Preisach hysteresis in smart actuators areinvestigated. Based on singular value decomposition (SVD), the parameter of Preisachhysteresis is identified using least squares method, and its parameter convergence is sat-isfied. However, the computing is time consuming, which is not suitable for realtimeestimation. Thus, SVD online revision is presented, whose initial value is the off-lineidentification. The parameter estimation is computed in realtime, and better accuracy is provided. With the identification result, inverse Preisach feedforward is designed tolinearize the Preisach hysteresis. Moreover, this method is generalized to linear dynam-ics with input Preisach hysteresis. Without the hysteresis measurement, an equivalentPreisach hysteresis is identified using low frequency signal. Then, linear dynamics is alsoidentified. Finally, the inverse Preisach feedforward is used to compensate the hysteresisand the tracking performance is improved.
     Tip/tilt angular vibration of the payload is adequately suppressed to stabilize laserusing 4-leg platform and MRAC-PID composite control. The dynamic model of Stewartplatform is derived. Then, Multi-input-multi-output (MIMO) robust H∞controller is de-signed. In order to obtain precision pointing and vibration suppression at low frequencies,H∞-PID composite control is designed. Moreover, the MRAC-PID control in chapter 2also obtains similar performance, but it needs more computing ability and high bandwidthcontrol. Image distortion and blur radii due to mechanical vibrations and attitude jitter isalso investigated, and the simulation results indicate that the image quality is improvedby 6-DOF active vibration isolation.
     The problem of spacecraft precision pointing is investigated, indicating that sensornoise and disturbance suppression needs to be trade-off while designing controller. Eulerangular is used for small angular pointing. The model matching robust H∞controlleris designed for a rigid satellite. However, there is attitude jitter due to measurementnoise. Then, the dynamics of orbit, attitude and ?exible structure of ?exible spacecraftare derived and they couple each other. The attitude control with state and output feedbackis designed for large angular maneuvering. In order to reduce the noise affection and useoutput feedback, an composite differentiator is also designed. To address the problemof attitude jitter, two-stage attitude control is designed. One Stewart platform is used tolocally approach the function of 6-DOF vibration isolation and accurate attitude-steering.Finally, the attitude jitter suppression and fine pointing is obtained.
引文
1 A. J. Bronowicki. Vibration Isolator for Large Space Telescopes[J]. Journal ofspacecraft and rocket, 2006, 43(1):45–53.
    2 V. Sannibale, G. G. Ortiz and W. H. Farr. A Sub-hertz Vibration Isolation Plat-form for a Deep Space Optical Communication Transceiver[C]//Preceding of SPIEconference on Free-Space Laser Communication Technologies XXI. Bellingham,2009, 7199, No.71990I.
    3 D. M. Boroson, A. Biswas, and B.L. Edwards. MLCD Overview of NASA’s MarsLaser Communications Demonstration System[C]//Prceeding of SPIE conferencefree space laser communication technologies XVI. San Jose, 2004, 5338.
    4 V. Ford. Terrestrial Planet Finder Coronagraph Observatory Summary[R], NASAReport, 2005, No. 20060043653.
    5 R. A. Laskin. Successful Completion of Sim-planetquest Technol-ogy[C]//Preceding of SPIE conference on Advances in Stellar Interferometry.2006, 6268:10–23.
    6 J. O’Brien. Micro-Precision Interferometer Pointing Control System[C]//JPL Re-port . 1995, No. 20060035174 .
    7 G. W. Neat, J. W. Melody and B. J. Lurie. Vibration Attenuation Approach forSpaceborne Optical Interferometers[J]. IEEE Transactions on Control SystemsTechnology, 1998, 6(6):689–700.
    8 D. Wolfe, C. Kirkconnell and G. Fleischman. Jitter Suppression Techniquesfor Mechanical Cryocooler-induced Disturbances[C]// Proceedings of SPIE con-ference. 2008, 7087:1–10.
    9 R. A. Masterson, D. W. Miller and R. L. Grogan. Development and Validation ofReaction Wheel Disturbance Models: Empirical Mode [J]. Journal of Sound andVibration , 2002, 249(3):575–598.
