列车轮对故障振动特性及诊断关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路是我国交通运输的重要基础设施,而列车是铁路运输的具体载运工具。列车轮对作为机车车辆的支撑走行部件,由于其长期处于高速重载多粉尘的工作环境,相关工作面长期承受交变接触应力的作用,极易引起零件的疲劳和裂纹等早期缺陷。如任由缺陷继续发展,会给列车带来额外的冲击振动,导致零件发热和车轴裂纹,继而产生燃轴切轴,甚至导致车毁人亡的严重事故。因此,在列车运行过程中对轮对关键部件开展状态监测与故障诊断,及时发现早期故障是非常有必要的。
     本论文通过理论分析提出频带变化类故障的定义。在详细分析列车轮对关键部件结构和振动特性的基础上,开展了牵引齿轮、机车轴箱轴承和电机轴承的故障振动特性、频带变化故障机理以及监测方法和故障诊断信号处理算法的研究。通过理论分析、仿真研究、实验分析以及实际应用相结合的方法开展研究。主要研究内容如下:
     (1)分析了列车轮对关键部件的机械结构和特点,分别对其振动特性和故障机理等进行了研究,归纳了列车轮对常见故障的频谱特性。详细分析了列车运行过程中所受到的外部影响因素,在此基础上归纳并提出了频带变化类影响因素的概念,提出了列车轮对频带变化类故障定义。并建立该类故障的通用数学模型。
     (2)定义与列车运行状态因素无关的故障特征参数K。分析故障特征频率fg与故障特征参数K之间的相互关系,将常规的频谱分析方法归一化应用到特征域信号中,实现特征域信号分析方法。并详细分析了特征域分析的原理,研究了特征域分析实现的若干关键技术(整周期采样电路的设计、采样参数的选取、等角度重采样分析技术等)。并通过故障信号的仿真分析和列车轮对故障实验平台的实验研究验证了特征域分析方法的准确性和实用性。仿真分析和实验结果表明,该方法可以实现列车轮对故障的无转速波动敏感性的精确诊断。
     (3)分析了列车轮对振动信号的似周期特性。研究了列车轮对频带变化类故障的自相关循环平稳特性。选取谱相关密度函数作为列车振动信号的循环统计量进行研究。通过列车轮对振动信号的循环自相关函数,对其降噪效果进行了研究。以列车运行过程中最常见的加性噪声为例,分析了循环自相关函数的降噪效果。继而研究了谱相关密度函数对列车轮对振动信号中常见噪声分量的降噪特性。通过仿真信号和实验数据加以验证,取得了较为理想的效果。
     (4)选取信号循环平稳特性分析中的循环频率α加以分析,提出了基于全频段扫频算法的循环频率α提取算法。通过计算循环频率α处的谱相关密度函数,提取列车轮对频带变化类故障特征。并研究了高阶谱分析方法在轮对故障诊断中的应用。结合等角度信号采集技术,提出了等角度信号的双谱分析方法,通过双谱对角切片谱分析方法,提取故障特征信息。实际应用研究表明该方法具有一定的实用性。
     (5)研究了列车轮对故障的局域均值分解方法(简记为LMD),结合列车轮对故障信号的特点,采用LMD方法对信号加以分解。提出了窗口滑动平均处理的LMD技术,将多分量信号分解为若干单分量信号,提取列车轮对转频瞬时频率,以实现无转速跟踪的特征域信号分析技术。对于LMD的端点效应,提出基于原始信号局域波形统计特征的延拓特征波方法,以消除分解算法的端点效应。定义端点效应烈度公式,定量分析消除效果。通过应用分析,验证了上述方法。
     (6)采用信号时频分析方法提取其时频特征。提出了列车轮对状态实时监测的修正多项式WVD。研究了考虑频带变化因素的时核函数改进方法。针对多项式核函数的WVD分布图较为复杂,提出了基于Viterbi算法的时频分布图最优路径搜索算法。通过列车轮对故障实验平台和实际列车运行数据分析加以验证。
     论文中针对列车轮对监测与故障诊断所提出的各种方法均经过了严格的理论分析、模拟实验或实际运行实验,具有较强的实际工程应用性。且论文提出的相关分析方法,是在综合考虑列车运行过程中普遍存在的转速波动情况,提出精确诊断算法。相关的监测诊断方法,不仅适用于列车轮对的监测诊断,还可推广应用到其他存在转速波动的旋转机械监测诊断中,具有非常明显的是实际应用意义。
Railway is the important infrastructure of transportation, and the train is the specific carrying vehicle of rail transport. The operation condition of train is a key factor to the rail transport safety. Therefore, the safety operation is a top priority to protect human life and property security, even to the economic development which has a very important practical significance.
