长白落叶松优树子代生长与材质的遗传变异及多性状联合选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黑龙江省林业科学院江山娇实验林场24年生长白落叶松优树子代测定林为研究对象,采用胸径木芯与伐倒木2种取样方法,对14个处理的生长性状、木芯材质性状(4个性状)、解析木材质性状(21个性状)和制浆造纸特性(16个性状)以及木材物理力学性状(20个性状)进行了遗传变异分析、方差分析、相关分析、综合指数选择研究。摸索出家系间生长性状、木材材性性状的遗传变异规律,研究了性状间的相关关系,建立了木芯基本密度、管胞性状与解析木相应性状的回归模型,利用综合指数法选出了2个纸浆材和建筑材兼用的优良家系。为初级无性系种子园疏伐与升级改建提供理论依据,为杂交育种亲本选择以及高世代种子园优树选择打下了良好基础。主要研究结果如下:
     1.性状的遗传变异:生长性状、木芯基本密度和管胞性状、解析木材质性状和制浆造纸性状以及木材物理力学强度均存在较大的变异,家系内个体间也存在着丰富的变异。家系间生长性状差异极显著,树高、胸径和材积的家系遗传力分别为0.73、0.72和0.80。家系间木芯基本密度、木芯管胞性状差异显著,家系遗传力在0.56-0.80之间。解析木早材微纤丝角、管胞长度、早材壁腔比、木质素、阿拉伯糖含量、抗张强度、撕裂度等家系间差异极显著,家系遗传力在0.63-0.86之间,基本密度、晚材率、管胞长宽比、综纤维素含量等家系间差异显著,家系遗传力在0.51-0.61;家系间弦面抗劈力、端面硬度和弦面硬度差异极显著,家系遗传力分别为0.77、0.62和0.72;家系间气干密度、晚材率、气干体积干缩率、径面抗劈力、抗弯弹性模量和径面顺纹抗剪强度差异显著,家系遗传力在0.52-0.60之间,这些性状受中等及以上强度的遗传控制,家系水平的材性改良潜力较大
     2.性状相关分析:牛长性状与管胞长度呈极显著正相关,且相关关系主要受遗传机制控制,与木材密度、管胞长宽比相关不显著,与大多数木材力学强度指标相关不显著,可以进行独立选择;木材密度与晚材率、径向干缩率、弦面抗劈力、抗弯弹性模量、抗弯强度、径面顺纹抗剪强度、顺纹抗压强度、硬度(端面、径面)呈极显著或显著正相关,与纸浆材其它性状相关不显著,说明木材密度的改良有利于木材物理力学性状的综合改良,与纸浆材性状可以独立选择;管胞长宽比与早材弦向直径、纸的抗张强度、抗张指数、撕裂度和撕裂指数呈极显著或显著正相关,与管胞比量呈极显著负相关。综纤维素含量与粗浆得率、细浆得率呈极显著正相关,与苯醇抽出物含量、冷水抽提物含量、阿拉伯糖含量和浆的硬度呈极显著或显著负相关。早材纤丝角与早材双壁厚呈极显著正相关,与管胞长度和管胞长宽比、撕裂度和撕裂指数、木材抗弯弹性模量呈显著负相关;晚材率与抗劈力、抗弯弹性模量、抗弯强度、顺纹抗压强度呈极显著正相关,与早材壁腔比、浆料纤维长宽比、木材端而硬度呈显著正相关,与早材径向直径、树脂道比量、浆料纤维宽度、浆料壁腔比、抗张强度、抗张指数、耐破度和耐破指数呈极显著或显著负相关。
     3.木芯基本密度、管胞长度、管胞宽度以及管胞长宽比与解析木相应性状呈极显著正相关关系,且回归模型较为理想,可以利用胸径木芯各性状值预测其单株值,间接选择和评价长白落叶松纸浆材优良家系。
     木芯基本密度与解析木基本密度、气干密度、径面抗劈力、抗弯弹性模量、抗弯强度、顺纹抗压强度和径面硬度呈极显著正相关,且回归分析模型比较理想,可以利用胸径木芯基本密度值预测物理力学指标值,间接选择和评价长白落叶松建筑材优良家系。
     4.通过生长性状、木芯基本密度和木芯管胞长宽比综合分析选出166、169为优良家系,优良家系材积、木芯基本密度和木芯管胞长宽比的遗传增益(超过对照)分别为48.34%(38.46%)、14.01%(3.68%)和19.89%(6.41%)。
     5.以纸浆材为选育目标,对生长和材性、制浆造纸特性进行综合评价。选出的优良家系与木芯选择的结果一致。优良家系综纤维素含量、抗张指数和撕裂指数分别比对照高3.05%、3.74%和1.10%,早材壁腔比比对照小21.44%。
     6.以建筑材为选育目标,对生长和木材物理力学性状进行综合评价。选出的优良家系,与木芯和纸浆材选择的结果一致;优良家系径面抗劈力、抗弯弹性模量和弦面硬度分别比对照高2.50%、6.90%和45.24%,早材微纤丝角、晚材率和气干体积干缩率分别比对照小2.51%、15.08%和13.30%。
In this study, the testing forest of the24-year-old Larix olgensis excellent progenies in the Jiangshanjiao experimented forest station of Heilongjiang Academy of Forestry was treated as the research object, which went through the DBH wood core and felled wood sampling methods. Then the growth traits and wood core material traits (4traits totally involved), analytic wood material traits (21traits involved), pulp and paper making properties (16traits) and the mechanics traits (20ones) of the14families went through genetic variation analysis, square variance, correlation analysis and comprehensive index analysis.