    10 H. L. Gutierrez. Performance Assessment and Enhancement of Precision Con-trolled Structures During Conceptual Design[D]. Cambridge:Massachusetts Insti-tute of Technology, 1999:40–44.
    11 N. Pedreiro1a, T. L. Trankle and D. J. Tenerelli. Control System for TerrestrialPlanet Finder Interferometer[C]//Proceedings of SPIE conference on Interferome-try in Space. 2003, 4852:581–592.
    12 R. G Cobb J. M. Sullivan and A. Das. Vibration Isolation and Suppression Systemfor Precision Payloads in Space[J]. Smart Materials and Structures, 1999, 43:798–812.
    13 A. J. Bronowicki, J. W. Innis. A Family of Full Spacecraft-to-payload Isolators[J].Technology Review Journal, 2005, 13(2):21–41.
    14 C. Blaurocka, K. Liub and L. Dewellc. Passive Isolator Design for Jitter Reductionin the Terrestrial Planet Finder Coronagraph[C]//Proceedings of SPIE conferenceon Optical Modeling and Performance Predictions II. 2005, 5867:58670Y.
    15 E. I. Rivin. Passive Vibration Isolation[M]. New York: ASME Press, 2003:25–30,48–51, 298–304.
    16 E. H. Anderson and J. M. Sater. Smart Structures Product Implementation Award:A Review of the First Ten Years[C]//SPIE Conference Industrial and CommercialApplications of Smart Structures Technologies. 2007, 6527:652702.
    17 M. F. Winthrop and R. G. Cobb. Survey of State-of-the-art Vibration Isolation Re-search and Technology for Space Applications[C]//SPIE Conference Smart Struc-tures and Materials 2003 Damping and Isolation, San Diego. California, 2003,6527:13–26.
    18涂奉臣,黄文虎,陈照波等.新型半主动整星隔振平台及其模糊最优控制研究[J].振动工程学报, 2010, 23(2):133–139.
    19马兴瑞,于登云,韩增尧等.星箭力学环境分析与试验技术研究进展[J].宇航学报, 2006, 27(3):323–331.
    20 T. Hindle, T. Davis, and J. Fischer. Isolation, Pointing, and Suppression (IPS)System for High Performance Spacecraft [C]//Proceeding of SPIE conference onIndustrial and Commercial Applications of Smart Structures Technologies. 2007,6527:652705.
    21 S. Lee, G. G. Ortiz and J. W. Alexander . Pointing Knowledge Accuracy of theStar Tracker Based ATP System[C]//preceding of SPIE conference on Free-SpaceLaser Communication Technologies XVII. Bellingham, 2005, 5712:255–264.
    22 L. Liu and B. Wang. Multi Objective Robust Active Vibration Control for FlexureJointed Struts of Stewart Platforms via H∞andμSynthesis[J]. Chinese Journal ofAeronautics , 2008, 21(2):125–133.
    23赵会光,马兴瑞,冯纪生.航天器精密设备隔振问题的功率流最优化研究[J].宇航学报, 2002, 23(3):1–7.
    24 M. O’Neil, W. Wellman. Multiclor Staring Missle Sensor Systems:US,6946647B1[P], 2005–09–20.
    25 J. Watson and K. Zondervan,. The Missile Defense Agency’s Space Tracking andSurveillance System[C]//Proceedings of SPIE conference on Sensors, Systems,and Next-Generation Satellites XII. 2008, 7106,710617.
    26 J. Gilmore, M. Luniewicz, D. Sargent, et al. Enhanced Precision Pointing Jit-ter Suppression System[C]//Proceedings of SPIE conference on Laser and BeamControl Technologies. 2002, 4632,38–49.
    27刘兆军,陈伟.面阵凝视型成像空间应用技术[J].红外与激光工程, 2006,35(5):541–545.
    28 D. Niederberger, S. Behrens, A. J. Fleming, et al. Adaptive Electromagnetic ShuntDamping[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(1):103–108.
    29 N. Jalili. A Comparative Study and Analysis of Semi-active Vibration-control Sys-tems[J]. ASME J. Vibr. Acoust., 2002, 124(4):593–605.
