黑洞辐射效应及其相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恒星的演化与核反应有关,演化到晚期的恒星一般要损失一部分质量,然后坍缩成致密星(白矮星、中子星或黑洞)。星体经过物质抛射后,核能耗尽的恒星质量超过3M_⊙,则此星体将继续坍缩成黑洞。黑洞是广义相对论在强引力条件下的预言,X射线天体物理学的研究推动了恒星级黑洞的研究,使理论推测的黑洞成了可实在搜寻和探索的天体;使黑洞物理学建立在了坚实的基础之上。人们已经用各种可能的观察手段获得了黑洞存在的证据。在理论研究方面,人们已对黑洞的辐射等内容做了一些研究工作,有关的一些理论问题尚需深入研究。
     本文对黑洞辐射效应及其相关问题进行了研究。其中,通过对一类具有质量多极矩的黑洞的非热辐射效应的研究得到了一些有意义的新结果,发现了一类新的Dirac能级和一类新的Dirac能级交错区,这种新的Dirac能级交错区的出现导致非热辐射的发生,在一些方向上出现辐射能量很大的非热辐射。这在国内外均未见报道。又得到了黑洞的非热辐射在宇宙中传播时要受星际物质的影响,尤以星际气体的影响更为突出。非热辐射粒子的平均射程与非热辐射粒子的能量范围成正比、与星际气体的密度成反比;对动态黑洞和一类具有质量多极矩的稳态黑洞而言,非热辐射粒子的平均射程还与方向有关。这些都是首次报道的新结果。本文对一类具有质量多极矩的Manko黑洞的视界温度进行了研究,准确地计算出此类黑洞的热辐射温度在视界上除内禀奇点处外是常数,而在黑洞视界面的内禀奇点附近的视界温度出现异常值,并对这种温度分布的现象作了合理的解释。这是具有创新意义的结论。同时,对一类动态黑洞非热辐射的研究表明,动态黑洞的非热辐射具有方向性,在不同的方向上,非热辐射粒子的能量范围不同,在这方面得出的非热辐射粒子的最大能量的精确表达
    
     四)【I大学博士学位论文
     式等内容都是创新的和有意义的结果。另外,本文还求出了一类用扁椭球坐标
     表示的荷电黑洞时空中的电磁四维势矢量,从而成功地求解了此类弯曲时空中
     的HH方程,得到了这种非热辐射粒子能量范围的精确表达式,从而对这类
     黑洞的非热辐射特征进行了研究。总的说来,以上几方面的新结论对于研究黑
     洞物理学具有一定的意义,并为研究和探索黑洞提供了一些新的方法和线索。
The evolution of fixed star having something to do with nuclear reaction, the star generally loses partial mass in its final period and finally collapses into compact star (white dwarf, neutron star or black hole). After the process of matter ejection stellar body will continue collapsing into black hole if the mass of the nuclear-energy-exhausted star is more than 3 MQ. Black hole is the prediction of general relativity on the condition of great gravitation. As the research of X-ray astrophysics, the research of black hole has been made rapid progress, providing substantial basis for black hole physics and making exploring and researching black hole be front-line subjects. In fields of observation and measurement, scientists have examined the existence of black hole. People also have made a series of researching theoretical work on black hole's radiation etc., while relative issues need being studied furtherly.
    In this paper, researches on black hole's radiation effect and relative issues including the nonthermal effect of the black hole with mass multipole moment, there exists a new kind of Dirac energy levels and the crossing region of Dirac energy levels. The advent of the region leads to the occurrence of nonthermal radiation and even with great energy in some directions, which hasn't been reported both domestic and abroad, and when spreading in universe, black hole's nonthermal radiation is influenced by stellar matter, in which stellar gas is very apparent. The average range of nonthermal radiation particles is direct proportion to the energy extent of nonthermal radiation particle, but also inverse proportion to the density of stellar gas,
    