     After these analyses, I obtained the genetic variation regulations of growth traits and wood material quality traits among families, researched the relations among these traits, established the regression models of wood basic density, tracheid traits and the correspondent traits of analytic wood, and finally selected out two superior families that can be utilized in both paper pulp manufacturing and construction. In addition, these results provided theories for thinning and reconstructing of vegetative seed garden of the rudimentary degree, and laid better foundations for the parent selection of hybrid breeding and the selecting of the excellent tree species of the far latter generations in the seed garden.
     1. The genetic variation of traits. There are larger variations in growth traits, wood basic density, wood tracheid traits, the material traits of analytic wood, pulp and paper making traits and the mechanics intensity of the timber, and there are abundant variations among the individuals within the same family. The differences among the growth traits of each family are very significant, and the heritability values of height, breast diameter and timber volume are0.73,0.72and0.80respectively; the differences in the wood basic density and wood tracheid traits among families are significant, and the heritability values are between0.56and0.80; the differences in the micro fiber angle of earlywood of analytic wood, tracheid length, the ratio of well lo cavity of earlywood. ligin. arabinose content, tensile strength, tearing strength, etc. are very significant, and the heritability values are between0.63and0.86; the basic density of analytic wood,the differences in latewood rate, the ratio of tracheid length to width, holocellulose content, etc. are significant, and the heritability values are between0.51and0.61; the differences in cleavage strength of the tangential facet, the end-face hardness and the hardness of the tangential facet are very significant, and the heritability values are0.77,0.62and0.72respectively; the differences in drying density, latewood rate, volume shrinkage rate, the cleavage strength of the diametric facet, the MOE and the shearing strength of the diametric facet along the grain are significant, the heritability values are between0.52and0.60, and because these traits are controlled by heritability of medium and higher intensity, there is larger potential for improving them.