    30 M. Tursun, E. Eskinat. Suppression of Vibration Using Passive Receptance Methodwith Constrained Minimization[J]. Shock and vibration, 2008, 15(6):639–654.
    31 D. Thorby. Structural Dynamics and Vibration in Practice[M]. Butterworth-Heinemann: Jordan Hill, 2008:21–22.
    32 B. Marneffe. Active and Passive Vibration Isolation and Damping via ShuntedTransducers[D]. Brussels:Universite Libre de Bruxelles, 2007:67–69, 112–116.
    33 M. Holtz, J. Niekerk. Modelling and Design of a Novel Air-spring for a SuspensionSeat[J]. Journal of Sound and Vibration, 2010, 329(21):4354–4366.
    34 Q. Sun, R. A. Wolkow, M. Salomons. Low Frequency Vibration Isolation Throughan Active-on-active Approach: Coupling Effects[J]. ASME J. Vibr. Acoust., 2009,131(6):741–747.
    35 C. D. Johnson. Design of Passive Damping Systems[J]. Journal of Vibration andAcoustics, 1995, 117(B):171–176.
    36 G. Yao, F. Yap, G. Chen, et al. MR Damper and its Application for Semi-activeControl of Vehicle Suspension System[J]. Mechatronics, 2002, 12(7):963–973.
    37 M. J. Mashayekhi and N. Vahdati. Application of Tuned Vibration Absorbers inFluid Mounts[J]. Shock and Vibration, 2009, 16(1):565–580.
    38 I. Maciejewski, L. Meyer, T. Krzyzynski. The Vibration Damping Effectiveness ofan Active Seat Suspension System and its Robustness to Varying Mass Loading[J].Journal of Sound and Vibration, 2010, 329(19):3898–3914.
    39 H. D. Teng, Q. Chen. Study on Vibration Isolation Properties of Solid and LiquidMixture[J]. Journal of Sound and Vibration, 2009, 326(1):137–149.
    40 T. Asami,O. Nishihara. h2 Optimization of the Three-element Type Dynamic Vi-bration Absorbers[J]. ASME J. Vibr. Acoust., 2002, 124(4): 583–592.
    41 D. DeBra. Vibration Isolation of Precision Machine Tools and Instruments[J]. An-nals of the CIRP, 1992, 41(2):711–718.
    42刘天雄,林益明,王明宇等.航天器振动控制技术进展[J].宇航学报, 2008,29(1):1–12.
    43 L. Zuo. Element and System Design for Active and Passive Vibration Isolation[D].Cambridge:Massachusetts Institute of Technology, 2005:.
    44 R. A. Moreira, J.D. Corte-Real and J. D. Rodrigues. A Generalized Frequency-temperature Viscoelastic Model[J]. Shock and vibration, 2010, 17(4):407–418.
    45 A. G. Piersol, T. L. Paez. Harris’Shock and Vibration Handbook[M]. 6th Edition,New York: McGraw-Hill, 2010:2.30–2.31, 38.30–38.31.
    46 T. Ruebsamen J.Boyd T.Davis, et al. vibration Isolation Apperatus and Methods ofManufacture:US, 20080164644A1[P], 2008–07–10.
    47 Y. Liu, H. Matsuhisaa and H. Utsunoa. Semi-active Vibration Isolation System withVariable Stiffness and Damping Control [J]. Journal of Sound and Vibration, 2008,313(1):16–28.
    48 K. Williams, G. Chiu and R. Bernhard. Adaptive-Passive Absorbers Using ShapeMemory Alloys[J]. Journal of Sound and Vibration, 2002, 249(5):835–848.
    49 D. Grant and V. Hayward. Design of Shape Memory Alloy Actuator with HighStrain and Variable Structure Control[C]//Proceedings of 1995 IEEE InternationalConference on Robotics and Automation. Nagoya, 1995:2305–2312.
    50 D. Siler and K. Demoret. Variable Stiffness Mechanisms with Sma Actua-tors[C]//Smart Structures and Materials Conference: Industrial and CommercialApplications of Smart Structures Technologies. Nagoya, 1996, 2721:427–435.
    51 R. Stanway, J. Sproston and A. El-Wahed. Applications of Electro-rheologicalFluids in Vibration Control: A Survey[J]. Smart Materials and Structures, 1996,5(4):464–482.