     As the wheel-set components are the supporting parts and traveling parts of the train, due to its poor operation condition such as long period of high-speed and heavy loads situation, the contact surface of the relevant rolling components is always attacked by the long-term alternating stress. The rolling components are easily caused to fatigue, crack or other faults. If such faults are continued developing will bring additional shock and vibration to the train, and lead to bearing heating, axis cutting, and even lead to a serious crash accident. It's necessary to apply condition monitoring and fault diagnosis methods to the key components of wheel set, detect the early fault and avoid the accident which is dangerous to the railway transportation.
     This paper focuses on the train wheel-set's early defects of during operation, by theoretical analysis the definition of the frequency-varying fault is put forward. The fault mechanism, condition monitoring methods, fault signal processing algorithms of train wheel-set's frequency-varying fault are researched based on the detailed analysis of the key components structure and kinetic characteristics of traction gear fault, axle box bearing fault and the motor shaft bearing fault. By theoretical analysis, simulation studies, laboratory analysis and actual applications, a combination of monitoring and diagnosis method is systematic studied. The main research content and results are as follows:
     (1) The structure and mechanical characteristics of the train wheel set component is analyses in this part. The vibration characteristics, fault mechanism and fault spectrum characteristics is researched. The common fault frequency characteristics of the train wheel set component are summarized. Through the detail analysis of the external influences which is different from the common rotating machinery, the concept of frequency-varying factors is summarized and presented. By entirely think of the operation factors, the general fault mechanism model is established.
     (2) By the definition of the fault characteristic coefficient K which is unrelated to the frequency-varying factors, the conventional spectral analysis method can be normalized to the characteristic domain signal, and the characteristics spectral analysis method is achieved. The principle and some key technologies (such as:synchronous sampling design, sampling parameters selected et al.) of characteristic spectral analysis method is analysed in detail. Through simulation analysis and experimental study on the train wheel set fault test system, the accuracy and usefulness of characteristics spectral analysis method is verified.
     (3) In this part, the train likely-cycle vibration signal is analysised. By research the cyclostationary properties of the frequency-varying fault signal, the spectral correlation density function analysis method of train wheel set vibration signal's cycle statistics parmeter is selected. From the circulating the auto-correlation function of train wheel set vibration signals, the noise reduction analysis is proposed. The noise characteristic of the train wheel set vibration signal is researched through spectral correlation density function based on the auto-correlation function analysis of additive noise. And the noise reduction effect is verified by the simulated signals and experimental data analysis.
     (4) The cyclic statistics method of is applied to extraction the fault characteristic of the frequency-varying fault. For calculating the cyclostationary properties as cycle frequency α, a cycle frequency a calculate algorithm based on the full frequency band sweep extraction method is proposed. By calculate the spectral correlation density function value where the cycle frequency a is get from the frequency band sweep method. The fault characteristic is extracted from the wheel components to achieve a precise diagnosis for such fault. In the last of this part, a higher order bispectrum analysis is applied to the train wheel set fault. Be combined with the characteristic domain signal processing method proposed in this paper. The characteristic domain's higher order bispectrum is put forward. And the characteristic domain bispectrum diagonal slice is used to extract fault characteristic. Through the practical application research, it shows that such analysis method has a certain practicality.