     2. The correlation analysis among traits. The growth traits and the tracheid length are positively and very significantly correlated whose correlation relations are mainly controlled by genetic mechanisms, the two are also insignificantly correlated with wood density, the ratio of tracheid length to width and most of the mechanics intensity indices of the timber, and therefore, the two can be selected independently; wood density is significantly or very significantly and positively correlated with latewood rate, the diametric shrinkage rate, the tangential cleavage strength. MOE. bending strength, the shearing strength of the diametric facet along the grain, the crushing strength along the grain, the hardness of the end-face and the diametric facet, but insignificantly correlated with the other traits of pulpwood, which proves that the improvement of wood density is beneficial to the synthesized improvement of the mechanics traits of the timber, and both the wood density and the traits of pulpwood can be selected independently; the ratio of the trachied length to width is significantly or very significantly and positively correlated with the tangential diameter of earlywood, the tensile strength of paper, tensile index, tearing degree and tearing index, and negatively and very significantly correlated with tracheid ratio. Holocellulose is very significantly and positively correlated with the yield rate of gross pulp and fine pulp, and significantly or very significantly and negatively correlated with the content of the extracted substance from Phenylpropanol, the substance from cold water, arabinose content and the hardness of pulp. The micro fiber angle of earlywood is positively and very significantly correlated with the dual wall-thickness and negatively and significantly correlated with tracheid length, the ratio of tracheid length to width, tearing strength degree and index and MOE; latewood rate is positively and very significantly correlated with cleavage strength, MOE, bending strength, crushing strength parallel to the grain, positively and significantly correlated with the ratio of wall to cavity of earlywood, the ratio of length to width of pulp fiber and the hardness of the end-face, significantly or very significantly and negatively correlated with the diametric diameter of earlywood, the resin canal ratio, the pulp fiber width, the ratio of wall to cavity of pulpwood, tensile strength, tensile index, bursting strength and index.
     3. Wood basic density, tracheid length, tracheid width and the ratio of tracheid length to width are very significantly and positively correlated with the correspondent traits of analytic wood and the regression model is rather ideal and I can take advantage of the traits of wood at the breast height to predict the values of a single plant and indirectly select and assess the superior families specialized in pulpwood.
     The wood basic density is positively and significantly correlated with the basic density of analytic wood, drying density, the diametric cleave strength, MOE, bending strength, the crushing strength parallel to the grain and the hardness of the diametric facet, the regression model is rather ideal and I can take advantage of the value of the wood density at the breast height to predict the index values of mechanics and indirectly select and assess the superior families specialized in construction timber.
     4. Through the synthesized analysis of growth traits, wood basic density and the ratio of wood tracheid length to width. No.166and169families were selected as the superior families, The heritability gains of the timber volume, wood basic density and the ratio of the wood tracheid length to width are48.34%,14.01%and19.89%respectively and larger than the contrast ones by38.46%,3.68%and6.41%respectively.
     5. The pulpwood was treated as the breeding target, through synthesized assessment of the growth traits, material traits and pulp and paper making traits, which was in line with the results obtained according to the growth traits, material quality traits and the physical traits of paper pulp of analytic wood. The sleeted families of the holocellulose content, tensile index, tearing degree larger than the contrast ones by3.05%,3.74%and1.10%, the the ratio of well to cavity of earlywood less than the contrast ones by21.44%.
     6.The construction timber was treated as the breeding target, through synthesized assessment of growth traits and mechanics traits, which was in line with the results obtained according to the material quality traits and the physical traits of paper pulp of analytic wood, the superior families of the diametric cleave strength, MOE, hardness of the tangential facet larger than the contrast ones by2.50%.6.90%and45.24%respectively, microfiber angle of early and latewood, latewood rate and volume shrinkage rate less than2.51%,15.08%and13.30%.
引文
[1]史蔷,张守攻,吕建雄,等.落叶松木材改性的研究现状及发展趋势[J].中南林业科技大学学报,2012,32(4):210-215.
    [2]刘红.关于推进我国林木良种化进程的思考[J].林业经济,2010,7:41-47.
    [3]贾治邦.中国森林资源报告:第七次全是森林资源清查[M].北京:中国林业出版社,2009,6.
    [4]王军辉,张守攻,石淑兰,等.日本落叶松木材的化学组成研究[J].林业科学研究,2004,17(5):570-575.