    52 N. Sims, R. Stanway, D. Peel, et al. Controllable Viscous Damping - an Experimen-tal Study of an Electrorheological Long-stroke Damper under Proportional Feed-back Control[J]. Smart Materials and Structures, 1999, 8(5):601–615.
    53 A. Mroz, A. Orlowska, J. Holnicki-Szulc. Semi-active Damping of Vibrations[J].Shock and vibration, 2010, 17(2):123–136.
    54 B. Shah, J. Nudell, K. Kao, et al. Semi-active Particle-based Damping Sys-tems Controlled by Magnetic Fields[J]. Journal of Sound and Vibration, 2010,330(2):182–193.
    55 Y. Liu, , T. P. Waters and M. J. Brennan. A Comparison of Semi-active DampingControl Strategies for Vibration Isolation of Harmonic Disturbances[J]. Journal ofSound and Vibration, 2005, 180(1):21–39.
    56 K. Gawronski. Advanced Structural Dynamics and Active Control of Struc-tures[M]. New York: Springer, 2004.
    57 F. Kerber, S. Hurlebaus, B. Beadle, et al. Control Concepts for an Active VibrationIsolation System[J]. Mechanical Systems and Signal Processing, 2007, 21:3042–3059.
    58 J. Cheong, S. Lee. Linear Pid Composite Controller and its Tuning for FlexibleLink Robots [J]. Journal of Vibration and Control, 2008, 14(3):291–318.
    59 S. Fenik and L. Starek. Optimal Pi Controller with Position Feedback for VibrationSuppression[J]. Journal of Vibration and Control, 2010, 16(13):2023–2034.
    60 L. Jun. Positive Position Feedback Control for High-amplitude Vibration of a Flex-ible Beam to a Principal Resonance Excitation[J]. Shock and vibration, 2010,17(2):187–204.
    61纪晗,熊世树,袁涌等.基于负刚度原理的结构减震效果理论分析[J].振动与冲击, 2010, 29(3): 91–94.
    62 G. Coppola, K. Liu. Control of a Unique Active Vibration Isolator with a PhaseCompensation Technique and Automatic On/off Switching[J]. Journal of Soundand Vibration, 2010, 329(25):5233–5248.
    63 A. M. Abakumov, G. N. Miatov. Control Algorithms for Active Vibration IsolationSystems Subject to Random Disturbances[J]. Journal of Sound and Vibration, 2006,289(4):889–907.
    64 J. Yen, K. Lan and J.Kramar. Active Vibration Isolation of a Large Stroke Scan-ning Probe Microscope by Using Discrete Sliding Mode Control [J]. Sensors andActuators A: Physical, 2005, 121(1):243–250.
    65 L. Zuo and S. Nayfeh. Structured H2 Optimization of Vehicle Suspensions Basedon Multi-wheel Models[J]. Vehicle System Dynamics, 2003, 40(5):351–371.
    66 J. Shaw. Active Vibration Isolation by Adaptive Control [C]//1999, 2:1509–1514.
    67 C. S. Mehendale, I. J. Fialho and K. M. Grigoriadis. A Linear Parameter-varyingFramework for Adaptive Active Microgravity Isolation[J]. Journal of Vibration andControl , 2009, 15(5):773–800.
    68 K. T. Chen , C. H. Chou, S.H. Chang, et al. Intelligent Active Vibration Control inan Isolation Platform[J]. Applied Acoustics , 2007, 69:1063–1084.
    69 Z. Xie, J. S. Shepard and W. Woodbury. Design Optimization for Vibration Reduc-tion of Viscoelastic Damped Structures Using Genetic Algorithms[J]. Shock andvibration, 2009, 16(5):455–466.
    70 S. M. Shahruz. Active Vibration Suppression in Multi-degree-of-freedom Systemsby Disturbance Observers[J]. Journal of Vibration and Control, 2009, 15(8):1207–1228.
    71 M. Boerlage, B. Jager and M. Steinbuch. Control Relevant Blind Identification ofDisturbances with Application to a Multivariable Active Vibration Isolation Plat-form[J]. IEEE Trans. Control Syst. Technol., 2010, 18(2):393–404.
