荔枝坐果与多胺的关系及相关基因克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多胺(Polyamines,PAs)作为具有调控作用的生理活性物质,在果树开花坐果中的作用的研究日益引起人们的重视。本研究紧密围绕荔枝正常坐果与内源多胺的关系,分析坐果过程中内源多胺的变化、外源多胺处理对荔枝果实发育启动和正常坐果过程的影响,并克隆荔枝组织中多胺合成途径的关键酶S-腺苷甲硫氨酸脱羧酶(SAMDC)和乙烯合成途径的关键酶ACC合成酶(ACS)的基因序列,拟开展荔枝果实发育过程中此类酶基因的功能分析和表达分析,在理论上,可能阐明荔枝果实发育中SAM代谢流向与多胺和乙烯生物合成及其在荔枝正常坐果和生理落果过程中作用的分子机理,丰富荔枝果实发育的理论;在实践上,可能为栽培技术创新提供理论依据,从外源多胺应用技术和内源多胺代谢调控的角度,为荔枝高效低耗和优质果品生产提供新的途径。本研究获得如下主要结果:
     1.套袋不授粉加人工处理外源多胺的诱导荔枝单性结实的试验表明,桂味和糯米糍不可诱导单性结实,妃子笑可以用外源多胺人工诱导单性结实,三种多胺的诱导效果次序为:精胺(Spermine,Spm)>亚精胺(Spermidine,Spd)>腐胺(Putrecine,Put)。谢花后外源多胺处理表明,三种外源多胺均可明显提高妃子笑荔枝的坐果率,尤其以Put处理效果最显著。
     2.建立起适合荔枝材料中Put、Spd、Spm三种内源多胺含量分析的高效液相色谱测定方法,一次样品的测定可在15 min内完成;Put、Spd和Spm在0.03125~2 nmol线性范围内,相关系数分别为0.9996、0.9996、0.9995;精密度和稳定性实验相对标准偏差均小于5%,说明测定方法稳定、分析精密度高。
     3.分析测定三个荔枝主栽品种在花穗发育与坐果初期其叶片与花器官和幼果中内源多胺含量的变化:在叶片中,正常成花的妃子笑三种多胺含量先升后降,在盛花期出现高峰;桂味未成花的叶片三种多胺的持续下降则与其此期新梢大量发生密切相关。在花器官和幼果中,三个荔枝品种多胺总量要明显高于叶片中;妃子笑三种多胺含量以Spd含量最高,且Spd含量在坐果初期均保持较高水平。
     4.在果实膨大期,分析外源多胺处理对内源多胺含量的影响:外施高浓度的Spd使内源Spd的含量明显下降;外施Spm则可以大大提高内源Spd的含量;外施Put只能提高内源Put的含量,对Spd和Spm含量影响不大;三种多胺的混合使用对提高内源Put的效果显著,可以缓和Spd和Spm的变化幅度。在这三种多胺中,Spm与Spd相互影响,作用显著。
     5.采用同源序列扩增法,首次从荔枝中克隆分离得到一段728bp的DNA序列,命名为LcACS1。序列分析表明,该基因片段编码区493bp,推测其编码165个氨基酸残基,Blast结果显示,该基因片段推导的氨基酸序列与其他9种植物ACS基因编码的氨基酸序列同源性在82%-89%之间。并且有4个保守结构域,在保守区1与保守区3分别插入了一段109bp与125bp的内含子。
     6.采用RT-PCR的方法,首次从荔枝中克隆分离到584bp SAMDC基因片段,命名为LcSAMDC1,序列分析表明,该基因片段编码194个氨基酸残基。Blast结果显示,该基因片段与已报道其他植物的SAMDC基因的核苷酸序列同源性在78%以上,其推导的氨基酸序列与其他9种植物SAMDC基因编码的氨基酸序列同源性在75%-85%之间,并且有4个较长的保守结构域。
Polyamines,as physiological active materials with broad functions of regulation,play a critical role in flowering and fruit setting of fruit trees.In the present paper,the relationship between fruit setting and endogenous polyamine was studied.The changes of endogenous polyamine contents in fruit setting and effects of exogenous polyamines on the promotion of fruit growth as well as fruit setting were investigated.We also report the cloning of S-adenosylmethionine decarboxylase(SAMDC) cDNA fragment from litchi (Litchi chinensis 'Guiwei') leaves,an enzyme involved in the polyamine biosynthesis pathway,and 1-aminocyclopropane-1-carboxylicacidsynthase(ACS) cDNA fragment,a key enzyme responsible for the ethylene biosynthesis.In theory,SAM metabolism and biosynthesis of polyamine and ethylene during litchi fruit growth and their molecular mechanism in fruit setting and physiological fruit dropping can be established.In practice, this research can also offer theoretical foundation for developping a new way to produce high quality litchi fruit with low investment.The main results were listed as follows:
     1.Use of exogenous polyamines on bagged flower without pollination showed that parthenocarpy can be induced in Feizixiao but not in Guiwei and Nuomici.Spm was more effective for the induction,followed by Spd and Put.The three polyamines all can obviously improve percentage of fruit setting especially Put.