    
    however, to the stationary black hole with mass multipole moment and nonstationary black hole, the average range of their nonthermal radiation particle still has something to do with direction, which are the new results reported firstly. Through the event horizon temperature of a kind of Manko black hole with mass multipole moment can derive that the value is a constant except singular points, near which the temperature values are irregular. As one of the novel conclusions, such phenomena about the distribution has been paid reasonable explanation. The studies on the nonthermal radiation of a kind of nonstationary black holes show that it owns the characteristics of direction and the energy extent of the radiation particles varies in different direction, in which aspect can get some new and meaningful results, namely the exact expressions on the maximum energy of the particle. Besides, successfully calculating the electromagnetic four-potential in the spacetime of charged black hole expressed by the generali
    zed spherical coordinate and furtherly solving the H-J equation of such spacetime make it possible to get the exact description of the energy extent of nonthermal radiation particle and to study the characteristics of such black hole's nonthermal radiation. Wholly speaking, all above new conclusions are relatively significant for black hole physics and providing some new methods and clues for further researching black holes.
引文
1.A·爱因斯坦,《相对论的意义》,人民教育出版社,1961.
    2.朗道,栗弗席兹.《场论》,人民教育出版社,1959.
    3.S·W·霍金,《时间简史》,湖南科学技术出版社,1994.
    4.刘辽,《广义相对论》,高等教育出版社,1987.
    5.赵峥,《黑洞的热性时空奇异性》,北京师范大学出版社,1999.
    6.王永久,康智明,《引力理论和引力效应》,湖南科学技术出版社,1990.
    7.尤峻汉,《天体物理中的辐射机制》,科学出版社,1998.
    8.程檀生,钟毓澍,《低能及中高能原子核物理学》,北京大学出版社,1997.
    9. V. S. Manko, Axially Symmetric Solutions of the Einstein-Maxwell Equations, General Relativity and Gravitation, Vol.22,No.7, 1990.
    10. A. Chamorro.,V.S.Manko and T. E.Denisova, New Exact Solution for the Exterior Gravitational Field of a Charged Spinning Mass, Phys., Rev. D, 1991.
    11. O.V. Manko, V.S.Manko, and J.D.Sanabria-Gomec, Remarks on The Charged, Magnetized Tomimatsu-Sato δ=2 Solution, General Relativity and Gravitation, Vol.31, No.10, 1999.
    12.赵峥,《黑洞与弯曲的时空》,山西科学技术出版社,2000.
    13.A·爱因斯坦,《狭义与广义相对论浅说》,上海科学技术出版社,1964.
    14.曾谱言,《量子力学导论》,北京大学出版社,1998.
    15.李政道,《场论与粒子物理原》,科学出版社,1980.
    16.俞久强,《广义相对论引论》,北京大学出版社,1981.
    17.S·温伯格,《广义相对论引论》,北京大学出版社,1987.
    18.李宗伟,肖兴华,《普道天体物理学》,高等教育出版社,1992.
    19.梁灿彬,《微分几何入门》上、下册,北京师大学出版社,2001.
    20.王永久,《黑洞物理学》,湖南师范大学出版社,2000.
    21. S.Weinberg, Gravitation and Cosmology; Principles and Applications of The General Theory of Relativity, New York; John Wiley, 1972.
    22. C.M.Will, Theory and Experiment in Gravitational Physics, Cambridge: Cambridge University Press, 1981.
    23.张元仲,《狭义相对论实验基础》,科学出版社,1994.
    
    
    24.李政道,《场论与粒子物理聚》,科学出版社,1980.
    25.胡瑶光,《量子场论》,华东师范大学出版社,1988.
    26.吴时敏,《广义相对论教程》,北京师范大学出版社,1984.
    27.王仁川,《广义相对论引论》,中国科学技术大学出版社,1996.
    28.冯麟保,《宇宙学引论》,科学出版社,1994.
    29. Yang Shuzheng,Zhu Jianyang,Zhao Zheng,The dependence of Hawking thermal spectrum on angular variables,Vol.4,No.2,Acta Physica Sinic,1995.
    30.杨树政,赵峥,一类动态黑洞的非热辐射,Vol.44,NO.3,物理学报,1995.
    31. M.S.Turner,Dark Matter,Park Energy,and Fundamental Physics, Astro-ph/9912211,1999.
    32. A.G.Riess,Observational Evidence from Supernovae for an Accelerating Universe and CosmoloSical Constant,Astron,J.,116,1998.
    33.杨树政,肖兴国,一种新的静态Manko黑洞和稳态Manko黑洞的热力学性质,科学道报,Vol.39,No.23,1994.
    34.肖兴国,杨树政,一个赤道具有高温的黑洞,科学道报,Vol.39,No.10,1994.
    35.杨树政,罗志全,一种Dirac能级图,科学道报,Vol.41,No.11996.
    36. Yang Shuzheng,Zhao Zheng,Non-thermal Radiation from Nonstationary Kerr Black Hole,International Journal of Theoretical Physics,Vol.35,No.12,1996.
    37.杨树政,研究动态Kerr黑洞热辐射的方法,物理学报,Vol.45,No.11,1996.
    38.杨树政,赵峥,一类稳态轴对称非Kerr黑洞视界附近的粒子能级,北京师范大学学报,Vol.30,No.2,1994.
    39.杨树政,赵峥,带有质量四极矩的静态黑洞视界附近的粒子能级,北京师范大学学报,Vol.30,No.3,1994.
    40.杨树政,一个具有裸奇点的黑洞时空中的Dirac能级,电子科技大学学报.Vol.26,1997.
    41.马勇,杨树政,Vaidya-Bonner-de Sitter时空中荷电Dirac粒子的Hawking辐射,物理学报,Vol.46,No.11,1997.
    42.杨树政,陶才德,唐廷载,一个静态Gwtsunaev-Manko黑洞视界温度的计算方法,数学物理学报,Vol.18,No.1,1998.
    