    72 S. Kim, S. Wang and M. Brennan. Dynamic Analysis and Optimal Design of aPassive and an Active Piezo-electrical Dynamic Vibration Absorber [J]. Journal ofSound and Vibration, 2010, 330(4):603–614.
    73刘耀宗,王宁,孟浩等.基于动力吸振器的潜艇推进轴系轴向减振研究[J].振动与冲击, 2009, 28(5):184–187.
    74 D. Kamesh, R. Pandiyan, A. Ghosal. Modeling, Design and Analysis of LowFrequency Platform for Attenuating Micro-vibration in Spacecraft[J]. Journal ofSound and Vibration, 2010, 319(17):3431–3450.
    75关广丰,熊伟,王海涛等. 6自由度电液振动台控制策略研究[J].振动与冲击,2010, 29(4):200–203.
    76 T. Watanabe, D. Watanabe, M. Naruke, et al. Feedforward Control of a MimoSystem for a Large-size and Lightweight Isolation Table[J]. Journal of Vibrationand Control, 2010, 16(4):513–526.
    77 Y. Kim, S. Kim and K. Park. Magnetic Force Driven Six Degree-of-freedom ActiveVibration Isolation System Using a Phase Compensated Velocity Sensor[J]. Reviewof Scientific Instruments, 2009, 80(4):1–5.
    78 F. Yang, R. Sedaghati, and E. Esmailzadeh. Vibration Suppression of Non-uniformCurved Beams under Random Loading Using Optimal Tuned Mass Damper [J].Journal of Vibration and Control, 2009, 15(2):233–261.
    79 Y. Halevi, I. Peled. Absolute Vibration Suppression (avs) Control - Modeling, Im-plementation and Robustness[J]. Shock and vibration, 2010, 17(4):349–358.
    80 Y. Zhao. Vibration Suppression of a Quadrilateral Plate Using Hybrid PiezoelectricCircuits[J]. Journal of Vibration and Control, 2010, 16(5):701–720.
    81 N.Vahdati, M. Ahmadian. Hybrid Secondary Suspension Systems [J]. Shock andvibration , 2009, 16(5):467–480.
    82 M. E. Hoque, T. Mizuno, D. Kishita, et al. Development of an Active Vibra-tion Isolation System Using Linearized Zero-power Control with Weight SupportSprings[J]. ASME J. Vibr. Acoust., 2010, 132(4):1–9.
    83 E. H. Anderson, J. P. Fumo and R. S. Erwin. Satellite Ultraquiet Isolation Technol-ogy Experiment[C]//IEEE Aerospace Conference. 2000, 4:299–313.
    84 H. Chen, R. M. Bishop. Payload Pointing and Active Vibration Isolation UsingHexapod Platforms[C]//44th AIAA/ASME/ ASCE/AHS Structures, StructuralDynamics, and Materials Conference. Norfolk, Virginia, 2003:1643.
    85 B. Choi1, S. R. Hong . Active Vibration Control of a Flexible Structure Using anInertial Type Piezoelectric Mount [J]. Smart Mater. Struct. , 2007, 16:25–35.
    86 E. Pollard, C. Jenkins. Shape Memory Alloy Deployment of Membrane Mirrorsfor Spaceborne Telescopes[C]//6th AIAA Gossamer Spacecraft Forum. Austin,AIAA, 2005-2196.
    87 J.W. Sohn, Y.M. Han, S.B. Choi, et al. Vibration and Position Tracking Control ofa Flexible Beam Using SMA Wire Actuators[J]. Journal of Vibration and Control,2009, 15(2):263–281.
    88张磊,刘永光,付永领等.基于磁致伸缩作动器的主动隔振系统分析[J].航空动力学报, 2004, 19(6):782–785.
    89 Z.Geng and L. Haynes. Six Degree-of-freedom Active Vibration Control Usingthe Stewart Platforms[J]. IEEE Transactions on control systems technology, 1994,2(1):45–53.