     2.HPLC analysis of Put,Spd and Spm contents in litchi was established,which was completed in 15 minutes.All the relative coefficients were above 0.999 when the linear arrange of the three polyamines was from 0.03125 to 2 nmol.The relative standard deviation of precision and stability experiments was lower than 5%,indicating that the method was a simple and rapid method with more accuracy and stability.
     3.The contents of Put,Spm and Spd in the leaf,floral organ and fruitlet of three litchi varieties were analyzed during their development.Put,Spm and Spd in the leaf of normal flowering Litchi plant increased and then declined after a abrupt peak at anthesis. However,the contents of polyamines in the leaf of non-flowering 'Feizixiao' changes in an opposite trend.The contents of polyamine in the leaves of non-flowering 'Guiwei' continuously declined which may be related to new flushing in this phase.The contents of total PAs in floral organ and fruitlet were much higher than in leaves.In floral organ and fruitlet of Litchi chinensis 'Feizixiao',Spd was the most abundant and kept high during the initial stage of fruitset.
     4.The influence of exogenous polyamines on endogenous polyamine contents was analyzed.Exogenous Spd decreased the endogenous Spd content,and exogenous Spm enhanced endogenous Spm greatly.Exogenous Put can only improve endogenous Put and did not alter endogenous Spd and Spm.A combination of these three polyamines notably increased the content of endogenous Put and mildly changed Spd and Spm.Among the three polyamines,Spd and Spm influenced each other.
     5.A 728bp ACS gene fragment named LcACS1 was isolated from litchi for the first time using a homology-based method.Sequence analysis revealed that the coding sequence fragment ofACS gene was 493bp which deduced 165 amino acids.The result of BLAST showed the ACS amino acid showed 82%to 89%homology with ACS genes from other 9 plants reported.Four conserved catalytic domains in the ACS gene were found and there is respective 109bp intron and 125bp intron in the domain l and domain3.
     6.A 584bp SAMDC gene fragment named LcSAMDC1 was isolated from litchi via RT-PCR for the first time.Sequence analysis revealed that the fragment of SAMDC gene encode product of 194 amino acids.BLAST seach demonstrated that LcSAMDC1 showed above 78%sequence identity with other plants SAMDC genes.The deduced amino acids of LcSAMDC1 showed 75%to 85%identity with SAMDC from 9 other plants.Four conserved catalytic domains in the SAMDC gene were found.
引文
1.陈迪新,张绍铃,多胺及其合成抑制剂对梨花粉萌发及花粉管生长的影响.果树学报,2002,19(6):377-380
    2.陈海江,徐继忠,袁小乱,邵建柱,梁金铎.不同时期喷施外源多胺对新红星苹果坐果的影响.河北农业大学学报,1999,22(4):47-49
    3.陈杰忠,骆小兵,王泽槐等.多胺对荔枝坐果率及内源多胺含量的影响.园艺学进展,广州:广州出版社,2002,303-307
    4.陈学好,于杰,李伶利.高等植物开花结实的多胺研究进展.植物学通报,2003,20:36-42
    5.陈学好,于杰,徐强,郭绍贵.Spd和MGBG对黄瓜子房内源多胺和蛋白质组成的影响及与单性结实的关系.园艺学报,2005,32(4):632-637
    6.仇厚援,潘永贵,安广杰.香蕉贮藏过程中多胺与乙烯的关系.果树学报,2002,19(2):115-117