     (5) The train wheel set frequency-varying fault signal's local mean decomposition method (denoted by LMD) is studied in this part. Full account of the multi-component AM-FM signal collect from train wheel set fault, the local mean decomposition method is applied to decompose this signal. The new local mean decomposition method based on the average processing with window sliding extraction technology is proposed and will be applied to extract a multi-component signal into several single-component signals. In order to achieve the no speed-tracking characteristic domain signal analysis techniques, the train wheel set instantaneous frequency of rotating frequency is extract from the several signal-component signals. By analyzing the principles and causes of the end effect in the local mean decomposition, a extension characteristic wave method based on the statistical characteristic of the original signal ending localized waveform is proposed. In order to eliminate the end effect of the decomposition algorithm, an intensity formula of the end effect's quantitative analysis is defined. All the method put forwarded above is verified in the real case application, and achieved satisfactory results.
     (6) For the non-stationary and non-linear characteristics of the fault signal, a time-frequency analysis method is researched in order to extract the fault signal's time-frequency characteristic. A variables improved method of the kernel function is researched. And an amendments polynomial Wigner-Ville distribution for the train wheel real-time status monitoring is proposed. For the polynomial kernel function of the signal frequency distribution map is more complicated, a frequency map optimal path search algorithm based on the Viterbi algorithm is proposed. Through the experiment on the train wheel set fault test system and the actual train running data analysis, the methods researched above is verified, and obtain a satisfactory result.
     The fault diagnosis analysis methods which are proposed in this paper are all undergoing by a rigorous theoretical analysis, simulation and real experiment has a strong practical application of engineering. This paper presents analytical methods is account of the frequency-varying factors, the precise diagnostic algorithm is put forward and verified. Such monitoring and diagnostic methods and techniques are not only can used to the train wheel set components, but also can promote the use of any possible speed fluctuations rotating machinery monitoring and diagnosis.
引文
[1]李明华,罗世民.铁道概论[M].长沙:中南大学出版社,2010
    [2]张中央,李晓村,李益民.机车新技术[M].成都:西南交通大学出版社,2009
    [3]铁道部统计中心.中华人民共和国铁道部2010年铁道统计公报[EB],[2011.05.11].http://www.china-mor.gov.cn/zwzc/tjxx/tj gb/201105/t201105 1123696.html
    [4]董锡明.高速列车维修及其保障技术[M].北京:中国铁道出版社,2008
    [5]董锡明.轨道列车可靠性、可用性、维修性和安全性[M].北京:中国铁道出版社,2009
    [6]贾利民.高速铁路安全保障技术[M].北京:中国铁道出版社,2010
    [7]黄采伦,樊晓平,陈特放.列车故障在线诊断技术及应用[M].北京:国防工业出版社,2006
    [8]韦尔特纳.德国铁路事故大事记[M].北京:中国铁道出版社,2010
    [9]维基百科.各国铁路事故列表年编[EB]. [2012.3.13].http://zh.wikipedia.org/wiki/%E9%90%B5%E8%B7%AF%E4%BA%8B%E6% 95%85%E5%88%97%E8%A1%A8
    [10]萨殊利.机车总体与走行部[M].北京:北京交通大学出版社,2002
    [11]铁道部运输局.铁路货车典型故障汇编[M].北京:中国铁道出版社,2003
    [12]董锡明.机车车辆运用可靠性工程[M].北京:中国铁道出版社,2004
    [13]谢步明.韶山7型电力机车[M].北京:中国铁道出版社,2002
    [14]石华峰,尹国华等.机车轴承故障诊断[J].机车电传动,2004(2):40-43.