    90 T.Hindle, B.Mcmickell, T.Davis. Vibration Isolations and Isolation Systems:US,20090020381A1[P], 2009–01–22.
    91 H. Porumamilla, A. G. Kelkar, J. M. Vogel. Modeling and Verification of an In-novative Active Pneumatic Vibration Isolation System[J]. ASME J. Dyn. Syst.,Meas., Control, 2008, 130(3):1–12.
    92谭平,楼炳森,陈振藩.以压电陶瓷为作动器的主动隔振技术研究[J].振动测试与诊断, 1994, 14(1):44–48.
    93夏永强,余淼,刘胜龙.磁流变弹性体隔振缓冲器设计及实验研究[J].振动与冲击, 2010, 29(9):196–200.
    94 S. Pendleton, J. Basile and G. Academia. Payload Isolation Systemfor Ground Based Stability Testing: Design and Test Validation[C]//50thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference. California: AIAA, 2009-2694.
    95 C. Spier, J. C. Bruch and J. M. Sloss. Analytic and Finite Element Solutions forActive Displacement Feedback Control Using PZT Patches[J]. Journal of Vibrationand Control, 2010, 16(3):323–342.
    96 B. Yan, M. J. Brennan, S.J. Elliott, et al. Active Vibration Isolation of a Systemwith a Distributed Parameter Isolator Using Absolute Velocity Feedback Control[J].Journal of Sound and Vibration, 2010, 329(10):1601–1614.
    97 S. Hauge, E. Campbell. Sensors and Control of a Space-based Six-axis VibrationIsolation System[J]. Journal of Sound and Vibration, 2004, 269(4):913–931.
    98 A. Preumont, A. Francois. Force Feedback Versus Acceleration Feedback in ActiveVibration Isolation[J]. Journal of Sound and Vibration, 2002, 257(4):605–613.
    99 M. K. Kim, Y. S. Choun and J. M. Seo. Demonstration of the Vibration ControlPerformance of Coil Spring-viscous Damper Systems by Measuring the Vibrationof an Emergency Diesel Generator[J]. Journal of Vibration and Control, 2010,16(2):207–229.
    100 I. D. Mayergozy. Mathematical Modeling of Hysteresis and Their Aapplication[M].
    2nd Edition, Amsterdam: Elsevier, 2002.
    101 M. Janaiden, C. Su and S. Rakheja . Development of the Rate-dependent Prandtl-ishlinskii Model for Smart Actuators[J]. Smart Mater. Struc. , 2008, 17:035026.
    102 O. Henze and W. Rucker. Identification Procedures of Preisach Model[J]. IEEETrans. Magn., 2002, 38(2):833–836.
    103 G.Song, J. Zhao, X. Zhou and J. Abreu-Garcia. Tracking Control of a PiezoceramicActuator with Hysteresis Compensation Using Inverse Preisach Model[J]. IEEETrans. Magn., 2005, 10(2):198–209.
    104 H. Hu. Compensation of Hysteresis in Piezoceramic Actuators and Control ofNano-positioning System[D]. Toronto:University of Toronto, 2003:.
    105 R. Iyer, X. Tan and P. Krishnaprasad . Appriximate Inversion of Preisach HysteresisOperator with Application to Control of Smart Actuators [J]. IEEE Trans. Autom.Control , 2005, 50(6):798–809.
    106 Y. Wu, Q.Zou. Iterative Control Approach to Compensate for Both the Hystere-sis and the Dynamics Effects of Piezo Actuators [J]. IEEE Trans. Control Syst.Technol. , 2007, 15(5):936–944.
    107 M. Rakotondrabe, C. Clevy and P. Lutz. Hysteresis and Vibration Compensation ina Nonlinear Unimorph Piezocantilever[C]//EEE/RSJ International Conference onIntelligent Robots and Systems. 2008.
    108 X. Chen, T. Hisayama and C. Su. Pseudo-inverse-based Adaptive Control forUncertain Discrete Time Systems Preceded by Hysteresis[J]. Automatica, 2009,45(2):469–476.
    109 J. Negro, S. Griffin. Inertially Stabilized Platforms for Precision Pointing Appli-cations to Directed-energy Weapons and Space-based Lasers, APA Report, 2006,No. 583464.