    
    43.赵峥,孟晓东,沈超,稳态轴对称非Kerr黑洞的热力学性质,中国科学(A辑)Vol.23,No.7,1997.
    44.赵峥,裴寿镛,刘辽,钟速同步的传递性等价于热力学第零定律,物理学物,Vol.48,No.11,1999.
    45. Zhao Zheng, Zhu Jianyang, Liu Wenbiao, Entropy of Kerr-Newman Black Hole Continuously Goes to Zero When The Hole Changes from Non-extreme Case to Extreme Case, Chin. Phys. Lett., Vol. 16,No.9, 1999.
    46.杨树政,林理彬,Kinnersley时空中的粒子辐射特征,广西师范大学学报,Vol.18,No.3,2000.
    47.杨树政,林理彬,星际物质对动态球对称荷电黑洞非热辐射影响的研究.四川大学学报,Vol.37,No.5,2000.
    48. Yang Shuzheng, Lin Libin, The Study of the Non-thermal Radiation from Spherical Symmetry Black Hole with Electromagnetic Charge and the Average Range of Radiation Particles, Journal of Sichuan Teachers College, Vol.21, No.3, 2000.
    49. Yang Shuzheng, Lin Libin, New Kinds of Dirac Energy Levels and Their Crossing Regions, Chin. Phys., Vol. 10, No. 11, 2001.
    50.彭秋和,《恒星结构、演化与核天体物理》,南京大学出版社,2001.
    51.朱光华,冯先嘉,彭望碌,《普通天文学》,北京师范大学出版社,1990.
    52.胡济民,杨伯君,郑春开,《原子核理论》第一、二卷,原子能出版社,1987.
    53.卢希庭,《原子核物理》,原子能出版社,1981.
    54.徐四大,《核物理学》,清华大学出版社,1992.
    55.章乃森,《粒子物理学》上、下册,科学出版社,1987.
    56.林理彬,《核物理基础》,四川大学出版社,2000.
    57.龙峻汉,《天体物理中的辐射机制》,科学出版社,1998.
    58.王绶琯,周又元,《X射线天体物理学》,科学出版社,1999.
    59. K.S.Krane, Introduction NuclearPhysics, Wiley, New York, 1987.
    60. D.H. Rerkins, Introduction to Higla Energy Physics, Addison-Weskey Pub, Comp, Inc, 1982.
    
    
    61. J.F.Ziegler and H.H.Andersen, The Stopping and Ranges of Ions in Matter, Rergamon Press, 1977.
    62. E.U.Condon and G.H.Shortley, The Theory of Atomic Speets, Cambridge University Press, 1979, Reprinted.
    63. J.W.Mayer and E, Rimini, Ion Bean Handbook for Material Analysis, 1977, Academic Press.
    64. R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Themodynamics, Chicago and London: the University of Chicago Press, 1994.
    65. N.O.Birrell, P.C.W.Davies, Quantum Fields in Curved Space, Cambridge: Cambridge University Press, 1982.
    66. W.Rindler, Essential Relativity, New York: Springer-verlag, 1977.
    67. F.P.Esposito and L.Witten, Asymptotic Structure of Spacetime, New York and London: Plenum Press, 1976.
    68. R.K. Sachs and H.W.U, General Relativity for Mathematicians, New York: Springer-verlag, 1977.
    69. S.W.Hawking and G, F, R.Ellis, The large scale structure of spacetime, Cambridge: Cambridge Press, 1973.
    70. R. M.Wald, Gravitational Collapse and Cosmic Censorship, in Black Holes, Gravitational Radiation and The Universe, Kluwer Academic Publishers: Pordrecht, 1999.
    71. K.S. Thorne, R, H, Price, and D, A, Macdonald, Black Holes: The Membrane Parading, New Haven: Yale University Press, 1986.
    72. A. Maeder, Stellar yields as a function of initial mentality and mass limit for black hole formation A&A, 264:105, 1992.
    73. E. Vassiliadis, Evolution of low-and intermediate-mass stars to the end of the asymptotic giant branch with mass loss, API, 413:441, 1993.
    74. H. Munakata, Neutrino energy loss in stellar interiors, APJ, 1985, 296, 197
    75. J. Whelan, Binaries and supernovae of type I, APJ, 1973.
    76. B. Gustafsson, The origin of carbon, investigated by spectral analysis of solar-type star in the galactic disk, A&A, 1991.
    