    [5]张含国,张殿福,李希才,等.长白落叶松自由授粉家系生长和材性遗传变异及性状相关的研究[J].林业科技,1995,20(6):1-5.
    [6]张含国,周显昌,田松岩,等.长白落叶松生长和材质性状地理变异的研究[J].林业科技,1996,21(5):5-8.
    [7]段喜华,张含国,潘本立,等.长白落叶松木材材性株内变异[J].东北林业大学学报,1997,25(2):33-36.
    [8]Zobel B. J.,Stonecypher R.,Browne C.,et al. Variation and inheritance of cellulose in southern pines[J].Tappi,1966,49(9):383-387.
    [9]Muneri A., Balodis V. Variation in wood density and tracheid length in Pinus patula grown in Zimbabwe, Southern African Forestry Journal,1998,182:41-50.
    [10]Zamudio F.,Rozenberg P., Baettig R.,et al. Genetic variation of wood density components in a radiate pine progeny test located in the south of Chile[J].Annals of forest science, 2005,62(2):105-114.
    [11]邓继峰,张含国,张磊,等.17年生杂种落叶松遗传变异及优良家系选择[J].东北林业大学学报,2010,38(1):8~11.
    [12]鄂文峰,王传宽,杨传平,等.兴安落叶松边材心材生长特征的种源效应[J].林业科学.2009,45(6):109-115.
    [13]宋云民,黄铨,黄永利.湿地松家系生长和材性遗传变异分析[J].林业科学研究,1995,8(6):671-676.
    [14]徐有明,林汉,班龙海,等.不同环境下火炬松种源造纸材材性遗传差异与遗传稳定性分析[J].林业科学,2008,44(6):157-163.
    [15]宋云民,黄永利.火炬松材性变异规律的初步研究[J].林业科学,1995,31(4):346-352.
    [16]李贤军,刘元,吴义强.火炬松纸浆材化学成分及其在树干高度上的变异规律[J].中南林业科技大学学报,2007,27(4)104-107.
    [17]罗真付,张雪峰,陆步云,等.森林培育措施对人工林湿地松木材物理力学性质的影响[J].安徽农业大学学报,2012,39(2):228-233.
    [18]郑仁华,施季森,杨宗武,等.马尾松纸浆材优良家系的选择[J].南京林业大学学报(自然科学版),2002,26(5):1-6.
    [19]邓继峰.杂种落叶松自由授粉家系纸浆材遗传变异研究及多性状联合选择[D].东北林业大学硕士论文,2011.
    [20]孙晓梅,楚秀丽,张守攻,等.落叶松种间及其杂种管胞特征及微纤丝角的变异[J].林业科学研究,2011,24(4):415-422.
    [21]Hannrup B.,Ekberg I..Age-age correlations for traeheid length and wood density in Pinus [J].Canadian Journal of Forest Research,1998,28:1373-1379.
    [22]Gwaze D. P.,Bridgwater F. E.,Byram T. D., et al.Genetic parameter estimated for growth and wood density in loblolly pine (Pinus taeda L.), Forest Genetics,2001,8(1):47-55.
    [23]Zamudio F., Rozenberg P.,Baettig R.,et al.Genetic variation of wood density components in a radiata pine progeny test loeated in the south of Chile[J].Annals of forest science, 2005,62(2):105-114.
    [24]刘青华,金国庆,储德裕,等.基于马尾松测交系子代的生长、干形和木材密度的配合力分析[J].南京林业大学学报(自然科学版),2011,35(2):8-14.
    [25]Wright J. A..Impact on future fibre resources of wood quality assessments in the pulp and paper making industry.IUFRO World Congress,Canada,1990,19,46-52.
    [26]徐有明,方文彬.火炬松木材纤丝角和管胞长度的变异及其相关分析[J].华中农业大学学报,1996,15(4):395-400.