    [15]王德志.滚动轴承的诊断与维修[M].北京:中国铁道出版社,1994
    [16]黄采伦,樊晓平,陈春阳等.基于小波系数提取及离散余弦包络分析的机车牵引齿轮故障诊断方法[J].铁道学报,2008,30(2):98-102
    [17]侯运丰,龚俊.机车电动机悬挂装置主动齿轮断裂分析[J].甘肃工业大学学报,2003,29(2):50-52
    [18]周新红,田为涛,王忠等.机车牵引电机和承、轴箱轴承故障介析及对策[J].机车车辆工艺,2003,6:39-40
    [19]李晓村.机车新技术[M].北京:中国铁道出版社,2009
    [20]黄采伦.列车轮对在线状态监测理论与方法研究[博士学位论文].长沙:中 南大学,2007
    [21]王靖,陈特放,黄采伦.频带变化类列车轴承故障机理分析[J].湖南科技大学学报(自然科学版),2011,26(3):31—35
    [22]Pratesh Jayaswal, A. K. Wadhwani, K. B. Mulchandani. Machine fault signature analysis[J]. International Journal of Rotating Machinery,2008, Review Article:1-10
    [23]孟涛.齿轮与滚动轴承故障的振动分析与诊断[博士学位论文].西安:西北工业大学,2003
    [24]张宇等.转子—轴承—基础非线性动力学研究[J].振动工程学报,1998,11(1):24-30
    [25]李志刚等.多跨转子—滑动轴承系统非线性动力学仿真[J].自然杂志,1997,19(9):76-82
    [26]J. Antoni and R, B. Randall. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults [J]. ASME Journal of Vibration and Acoustics,2003,125(3):282-289
    [27]B. Picoux, D. Le Houedec. Diagnosis and prediction of vibration from railway trains [J]. Soil Dynamics and Earthquake Engineering,2005,25(12):905-921
    [28]McFadden, P. D., and Smith, J. D. The vibration produced by multiple point defects in a rolling element bearing [J]. J. Sound Vib,1985,98(2):69-82
    [29]Florin Taraboanta, Barbu Dragan.Computing race ways shape of ball bearing [J]. The Annals of university "dunarea de jos" of galati fascicle Ⅷ,2002:99-103
    [30]曾复.裂纹转子升速过程中的振动特性分析[J].汽轮机技术,2007,49(3):230-232,235
    [31]姚红良,李鹤,李小彭等.旋转机械局部故障力的模型诊断及瞬时故障力识别[J].机械工程学报,2007,43(1):120-124
    [32]童进,吴昭同,严拱标.大型旋转机械升降速过程故障诊断研究[J].振动、测试与诊断,1999,19(3):193-195
    [33]杨叔子等.机械设备诊断的理论技术与方法[J].振动工程学报,1992,5(3):193-201
    [34]冯其波,赵雁,崔建英.车轮踏面擦伤动态定量测量新方法[J].机械工程学报,2002,38(2):120—122
    [35]姜爱国,王雪.车轮踏面擦伤的集成粗糙神经网络预示诊断[J].清华大学学报(自然科学版),2005,45(2):170-173
    [36]尚万峰,赵升吨,韩捷.基于高阶累积量自适应算法的列车轴承的故障诊断[J].振动工程学报,2006,19(2):234—237
    [37]陈特放,黄采伦,樊晓平.基于小波分析的机车走行部故障诊断方法[J].中国铁道科学,2005,26(4):89-92
    [38]周鹏,秦树人.基于切片谱RBF神经网络的旋转机械故障诊断[J].中国机械工程,2008,19(12)12:1488-1491
    [39]周鹏,秦树人.基于切片谱免疫系统的旋转机械故障诊断[J].仪器仪表学报,2008,19(06)1198-1202
    [40]裘焱,吴亚锋,李野.应用IMF分量包络矩阵的奇异值提取机械故障特征[J].中国机械工程,2009,20(22):2647-2649
    [41]李永龙,邵忍平,薛腾.基于小波神经网络的齿轮系统故障诊断[J].航空动力学报,2010,25(01):234—240
    [42]杨龙兴,王强锋,贾民平.旋转机械故障交叉项时频诊断方法[J].农业机械学报,2008,39(08):153-156
    [43]杨永发,张杨,许鹏辉.基于分形理论的旋转机械故障诊断的研究[J].煤矿机械,2008,29(02):207—208
    [44]A.M. Bassiuny, Xiaoli Li, R.Du. Fault diagnosis of stamping process based on empirical mode decomposition and learning vector quantization [J]. International Journal of Machine Tools & Manufacture,2007,47:2298-2306
    [45]V. Sugumaran, K.I. Ramachandran. Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing [J]. Mechanical Systems and Signal Processing,2007,21:2237-2247
    [46]F.Q. Wu and G. Meng. Feature extraction based on the 3D spectrum analysis of acoustic signals to identify rotor malfunction [J]. The International Journal of Advanced Manufacturing Technology,2006,28(11-12):1146-1151.