    
    77. N.Deruelle, R.Ruffini, Quantum and Classical Relativistic Energy States in Stationary Geometries, Physics Letters, Vol.52, No.4, 1974.
    78. N.Deruelle, R.Ruffini, Klein Paradox in A Kerr Geometry, Physics Letters, Vol. 57B, No.3, 1975.
    79. A.Wipf, Quantum Fields Near Black Holes, Phys., Rep.6, 1998. 80. R.M.Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press, Chicago, 1994.
    81. Hee Li Kim, Pifruse Y-ray Background and Primordial Black Hole Constraints on the Spectral Index of Density Fluctuations, Physical Review, Vol.59, 2001.
    82. Xie Shichong, Yang Xuete, Yang Shuzheng, LinLibin, Non-thermal Radiation from a Non-Kerr-Newman Black Hole, Chin. Phys., Vol. 10, No. 10, 2001.
    83. Yang Shuzheng, Lin Libin, The Quantum Nonthermal Effect of Nonstationary Kerr-Newman Black Hole and the Average Range of the Effective Particles, Chin. Phys., Vol.11, No.6, 2002.
    84. Renzini A, et al. Advanced evolutionary stages of intermediate-mass stars. I-Evolution of surface compositions. A&A 94: 175, 1981.
    85. Mango p, et al. The TP-AGB phase: Anew model. A&A, 313: 545, 1996.
    86. Mango p, et al.TP-AGB stars with envelope burning. A&A 313: 564, 1998.
    87. Marigo p, Chemical yields from low-and intermediate-mass stars: Model predictions and basic observational constraints. A&A 370: 194, 2001.
    88. van den Hoek L B, et al. New theoretical yields of intermediate mass stars. A&AS, 123: 305, 1997.
    89. Woosley S E, et al. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. ApJS, 101: 181, 1995.
    90. Maeder A. Stellar yields as a function of initial metallicity and mass limit for black hole formation. A&A, 264: 105, 1992.
    91. Nomoto K, et al. Nucleosynthesis in type II. supernovae. Nucl Phys., A616: 79c, 1997.
    92. Nomoto K, et al. Nucleosynthesis in type la. supernovae. Nucl Phys., A621:467c, 1997.
    
    
    93. Portinari L,et al> Galactic chemical enrichment with new metallicity dependent stellar yields. A&A, 334:505, 1998.
    94. Groenewegen M A T, et al. Synthetic AGB evolution. I. A new model. A&A, 267:410, 1993.
    95. Reimers D. Problems in Stellar Atmospheres and Envelopes. Baschek B, et al. eds. New York: Springer, 279, 1975.
    96. Vassiliadis E, et al. Evolution of low-and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. ApJ, 413: 641, 1993.
    97. Caugh G R, et al. Thermonuclear reaction rates V. At Data and Nucl Data Tables, 40: 283, 1988.
    98. Caughlan G R, et al. Tables of thermonuclear reaction rates for low-mass nuclei (1    99. Timmes F X, et al. Galactic chemical evolution: hydrogen through zinc. ApJs, 98: 617, 1985.
    100. Maeder A, et al. Massive star populations in nearby galaxies. ARA&A, 32: 227, 1994.
    101. Rogers F J, et al. Radiative atomic Rosseland mean opacity tables. ApJS, 79: 507, 1992.
    102. Iglesias C A, et al. Spin-orbit interaction effects on the Rosseland mean opacity. ApJ, 397: 717, 1997.
    103. Itoh N, et al. Neutrino energy loss in stellar interiors. III. Pair, photo-phasma, and bremsstrahlung processes. ApJ, 339: 354, 1989.
    104. Munakata H, et al. Neutrino energy loss in stellar interiors. ApJ, 296: 197, 1985.
    105. Whelan J, et al. Binaries and supernovae of Type I. ApJ, 186: 1007, 1973.
    106. Gustafsson B, et al. The origin of carbon, investigated by spectral analysis of solar-type stars in The Galactic disk A&A, 342: 426, 1992.
    107. Marussi A. On the density distribution in bodies of assigned outer Newtoial attraction. Bollettino Di Geofisica Teorica ed Applicata, 22(86) : 83, 1980.
    108. Sanso F. Remarks on the inverse gravimetric problem. Geophys Jour of the R A
    