    110 J. Spanos. A Soft 6-axis Active Vibration Isolator [C]//proceeding of AmericanControl Conference. 1995: 412–416.
    111 G. Neat, A. Abramovici and R. Goullioud. Overview of the Micro Precision In-terferometer Testbed[C]//American Control Conference. Philadelphia, 1998:1563–1568.
    112 S. Edwards. Active Narrowband Disturbance Rejection on an Ultra Quiet Plat-form[D]. Monterey:Naval Postgraduate School, 1999:8–13.
    113 H. Chen, E. Hospodar and B. Agrawal. Development of a Hexapod Laser-basedMetrology System for Finer Optical Beam Pointing Control[R], AIAI Report,2004, No. 20043146.
    114 K. Denoyer, R. Erwin and R. Ninneman. Advanced Smart Structures Flight Exper-iments for Precision Spacecraft[J]. Acta Astronautica, 2000, 47(2):389–397.
    115 A. Joshi, W. Kim. Modeling and Multivariable Control Design Methodologiesfor Hexapod-based Satellite Vibration Isolation[J]. Journal of Dynamic Systems,Measurement, and Control, 2005, 127(4): 700–704.
    116 E. Flint, E. Anderson. System Identification of the Suite Isolation Platform[C]//44thAIAA/ASME/ASCE /AHS Structures, Structural Dynamics, and Materials Con-ference. Norfolk, Paper No.2003-1642.
    117 M. McMickell, T. Kreider, E. Hansen. Optical Payload Isolation Using the Minia-ture Vibration Isolation System (MVIS-II)[C]//SPIE Industrial and CommercialApplications of Smart Structures Technologies. 2007, 6527:652703.
    118 C. Brackett, K. Denoyer, J. Jacobs, et al. Miniature Vibration Isolation System(mvis)[C]//Proceedings of IEEE Aerospace Conference. Big Sky, 2000:335–344.
    119 L. Dewella, N. Pedreiroa, C.arl Blaurockb. Precision Telescope Pointingand Spacecraft Vibration Isolation for the Terrestrial Planet Finder Corona-graph[C]//preceding of SPIE conference on UV/Optical/IR Space Telescopes: In-novative Technologies and Concepts. Bellingham, 2005, 5899:589902.
    120 M. Cash, E. Anderson, R. Sneed et al. A Precision Pointing Parallel Ma-nipulator Design for Asymmetric Geometries and Cryogenic Vacuum Environ-ment[C]//American Society for Precision Engineering Annual Meeting. Norfolk,2005.
    121 J. Hall, G. Pettit and J. Lindler. Compact Lightweight Six-axis Point-and-hold Posi-tioning System[C]//Proceedings of SPIE conference on Industrial and CommercialApplications of Smart Structures Technologies. 2003, Paper No.1 5054-33,.
    122 D. Thayer, M. Campbell and J. Vagners. Six-Axis Vibration Isolation System UsingSoft Actuators and Multiple Sensors[J]. Journal of Spacecraft and Rockets , 2002,39(2):206–212.
    123 J. McInroy. Modeling and Design of Flexure Jointed Stewart Platforms for ControlPurposes[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(1):95–99.
    124 J. McInroy. Properties of Orthogonal Stewart Platforms [C]//proceeding of SPIEconference on Smart Structures and Integrated Systems. 2003:591–602.
    125 J. McInroy, J. O’Brien, G. Neat. Precise Fault-tolerant Pointing Using a StewartPlatform[J]. IEEE/ASME Transactions on Mechatronics , 1999, 4(1):91–95.
    126 Y. Chen, J. McInroy. Decoupled Control of Flexure Jointed Hexapod Using Esti-mated Joint Space Mass Inertia Matrix[J]. IEEE Transaction on Control SystemsTechnology, 2004, 12(3):413–421.
    127 E. Anderson, M. Evert, P. Flannery. Image Stabilization Testbed[C]//Proceedingsof SPIE conference on Aerospace Sensing Conference. Orlando, 2001, 4366-24.
    128 A. Hanieh. Active Isolation and Damping of Vibrations via Stewart Platform[D].Brussels:Universite Libre de Bruxelles, 2003:8–13.