    [27]郭莹莹,徐有明,李晓东,等.鲁东南引种火炬松人工林生长特性与材性变异[J].东北林业大学学报,2011,39(6):1-7.
    [28]孙晓梅.日本落叶松纸浆材优良家系选择及家系生长模型的研究[D].中国林业科学研究院博士论文,2003.
    [29]Shelbourne T., Evans R., Kibblewhite P.,et al.Inheritance of tracheid transverse dimensions and wood density in radiata pine[J].Appita-Journal,1997,50(1):47-50.
    [30]Nyakuengama J.G., Evans R., Matheson C.,et al. Wood quality and quantitative geneties of pinus radiata D[J].Don:fibre traits and wood density,Appita-Journal,1999,52(5):348-357.
    [31]马顺兴,王军辉,张守攻,等.日本落叶松无性系木材性质的遗传变异[J].林业科学研究,2008,21(1):69~73.
    [32]Lasserre J.P..Mason E.G..Watt M.S..et al.Influence of initial planting spacing and genotype on microfibril angle.wood density.fibre properties and modulus of elasticity in Pinus radiate D.Don core wood [J]. Forest Ecology and Management,2009(258):1924-1931.
    [33]Tze W.T.,Wang S.Q.,Rials T.G.,et al.Nanoindentation of wood cell walls:Continuous stiffness and hardness measurements[J].Composites:Part A,2007,38:945-953.
    [34]Walker J.C.F.,Butterfield B.G.The important of micorifibril angle for the processing industries [J].New Zealand Journal of Forestry Science,1995,40(4):34-40.
    [35]Hirakawa Y.Yamashita K.Fujisawa Y. et al.The effects of S2 microfibril angle and density on MOE in Sugi tree logs[A].In:Butterfield B.G. (Ed.), "microfibril angle in wood" [C]. Christchurch, New Zealand.1998,312-322.
    [36]邱肇荣,刘君良,张士诚.长白落叶松木材管胞微纤丝角的变异研究[J].吉林林学院学报,1996,12(3):152~155.
    [37]马顺兴,王军辉,张守攻,等.日本落叶松无性系微纤丝角遗传变异的研究[J].林业科学研究,2006,19(2):188~191.
    [38]蒲俊文,宋君龙,姚春丽.三倍体毛白杨化学成分径向变异的研究[J].造纸科学与技术,2002,21(3):1~3.
    [39]石淑兰,谢新良,胡惠仁,等.不同树龄日本落叶松的化学组成与制浆特性[J].林业科学,2006,42(6):90~94.
    [40]Pot D.,Chantre G.,Rozenberg P..el al.Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait) [J].Ann For sci,2002,59:563-575.
    [41]Donaldson L.A.,Croueher M..Clonal variation of wood ehemistry variables in Radiata pine (Pinus radiate D.Don.) wood[J].Holzforschung,1997,51(6):537-542.
    [42]杨章旗.马尾松材性与产脂性状遗传改良研究[D].北京林业大学博士论文,2012.
    [43]Wright J.A..Provenance variation in wood characteristics of Pinus caribaea Morelet and P. oocarpa SchiedeD[B].Phil.Thesis,University of Oxford,1987,153.
    [44]Kibblewhite R.P. et al..Handsheet property prediction from kraft fiber and wood traeheid properties in eleven radiate pine clones[J].Appita.1997.50(2):131-138.
    [45]Evans R.et al..Kraft PulP fiber property prediction from wood properties in eleven radiat pine clones[J].Appita,1997,50(l):25-33.
    [46]Zobel B.J.,E Campinhos,Y Ikemori.Selecting and breeding for desirable wood[J]. Tappi, 1983,66(1):70-74.
    [47]Campinhos E.,Claudio-da-Silva E..Development of the eucalyptus tree of the future[B]. In ESPRA Spring Conference,Seville,Spain,1990.
    [48]徐建民.尾叶桉纸浆材育种综合选择及改良研究[D].北京:中国林业科学研究院博士论文,2003.