    [47]Chih-Chung Wang and Gee-Pinn James Too. Rotating machine fault detection based on HOS and artificial neural networks to identify the faults of rotating machinery, classification process can be divided [J]. Journal of Intelligent Manufacturing,2002,13(4):283-293.
    [48]Ping Lia, Roger Goodall. Estimation of railway vehicle suspension parameters for condition monitoring [J]. Control Engineering Practice,2007,15:43-55.
    [49]S. Stankovic, I. Orovic, and C. Ioana. Effects of cauchy integral formula discretization on the precision of IF estimation:unified approach to complex-lag distribution and its counterpart L-Form [J]. IEEE Signal Process. Lett.2009,16: 327-330
    [50]E. Sejdic, L J. Stankovic, M. Dakovic, and J. Jiang. Instantaneous fequency etimation using the s-transform [J]. IEEE Signal Process.Lett.2008,15:309-312
    [51]P.L. Shui, H. Y. Shang, and Y. B. Zhao. Instantaneous frequency estimation based on directionally smoothed pseudo-Wigner-Ville distribution bank [J]. IET Radar Sonar Navig.2007,1:317-325
    [52]M. Ozturk, Akan. Local instantaneous frequency estimation of multi-component signals [J]. Computers and Electrical Engineering,008,34:281-289
    [53]Enblom R, Berg M. Wheel wear modelling including disc braking and contact environment-Simulation of 18 months of commuter service in Stockholm[C]. Proceedings of the 14th International Wheelset Congress, Orlando,2004.10
    [54]Condier J F, Fodiman P. Experimental characterization of wheel and rail surface roughness [J].Journal of Sound and Vibration,2000,231(3):120-126.
    [55]H. Endo, R.B. Randall. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter [J]. Mechanical Systems and Signal Processing,2007,21(2):906-919.
    [56]Adam G. Rehorn, Ervin Sejdic, Jin Jiang. Fault diagnosis in machine tools using selective regional correlation Mechanical Systems and Signal Processing [J]. 2006,20:1221-1238
    [57]Edwards S. Fault diagnosis of rotating machinery [J]. The shock and vibration digest,1998,30(1):4-13
    [58]Scott W. A summary review of vibration-based damage identification methods [J]. The Shock and Vibration digest,1998,30(2):91-105
    [59]Tahar Fakhfakh, Fakher Chaari, Mohamed Haddar. Numerical and experimental analysis of a gear system with teeth defects[J].Int J Adv Manuf Techno 1 (2005) 25:542-550
    [60]Y.S. Fan, G.T. Zheng. Research of high-resolution vibration signal detection technique and application to mechanical fault diagnosis [J]. Mechanical Systems and Signal Processing,2007,21:678-687
    [61]Hou Wei xing, Liu Hui ying, Zhu Hua. Improve wheel set operation safety and reduce total life cycle cost [J]. Foregin Roling Stock,2002,03:1-8
    [62]Nielsen J, Ekberg A, et al. Integrated analysis of dynamic train track interaction and rolling contact fatigue[C]. Proceedings of the 14th International Wheelset Congress, Orlando,2004.10
    [63]Adjrad M, Belouchrani A. Estimation of multicomponent polynomial-phase signals impinging on a multisensor array using state-space modeling [J].IEEE Transactions on Signal Processing,2007,55(1):32-45.
    [64]LI Ying-xiang, TANG Wei-wen, KUANG Yu-jun. Combination of instantaneous frequency curve fitting and local search method for 3-order polynomial phase signal parameter estimation [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2010,22(4):400-405
    [65]BOUALEM BOASHASH. Estimating and Interpreting the Instantaneous Frequency of a Signal-Part 2:Algorithms and Applications [J].Proceedings of The IEEE,1992,80(4):540-568
    [66]雷亚国,何正嘉,訾艳阳等.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117.