    7.李建国,刘顺枝,王泽槐.荔枝果实发育过程中内源多胺的变化.植物生理学通讯,2004,40(2):153-156.
    8.李建勇,卢钢,任彦.多胺在果实生长发育中的作用研究进展.果树学报,2005,22(3):256-260
    9.李璟,郭世荣,胡晓辉.外源亚精胺对低氧胁迫下黄瓜根系多胺含量和呼吸代谢酶活性的影响.西北植物学报,2006,26(1)92-97
    10.刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯,2002,38(6):596-598.
    11.唐红生,洪剑明,邱泽生.内含子与基因表达.细胞生物学杂志,1997,1:3-6
    12.汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,26(1):1-7
    13.王爱勤,王自章,杨丽涛,韦宇拓,李杨瑞.乙烯生物合成途径中的两个关键酶基因的研究进展.广西农业生物科学,2004,10:164-169
    14.王爱勤,杨丽涛,王自章,韦宇拓,何龙飞,李杨瑞.甘蔗乙烯合成酶基因家族三个成员的克隆与序列分析.热带亚热带植物学报,2005,13(6):485-492
    15.王敏,刘萍,石明旺,王清连.野生大豆种子cDNA文库的构建与分析.生物技术通讯,2005,16(5):509-511
    16.王世平,宋长冰,张连朝.三种多胺在苹果开花及坐果初期的生理作用研究.园艺学报,1996,23(4):319-325
    17.王晓云,邹琦.多胺与植物衰老关系研究进展.植物学通报,2002,19(1):11-20
    18.吴淑娴.中国果树志荔枝卷.北京:中国林业出版社,1998,102-182
    19.向旭,张展微,邱燕萍,袁沛元;王碧青.糯米糍荔枝坐果与内源激素的关系.园艺学报,1994,21(1):1-6
    20.徐继忠,陈海江,马宝焜,章文才.外源多胺对富士苹果花和幼果内源多胺与激素的影响.园 艺学报,2001,28(3):206-210
    21.徐继忠,陈海江,邵建柱,王艳辉.外源多胺及其合成抑制剂对苹果花粉萌发及坐果的影响.河北农业大学学报,1999,22(4):42-45
    22.徐继忠,史常青,章文才.外源多胺对苹果花粉管伸长及胚珠寿命的影响.园艺学报,1998,25(1):91-92
    23.余叔文,汤章城.植物生理与分子生物学[M].1999,493-511
    24.曾骧.果树生理学[M].北京:北京农业大学出版社,1992,186-201
    25.张以顺,向旭,黄上志,傅家瑞.荔枝败育胚与腺苷甲硫氨酸合成酶基因的全长扩增和序列分析.园艺学报,2004,31(2):160-164
    26.张以顺,向旭,黄上志,傅家瑞.荔枝胚败育差异表达基因cDNA片段的克隆及序列分析.园艺学报,2004,31(1):25-28
    27.张以顺,向旭,黄上志,傅家瑞.一种提取荔枝胚中总RNA的方法.植物生理学通讯,2004,40(2):226-228
    28.郑玉生,张秋明,柑桔花期多胺类代谢及其对坐果的影响.果树科学,1997,14(4):216-219
    29.钟晓红.三种多胺在沙田柚开花及坐果初期的生理作用.湖南农业大学学报,2000,26(6):453-456.
    30.周贤军,黄德炎,黄辉白,吴定尧.螺旋环剥对糯米糍荔枝坐果与碳水化合物及激素的影响,园艺学报,1999,26(2):77-80
    31.朱大恒,韩锦峰,林学梧,郑英.多胺与植物激素的关系.河南农业大学学报,1993,27(1):10-15
    32.Alabadi D,Aguero M S,Perez-Amador M A,Carbonell J.Arginase,arginine decarboxylase,omithine decarboxylase,and polyamines in tomato ovaries:changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin.Plant Physiology,1996,121:1237-1244
    33.Alabadi D,Carbonell J.Expression of ornithine decarboxylase is transiently increased by pollination,2,4-D,and gibberellic acid in tomato ovaries.Plant Physiology,1998,118:323-328
    34.Bardoce S,White A(eds).Polyamines in Health and Nutrition.Boston:Kluwer Academic Publishers,1999,161-176.
    35.Biasi R,Polyamine metabolism as related to fruit set and growth.Plant Physiol.Biochem,1991,29(5):497-506
    36.Bolle C,Herrmann R G,Oelmller R.A spinach cDNA with homology to S-adenosylmethionine decarboxylase.Plant Physiology,1995,(107):1461-1462
    37.Borrell A,Carbonell L,Farros R,Puig-Parellada P.Polyamines inhibit lipid peroxidation in senescing oat leaves.Physiologia Plantarum,1997,99:385-390
    38.Cohen E,Arad S M,Heimer Y M,Mizrahi Y.Participation of ornithine decarboxylase in early stages of tomato fruit development.Plant Physiology,1982,70:540-543
    39.Costa G,Bagni N.Effectsof polyamines on fruit-set of apple.HortScience,1983,18:59-61
    40. Evans P T, Malmherg R L. Do polyamincs have roles in plant development. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 235-269
    