    [49]王军辉,张守攻,石淑兰,等.日本落叶松纸浆材造纸性能的研究[J].北京林业大学学报,2004,(26)5:71-74.
    [50]董健,田志和,王喜武,等.长白落叶松纸浆材造纸性能及工艺成熟期的研究[J].沈阳农业大学学报,1995,26(4):392-398.
    [51]Belonger P.J,McKe S.E.,Jett J.B..Genetic and environmental effects on biomass production and wood density in Loblolly pine[J].Tree Improvement for Sustainable Tropical Forestry,1996(2):307-310.
    [52]Ukrainetz N.K.,Kang K.Y.,Aitken S.N.,et al.Heritability and phenotypic and genetic correlations of coastal Douglas-fir(Pseudotsuga menziesii)wood quality traits.Canadian Journal of Forest Research[J].2008,38(6):1536-1546.
    [53]Lima J.T., Rosado S.C.S., Trugilho R F. Assessment of wood density of seven clones of Eucalyptus grandis[J].Southern African Forestry Journal.2001.191:21-27.
    [54]周志春,李光荣,黄光淼,等.马尾松木材化学组分的遗传控制及对木材育种的意义[J].林业科学,2000,36(2):110-115.
    [55]Miranda I., Almeida M.H., Pereira H., In fluence of provenance, subspecies, and site on wood density in Eucalyptus globulus labill[J].Wood and Fiber Science,2001,33 (1):9-15.
    [56]Moura V P G., Dvorak W S, Nogueira M V P.Variation in wood density, stem volume and drymatter of the Mountain Pine Ridge, Belize, Provenance of Pinus tecunumanii grown at Planaltina, Brazil[J].Scientia-Forestalis,1998,53:7-13.
    [57]刘昭息,徐有明,孙海菁,等.火炬松建筑材优良种源综合评定的研究[J].林业科学研究,1998,11(4):417-423.
    [58]孙成志,谢国恩,李萍.杉木地理种源材性变异及建筑材优良种源评估[J].林业科学1993,29(5):429-437.
    [59]赵荣军,杨培华,谢斌,等.油松半同胞子代及亲本木材构造与物理力学性质的研究[J].西北林学院学报,2000,15(2):24-28.
    [60]郭明辉,陈广胜,王金满.间伐强度对落叶松人工林建筑材材质的影响[J].东北林业大学学报,2003,31(1):6-8.
    [61]Yang K.C, Hazenberg G.Geographical variation in wood properties of Larix laricinu juvenile wood in Northern Ontario[J].Canadian journal of forest research,1987,17 (7):648-653.
    [62]郑仁华,杨宗武,梁庆松,等.马尾松建筑材优良家系的选择[J].福建林学院学报,2002,22(1):1-3.
    [63]张敦论,张振芬,李善文,等.刺槐无性系材性遗传变异及其建筑材无性系选择研究 [J].山东林业科技,2001,132(1):1-7.
    [64]成俊卿.木材学[M].北京:中国林业出版社,1985.
    [65]童再康,俞友明,郑勇平.黑杨派新无性系木材物理力学性质研究[J].林业科学研究,2002,15(4):450~456.
    [66]Cave, J.D.,WhlkerJ.C.E.Stiffness of wood in fast grown Plantation softwoods:the influence of micro fibril angle[J],Forest Products of Journal,1994,44(5):43-48 Megraw R A.Wood quality factors in loblolly pine. Georgia:TAPPI Press Atlanta.1985:76-78.
    [67]Koizumi A.Takada K.Ueda K.Radial growth and wood quality of plus trees of Japanese larch II.Diameter at breast heights and trunk moduli of elasticity of 18-year-old offspring families[J].Wood Research Society,1990,36(9):704-708.
    [68]Koizumi A.,Takata K.,Yamashita K.,Nakada R.Anatomical characteristics and mechanical properties of Larix sibirica grown in south-central Siberia[J].IAWA journal 2003,24(4):355-370.