    [67]余永华.船舶柴油机瞬时转速和热力参数监测诊断技术研究[博士学位论文].武汉:武汉理工大学,2007
    [68]陈先利,韩捷.全矢力谱及其在旋转机械故障诊断中的应用研究[J].机床与液压,2008,36(04):202-204
    [69]王凯,张永祥,李军.遗传算法和支持向量机在机械故障诊断中的应用研究[J].机械强度,2008,30(3):349-353
    [70]杨思锋,王祁,刘鲁.一种基于知识推送的故障诊断系统[J].航空动力学报,2010,25(01):203-207
    [71]董辛旻,韩捷,石来德等.基于全信息小波包和支持向量机的旋转机械故障诊断[J].汽轮机技术,2008,50(02):123-125
    [72]朱大奇,易健雄,袁芳.基于小波灰色预测理论的旋转机械故障预测分析仪[J].仪器仪表学报,2008,29(06):1176-1181
    [73]Enrico Zio, Giulio Gola. A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery [J]. Reliability Engineering and System Safety, 2009,94:78-88
    [74]Bo-Suk Yang, Tian Han and Won-Woo Hwang. Fault diagnosis of rotating machinery based on multi-class support vector machines [J]. Journal of Mechanical Science and Technology,2005,19(3):846-859
    [75]梅宏斌.滚动轴承故障诊断及其在高速铁路轴承试验中的应用[博士论文]. 武汉:华中理工大学.1993.
    [76]梁玉前,秦树人,郭瑜.旋转机械升降速信号的瞬时频率估计[J].机械工程学报,2003,39(9):75—80
    [77]李艳妮.旋转机械故障机理与故障特征提取技术研究[硕士学位论文].北京:北京化工大学,2007
    [78]师汉民等.机械振动系统——分析、测试、建模、对策[M].武汉:华中理工大学出版社,1999
    [79]孔祥臻,王勇,蒋守勇.基于Stribeck模型的摩擦颤振补偿,机械工程学报,2010,46(5):68—73
    [80]黄采伦,周华,张剑等.特征谱分析方法及其在列车轮对故障诊断中的应用[J].湖南科技大学学报(自然科学版),2008,23(1),71—75.
    [81]刘达德.东风4B内燃机车[M].北京:中国铁道出版社,2004
    [82]Marco Cocconcelli, Cristian Secchi et al. Comparison between time-frequency techniques to predict ball bearing faults in drives executing arbitrary motion profiles[C]. Proceedings of IMECE 2008:1-7
    [83]张中民,卢文祥,杨叔子.滚动轴承故障振动模型及其应用研究.华中理工大学学报,1997,25(31):50—53
    [84]D.M. Yang, A.F. Stronach, P. MacConnell. The Application of Advanced Signal Processing Techniques to Induction Motor Bearing Condition Diagnosis [J]. Meccanica,2003,38(2):297-308
    [85]Wang Jing, Chen Te fang, Huang cai lun, et al. A Method of Measurement and Monitoring to the Train's Vibration Frequency Spectrum-Varying Fault [J]. Applied Mechanics and Materials.2010,36:96-102
    [86]刘进德.低速重载齿轮胶合的失效分析[硕士学位论文].沈阳:辽宁工程技术大学,2006
    [87]丁菊霞等.电力机车机械部分[M].成都:西南交通大学出版社,2010
    [88]Jonas Stahl, Bo O. Jacobson. A lubricant model considering wall-slip in EHL line contacts [J]. Journal of Tribology,2003,125(3):523-532
    [89]张兵.列车关键部件安全监测理论与分析研究[博士学位论文].成都:西南交通大学,2007
    [90]徐增丙,轩建平等.基于小波灰度矩向量与连续马尔可夫模型的轴承故障诊断[J].中国机械工程,2008,19(15):1858-1862
    [91]铁路机车车辆科技手册编委会.铁路机车车辆科技手册第四卷:技术政策、 法规、标准[M].北京:中国铁道出版社,2001
    [92]胡劲松,杨世锡.转子振动信号同步整周期重采样方法的研究[J].动力工程,2008,28(3):408-410
    [93]谢振华,许录平,郭伟等.基于整周期数关系式的TDOA周期模糊求解算法[J].仪器仪表学报,2008,29(6):1134-1139
    [94]张占一,刘杰,应怀樵.基于等时间采样的阶比切片图研究与应用[J].东北大学学报(自然科学版),2008,29(2):262-265