    129 A. Preumont, M. Horodinca, I. Romanescu. A Six-axis Single Stage Active Vibra-tion Isolator Based on Stewart Platform[J]. Journal of sound and vibration, 2007,300(3):644–661.
    130 A. Defebdini, L. Vaillonl, F. Trouve. Technology Predevelopment for Active Con-trol of Vibration and Very High Accereacy Pointing Systems[C]//ESA’s 4th Space-craft Guidance, Navigation and Control Systems Conference. 1999.
    131刘丽坤,郑钢铁,黄文虎.整星被动多杆隔振平台研究[J].应用力学学报,2005, 3:329–334.
    132涂奉臣,陈照波,李华等.新型整星隔振平台的被动隔振性能及星箭耦合特性分析[J].航空学报, 2010, 31(3):538–545.
    133段学超,仇原鹰.柔性支撑Stewart平台自适应交互PID隔振控制[J].控制理论与应用, 2009, 26(6):607–612.
    134杨涛,马嘉,侯增广,谭民. Stewart并联机构主动隔振平台的非线性L2鲁棒控制[J].机器人, 2009, 31(3):210–216.
    135 J. Doyle, K. Glover and P. Khargonekar, et.al. State-space Solutions to StandardH2 and H∞Control Problems[J]. IEEE Transactions on Automatic Control , 1989,34(8):831–847.
    136 K. Zhou, J. Doyle. Essentials of Robust Control[M]. Upper Saddle River: PrenticeHall, 1998.
    137 D. W. Gu, P. Petkov and M. Konstantinov. Robust Control Design with MAT-LAB[M]. London: Springer-Verlag, 2005.
    138王广雄,王新生,何朕. H∞控制器的LMI算法分析[J].电机与控制学报,2002, 6(1):46–49.
    139 S. Skogestad, I. Postlethwaite . Multivariable Feedback Control: Design and Anal-ysis[M]. 2nd Edition, Chichester: John Wiley Sons Ltd, 2005.
    140 K. Astrom and B.Wittenmark. Adaptive Control[M]. Addison Wesley, 1994.
    141 J.T. Xing, Y. P. Xiong, W.G. Price. Passive-active Vibration Isolation Systems toProduce Zero Or Infinite Dynamic Modulus: theoretical and Conceptual DesignStrategies[J]. Journal of Sound and Vibration, 2005, 286:615–636.
    142 W. M. Kuo, S. F. Chuang and C. Y. Nian . Precision Nano-alignment System UsingMachine Vision with Motion Controlled by Piezoelectric Motor[J]. Mechatronics,2008, 18:21–34.
    143 X. Tan, J. Baras . Adaptive Identification and Control of Hysteresis in Smart Mate-rials [J]. IEEE Trans. Autom. Control , 2005, 50(6):827–839.
    144 R. Aster, B. Borcher and C. Thurber. Function Analysis and Inverse Problem[M].Amsterdam: Elsevier, 2005.
    145 J. Bunch and C. Nielsen . Updating the Singular Value Decomposition[J]. Numer.Math. , 1978, 31:111–129.
    146 M. Brand. Fast Online SVD Revisions for Lightweight Recommender Sys-tems[C]//SIAM International Conference on Data Mining. 2003.
    147 T. Shimizu, S. Nagata and S. Tsuneta. Image Stabilization System for Hinode(solar-b) Solar Optical Telescope[J]. Solar Physics, 2007, 249(2):221–232.
    148 M. Sidi, M. Rycroft and R. Stengel. Spacecraft Dynamics and Control: A PracticalApproach[M]. Cambridge: Cambridge university press, 1997:172–180, 320–325.
    149 M. Privat. On Ground and in Orbit Microvibrations Measurement Compari-son[C]//Proceedings of the 8th European Symposium Space Mechanisms and Tri-bology. Toulouse, 1999:181–186.
    150 D. Jones, A. Owens and R. Owen. A Control System for a Microgravity IsolationMount[J]. IEEE Transaction on Control Systems Technology, 1996, 4(4):313–325.
    166 X. Wang, Z. Chen and G. Yang. Finite-Time-Convergent Differentiator Basedon Singular Perturbation Technique[J]. IEEE Transactions on Automatic Control,2007, 52(9):1731–1737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700