    [69]Koizumi A.,Kitagawa M.,Hirai T.Effects of growth ring parameters on mechanical properties of Japanese larch (Larix kaempferi) from various provenances [J]. Eurasian Journal of Forest Research,2005,8(2):85-90.
    [70]Muller U.,Sretenovic A.,Gindl W.A.,Teischinger A.Longitudinal shear properties of european larch wood related to cell-wall structure [J].Wood and fibre science,2004,36(2):143-151.
    [71]Jianjun Z.,Tatsuo N.,Morilhiko T.,Takashi T.Variation of tensile strength with annual rings for lumber from the Japanese larch[J].J Wood Sic,2000,46(4):284-288.
    [72]Takaaki Fujimoto,Kazuhito Kita,Makoto Kuromaru.Genetic control of intra-ring wood density variation in hybrid larch (Larix gmelinii var.japonica×L.kaempferi) F1[J].Wood Science and Technology,2008,42(3):227-240.
    [73]徐有明,林汉,张卓文,等.火炬松种源顺纹抗机压强度变异及与树龄、晚材率、木材密度相关分析[J].东北林业大学学报,2005,33(4):19-22.
    [74]夏炎,岳孔,张伟,等.I-69速生杨木密度变异特性及其与力学强度的关系[J].东北林业大学学报,2010,38(10):5-6.
    [75]Forest Products Laboratory.Wood handbook:wood as an engineering material[B].USDA Forest Service, Washington, DC,1987.
    [76]Zhang S Y. Wood Specific gravity mechanical property relationship at species level[J].Wood Sci Technol,1996,31:181-191.
    [77]邵卓平,董宏敢,张治国.湿地松木材物理力学性质研究[J].安徽农业大学学报,2000,27(1):64~66.
    [78]邵亚丽,邢新婷,赵荣军,等.不同林分长白落叶松木材气干密度和主要力学性质的变异性与相关性[J].中南林业科技大学学报,2012,32(2):141~146.
    [79]王宏棣,王子奇,王春明.幼龄落叶松木材力学性能的试验[J].林业科学,2000,25(3):44-46.
    [80]马永涛,郑畹,舒筱武.云南松木材材性与生长性状相关性研究[J].云南林业科技,2002,98(1):68~70.
    [81]Vargas H. J.,Adams W. T.Genetic relationships between wood density components and cambial growth rhythm in young coastal Douglas-fir[J].Canadian Journal of Forest Research,1994,24(9):1871-1876.
    [82]Wright J. A.,Shaw M. J. P.,Raubenheimer S.,et al. The correlation of the pulp and paper making traits from micropulping and full-scale pulping of pines[J]. Tappi,1989,72(4):191-194.
    [83]叶志宏,张敬源.杉木木材材性的遗传和变异研究[J].南京林业大学学报(自然科学版),1987,3:1~11.
    [84]周志春,王章荣,陈天华,等.马尾松木材性状株内变异与木材取样方法的探讨[J].南京林业大学(自然科学版),1988,4:52-60.
    [85]徐有明,刘清平,刘昭息,等.火炬松种源顺纹抗压强度的变异与木材密度的关系[J].华中农业大学学报,1995,14(3):285-290.
    [86]Smith D.M.A comparsion of two methods for determining the specific gravity of small wood samples of second-growth Douglas-fir [R]. Madison, Wis:U.S.Dept. of Agriculture, Forest Service,1955.
    [87]石淑兰.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003.
    [88]陆文达.落叶松资源及利用[M].哈尔滨:东北林业大学出版社,1993.
    [89]刘一星.木质资源材料学[M].中国林业出版社,北京:2004.
    [90]唐启义,冯明光.DPS数据处理系统[M].北京:科学出版社,2007.
    [91]孙晓梅,张守攻,李时元,等.日本落叶松纸浆材优良家系多性状联合选择[J].林业科学,2005,41(4):48-54.