    [95]罗红梅,齐明侠,裴峻峰等.滚动轴承故障诊断中精确转频的实用计算新方法[J].振动与冲击,2007,26(5):64-65
    [96]吕平,薛知行,张学敏等.基于振动的内燃机转速测量研究[J].车辆与动力技术2005.4:22-25
    [97]李辉,郑海起,唐力伟.瞬时频率估计的齿轮箱升降速信号阶次跟踪[J].振动、测试与诊断,2007,27(2):125-128
    [98]罗洁思,于德介,彭富强.齿轮箱故障振动信号的阶比多尺度形态学解调[J].机械工程学报,2010,46(11):114—120,128
    [99]周福昌,陈进,何俊.循环平稳信号处理在机械设备故障诊断中的应用综述[J].振动与冲击,2006,25(5):148-152
    [100]陈仲生.直升机旋转部件故障特征提取的高阶统计量方法研究[博士学位论文].长沙:国防科学技术大学,2004
    [101]张贤达等.非平稳信号分析与处理[M].北京:国防工业出版社,2001
    [102]夏天,王新晴,肖云魁.基于高阶循环平稳的柴油发动机活塞销振动信号分析[J].中国机械工程,2010,21(12):1410-1414
    [103]左云波,王西彬,徐小力.循环平稳度在发电机组故障趋势分析中的应用[J].振动、测试与诊断,2009,29(3):292-294
    [104]Zhang Li jun, Xu Jin wu, Yang Jian hong et al. Multi-scale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Processing,2008,22 (3):597-610.
    [105]Zoran N. Milivojevicl, Milorad Dj, et al. An estimate of fundamental frequency using PCC interpolation [J]. Comparative Analysis Information Technology And Control,2006,35(2):131-136
    [106]郑海波.非平稳非高斯信号特征提取与故障诊断技术研究[博士学位论文].合肥:合肥工业大学,2002
    [107]孔庆鹏.发动机变速阶段振动信号阶比跟踪研究[博士学位论文].杭州:浙 江大学,2006
    [108]向玲,唐贵基,胡爱军.旋转机械非平稳振动信号的时频分析比较[J].振动与冲击,2010,29(2):42-45
    [109]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38
    [110]Hui-jing Dou, Zhao-yang Wu, Yan Feng. Voice activity detection based on the bispectrum [C]. ICSP2010:502-505
    [111]苏中元,贾民平,许飞云.循环双谱及在周期平稳类故障中的应用[J].中国工程科学,2006,8(9):57-60
    [112]朱忠奎,孔凡让,王建平.循环双谱及其在齿轮箱故障识别中的应用研究[J].振动工程学报,2004,17(2):224-227
    [113]李中原.旋转机械矢双谱分析及故障诊断应用研究[硕士学位论文].郑州:郑州大学,2006
    [114]Ramakrishna Kakarala. Bispectrum on finite group [C]. ICASSP 2009:3293-3296
    [115]张琳,黄敏.基于EMD与切片双谱的轴承故障诊断方法[J].北京航空航天大学学报,2010,36(3):287-290
    [116]谢桂海,李浩,杨磊.非平稳数据处理方法与瞬时频率[J].军械工程学院学报,2006,18(6):70-77
    [117]赵晓平,赵秀莉,侯荣涛等.一种新的旋转机械升降速阶段振动信号的瞬时频率估计算法[J].机械工程学报,2001,47(7):103—108
    [118]L. Rankine, M. Mesbah, and B. Boashash. IF estimation for multi-component signals using image processing techniques in the time-frequency domain [J]. Signal Processing,2007,87(6):1234-1250
    [119]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社,1997
    [120]陈光化,曹家麟,王健.应用WVD估计AM-FM信号的瞬时频率[J].电子与信息学报,2003,25(2):206-212
    [121]B.Boashash. Estimating and interpreting the instantaneous frequency of a signal, Part l:Fundamentals,Proc. IEEE,1992,80(4):519-538
    [122]夏鲁瑞,胡茑庆,秦国军.转速波动状态下涡轮泵典型故障诊断方法[J].推进技术,2009,30(3):342-346
    [123]Smith J S. The local mean decomposition and its application to EGG perception data [J]. Journal of The Royal Society Interface,2005,2(5):443-454