    41. Flores H E, Galston A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982, 69:701-706
    
    42. Fos M, Proano K, Alabadi D, Nuez F, Carbonell J, and Garcia-Martinez J L. Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. Plant Physiology, 2003,131:359-366
    
    43. Fos M, Proano K, Nuez F, Garcia-Martinez J L. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant, 2001, 111: 545-550
    
    44. Fos M, Nuez F, Garcia-Martinez J L. The pat-2 gene,which induces natural parthenocarpy,alters the gibberellin content in unpollinated tomato ovaries. Plant Physiology, 2000,122:471-479
    
    45. Fraga M F, Rodriguez R, Rodriguez R. In vitro morphogenic potential of differently aged pinus fadiata trees correlates with polyamines and DNA methylation levels. Plant Cell Tissue and Organ Culture. 2002, 70: 139-145
    
    46. Franceschetti M, Fornale S, Tassoni A, Zuccherelli K, Mayer MJ, Bagni N. Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 2004, 161:989-1001
    
    47. Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin D, Michael A J. Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochemical Jorunal, 2001, 353: 403-409
    
    48. Galston A W, R. Kaur-Sawhney. Polyamines in plant Physiology. Plant Physiology, 1990, 94: 406-410
    
    49. Galstona W. Polymines as modulators of plant development. Bioscience, 1983, 33: 382-388
    
    50. Hao Y J, Zhang Z L, Kitashiba H, Honda C. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development. Cell Growth and Stress Responses Gene, 2005, 350: 41-50
    
    51. Hector E F, Arthur W G. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982,69: 701-706.
    
    52. Kashiwagi K, Taneja S K, Liu T Y, Tabor C W, Tabor H. Spermidine biosynthesis in Saccharomyces cerevisiae: biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase. Journal of Biological Chemistry, 1990, 265: 22321-22328
    
    53. Kushad MM, Yelenosky G, Knight R. Interrelationship of polyamine and ethylene biosynthesis is during avocado fruit development and ripening. Plant Physio, 1988, 87: 463-467.
    