    [92]姜笑梅,张立非,张绮纹,等.36个美洲黑杨无性系基本材性遗传变异的研究[J].林业科学研究,1994,7(3):253-257.
    [93]周崟.中国落叶松属木材[M].北京:中国林业出版社,2001.
    [94]朱教君.杨树林带木材纤维长度变化规律及其在经营中的应用[J].林业科学,1994,30(1):50~56.
    [95]汪贵斌,曹福亮,柳学军,等.落羽杉种源木材微纤丝角和管胞形态的变异[J].林业科学,2007,43(6):118-122.
    [96]尹思慈.木材学[M].北京:中国林业出版社,1996.
    [97]肖绍琼,叶喜,唐开军,等.云南杉木物理力学性质的研究[J].西南林学院学报,1987,7(1):74~87.
    [98]杨家驹,卢鸿俊.木材密度力学性质及其换算关系[J].木材工业,1997,11(1):35-37.
    [99]虞华强,费本华,任海青,等.毛竹顺纹抗拉性质的变异及与气干密度的关系[J].林业科学,2006,42(3):72~76.
    [100]陈广胜,郭明辉,黄冶,等.不同初值密度兴安落叶松人工林木材解剖特征的径向变异[J].东北林业大学学报,2001,29(2):12-16.
    [101]白默飞,刘盛全,周亮,等.兴安落叶松管胞形态特征和微纤丝角及其径向变异的研究[J].安徽农业大学学报,2009,36(2):189-193.
    [102]沈熙环.种子园技术[M].北京:北京科学技术出版社,1992.
    [103]Kempthorne O.,Nordskog A.W. Restricted selection indices[J].Biometrics,1959,15 (1):10-19.
    [104]Cotterill P. P.,Dean C.A.Successful tree breeding with index selection[M].Melbourne: Print Advisory Service,1990.
    [105]邓继峰,张含国,张磊,等.杂种落叶松F2代自由授粉家系纸浆材遗传变异及多性状联合选择[J].林业科学,2011,47(5):31~39.
    [106]祝泽兵,刘桂丰,姜静,等小兴安岭地区白桦纸浆材优良家系选择[J].东北林业大学学报,2009,(37)11:1-10.
    [107]周志春,金国庆,周世水.马尾松自由授粉家系生长和材质的遗传分析及联合选择[J].林业科学研究,1994,7(3):264-268.
    [108]骆秀琴,管宁,张寿槐,等.杉木材性株内变异的研究[J].林业科学,1997,33 (4):349-355.
    [109]吴燕,周定国,王思群,等.木材微纤丝角和密度与弹性模量的关系[J].南京林业大学学报(自然科学版),2009,33(4):113-116.
    [110]赵荣军,冯德君,雷亚芳.油松半同胞子代及亲本木材生长轮宽度与密度的研究[J].西北林学院学报,2000,15(3):16-19.
    [111]刘晓丽,王喜明,姜笑梅,等.沙棘材解剖及物理力学性质的研究[J].北京林业大学学报,2004,26(2):84~89.
    [112]吕建雄,骆秀琴,蒋佳荔,等.红锥和西南桦人工林木材力学性质的研究[J].北京林业大学学报,2006,28(2):118-122.
    [113]骆秀琴,姜笑梅,殷亚方,等.人工林马尾松木材性质的变异[J].林业科学研究,2002,15(1):28-33.
    [114]Christophe C.,Birot Y.Genetic structures and expected genetic gains from multitrait selection in wild population of Douglas fir (Ⅱ):Practical application of index selection on several population[J].Silvae Genetica,1983,32(5-6):173-181.
    [115]Ivebgen R. J.,Loee W. J.The efficiency of early and indirect selection in three sycamore genetic traits[J].Silvae Genetica,1985,34(2-3):72-75.
    [116]杨传平,杨书文,夏德安,等.兴安落叶松种源试验研究[J].东北林业大学学报,1991,19(育种专刊):68-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700