    [124]程军圣,张亢,杨宇等.局部均值分解与经验模式分解的对比研究[J].振动与冲击,2009,28(5):13—16
    [125]李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究[J].振动与冲击,2006,25(1):133—136
    [126]赵鹏,周云龙,孙斌.基于经验模式分解复杂度特征和最小二乘支持向量机的离心泵振动故障诊断[J].中国电机工程学报,2009,29(S1):138-144
    [127]P. Flandrin, G. Rilling, P. Goncalves. Empirical mode decomposition as a filter bank [J].IEEE Signal Processing Letters,2004,11 (2):112-114
    [128]王靖,陈特放,黄采伦.基于LMD的列车频带故障诊断方法研究.微计算机信息,2011,27(9):7-9
    [129]宁静,诸昌钤,高品贤等.EMD分解中端点数据的延长方法问题研究[J].计算机工程与应用,2011,47(3):125-128
    [130]Smith T. R, Moehlis. J, Holmes P. Low-dimensional modelling of turbulence using the proper orthogonal decomposition:A Tutorial [J]. Nonlinear Dynamics, 2005,41(1-3):275-307
    [131]Luchtenburg M, G unther B, King R, et al. A generalised meaneld model of the natural and high-frequency actuated around a high-lift conguration [J]. Fluid Mech,2007, sbmitted
    [132]鞠萍华,秦树人,赵玲.基于LMD的能量算子解调方法及其在故障特征信号提取中的应用[J].振动与冲击,2011.30(2):1-4,23
    [133]任达千.基于局域均值分解的旋转机械故障特征提取方法及系统研究[博士学位论文].杭州:浙江大学,2008
    [134]刘洋,姜守达.阶比谱分析瞬时频率的多模式曲线拟合方法[J].吉林大学学报(工学版),2008,38(5):1165-1169
    [135]叶大鹏,丁启全,吴昭同.基于小波包的2D-HMM旋转机械升速过程故障诊断[J].农业机械学报,2004,35(1):117-120
    [136]Dimitris Skarlatos, Kleomenis Karakasis, et al. Railway wheel fault diagnosis using a fuzzy-logic method [J]. Applied Acoustics,2004,65:951-966
    [137]王百合,黄建国,徐贵民.基于改进WD的多分量Chirp信号瞬时频率估计方法[J].西北工业大学学报,2008,26(1):83-87
    [138]康海英,栾军英等.基于阶次跟踪和HHT边际谱的轴承故障诊断研究[J].振动与冲击,2007,(20)3:1-3,9
    [139]郑建明,李言,袁启龙.基于小波包能量谱的HMM钻头磨损监测[J].中国机械工程,2006,17(12):1237-1241
    [140]李强,王太勇,冷永刚等.基于变步长随机共振的弱信号检测技术[J].天津大学学报,2006,39(4):432-437
    [141]Len Gelman, Jeremy Gould. A new time-frequency transform for non-stationary signals with any nonlinear instantaneous phase [J]. Multidim Syst Sign Process, 2008,19:173-198
    [142]邓蕾,傅炜娜,董绍江等.无转速计的旋转机械Vold-Kalman阶比跟踪研究[J].振动与冲击,2011,30(3):5-9
    [143]刘庆云,张汗灵,梁红.多分量多项式相位信号瞬时频率变化率的估计[J].电子学报,2005,33(10):1890-1892
    [144]Vittorio Belotti, Francesco Crenna, Rinaldo C. Michelini, et al. Wheel-flat diagnostic tool via wavelet transform [J]. Mechanical Systems and Signal Processing,2006,20:1953-1966
    [145]王勇,姜义成.多项式相位信号瞬时频率变化率估计及其应用[J].电子学报,2007,35(12):2403-2407
    [146]谭文群.改进的多分量多项式相位信号参数估计[J].计算机工程与应用,2011,47(4):124-127,153
    [147]范虹,孟庆丰,张优云.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报,2007,43(7):115-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700