    54. Lee M M, Lee S H, Park K Y. Characterization and expression of two members of the 5-adenosylmethionine decarboxylase gene family in carnation flower. Plant Molecular Biology, 1997, (34): 371-382
    
    55. Liu J H, Hiroyasu Kitashiba, Wang J, Yusuke Ban, Takaya Moriguchi. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 2007, 24: 117-126
    
    56. Liu J H, Nada K, Pang X M, Honda C, Kitashiba H, Moriguchi T. Implication of polyamines in peach fruit development and storage. Tree Physiol, 2006,26: 791-798
    
    57. Mad Arif S A, Taylor M A, George L A, Butler A R, Burch L R, Davies H V, Stark M J, Kumar A. Characterization of the 5-adenosylmethionine decarboxylase (SAMDC) gene of potato. Plant Molecular Biology, 1994, (26): 327-338
    
    58. Malik A U, Singh Z. Abscission of mango f ruilet s as influenced by biosynthesis of polyamines . Hort Sci Biotechnol, 2003 , 78 (5) :721 -727.
    
    59. Mitra S K. Effect of putreseine on fruit set and quality of litchi. Gartenbauwissenschaft, 1990, 55, 83-84
    
    60. Pajunen A, Crozat A, Janne OA, et al. Structure and regulation of mammalian 5-adenosylmethionine decarboxylase. J Biol Chem, 1988, 263(32): 17 040-17 049.
    
    61. Pegg A E, Xiong H, Feith D J, Shantz L M. 5-Adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochemical Society Transactions, 1998,26: 580-586
    
    62. Redmond J W. High pressure liquid chromatographic determination of putrescine, cadav- erine, spermidine and spermine. J Chromatogr, 1979,170:479-481.
    
    63. Roshni A, Tatiana Cassol, Ning Li. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Publishing, 2002,20: 613-617
    
    64. Samejima K, Kawase M, Sakamoto S, Okada M, Endo Y.Anal. Biochem , 1976, 76 (2): 392-406.
    
    65. Stanley B A, Pegg A E, Pegg A E. Expression of mammalian 5-adenosylmethionine decarboxylase in Escherichia coli. Determination of sites for putrescine activation of activity and processing. Journal of Biological Chemistry, 1994, 269: 1-7
    
    66. Stanley B A, Pegg A E. Amino acid residues necessary for putreseine stimulation of human 5-adenosylmethionine decarboxylase proenzyme processing and catalytic activity. J Biol Chem, 1991,266:18502-6.
    
    67. Tassoni A, Franceschetti M, Tasco G. Cloning, functional identification and structural modelling of Vitis vinifera 5-adenosylmethionine decarboxylase. Journal of Plant Physiology, 2006,1-12
    
    68. Tiburcio A F, Altabella T, Flores D. Manipulation of polyamines in food plants: chemical and transgenic approaches. In: Bardocz S, White A, eds. Polyamines in Health and Nutrition. Boston: Klu Academic Publishers, 1999,161-175
    
    69. Walle T. Polyamines in Normal and Neoplastic Growth. New York Raven Press, 1973, 355
    70. Wang X L, PENG X X. Cloning of promoter of banana fruit-specific ACC synthase gene and primary study on its function. Chinese Journal of Biotechnology, 2001,17(3): 293-296.
    
    71. Wang Y, Lu W J, Li J G, et al. Differential expression of two expansin genes in developing fruit of cracking-susceptible and resistant litchi cultivars. J. Amer. Soc. Hort. Sci. 2006, 131(1): 118-121
    
    72. Wolukaul J N, Zhang S L, Xu G H,2004, The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume, Sci. Hort., 99: 289-299
    
    73. Wrenger C, Luersen K, Krause T, Muller S, Walter RD. The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. J Biol Chem, 2001 ;276: 29651-6.
    
    74. Xiong H, Stanley B A, Tekwani B L, Pegg A E. Processing of mammalian and plant S-adenosyl-methionine decarboxylase proenzymes. JBiol Chem, 1997,272: 28342-8.
    
    75. Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1984,35: 155-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700