    S, 92: 505, 1988.
    109. Sanso F. et al. The inverse gravimetric problem in gravity modelling. Geodetisk Institute, Institute, Moddelelse 58: 299, 1989.
    110. Li F. A research on density of null external potential. Chinese J Geophys., 40(4) : 103, 1997.
    111. Li F. Orthogonal decomposition to the resource of gravity field approximated by quasi-harmonics and multi-harmonics. Acta Geodaet-ics et Carographica, 27(2) : 104, 1998.
    112. 朱灼文, 等. 重力学内部边值问题. 中国科学, B辑(2) : 208, 1990
    113. 李斐. 关于重力反演的几个判定准则.地球物理学报, 41(1) :903,1998
    114. Abramowicz, M. A., "Innermost Parts of Accretion Disks are Thermally and Secularly Stable, " Nature 294, 235, 1981.
    115. Bath, G. T. and J. E. Pringle, "The Evolution of Viscous Discs-I. Mass Transfer Variations, " Mon. Not. Roy. Astron. Soc. 194, 967, 1981.
    116. Boynton, p. E. "Pulse Timing and Neutron Star Structure," in IAU Symposium No.95 Pulsars, W. Sieber and R. Wielebinski, editors, Reidel, Dordrecht, Holland, p. 279, 1981.
    117. Bradt, H. V. D. and J. E. McClintock, "The Optical Counterparts of Compact Galactic X-Ray Sources," Ann. Reu. Astron. Astrophys. 21, 1983.
    118. Brinkmann, W., "Adiabatic Accretion onto a Schwarzschild Black Hole," Astron. Astrophys. 85, 146, 1980.
    119. Brown, G. H., H. A. Bethe, and G. Baym, "Supernova Theory," Nucl. Phys. A 375,481, 1982.
    120. Chevalier, R. A, "Exploding White Dwarf Models for Type I Supernovae," Astrophys. J. 246, 267, 1981.
    121. Ghosh, P. and F. K. Lamb, "Disk Accretion by Magnetic Neutron Stars," Astrophys. J. Lett. 223, L83, 1978.
    122. Grindlay, J. E., "X-Ray Sources in Globular Clusters," in X-Ray Astronomy with the Einstein Satellite, R. Giacconi, editor, Reidel, Dordrecht, Holland, 1981.
    
    
    123. Hawking, S. W., "Gravitationally Collapsed Objects of Very Low Mass," Mon. Not.Roy. Astron. Soc. 152, 75, 1971.
    124. Klebesadel, R. W., E. E. Fenimore, J. G. Laros, and J. Terrell, "Gamma-Ray Burst Systematics," in Gamma-Ray Transients and Related Astrophysical Phenomena, New York, 1982.
    125. Heitler, W., The Quantum Theory of Radiation, Oxford University Press, London, 1966.
    126. Lattimer, J. M, "The Equation of State of Hot Dense Matter and Supernovae," Ann. Reu. Nucl. Part. Sci. 31, 337, 1981.
    127. Licbert, J., "White Dwarf Stars," Ann. Reu. Astrophys. 18, 363, 1980.
    128. Lightman, A. P. and S. L. Shapiro, "Spectrum and Polarization of X-Rays from Accretion Disks around Black Holes," Astrophys. J. Lett. 198, L73, 1975.
    129. Moncrief, V.,"Stability of Stationary, Spherical Accretion onto a Schwarzschild Black Hole," Astrophys. J. 235, 1038, 1980.
    130. Tucker, W., Radiation Processes in Astrophysics, MIT Press, Cambridge, Mass., 1976.
    131. Shklovsky, I., Cosmic Radio Waves, Harvard Univ. Press, Cambridge, 1960.
    132. Nomoto, K. and S. Tsuruta. "Cooling of Young Neutron Stars and the Einstein X-Ray Observations," Astrophys. J. Lett. 250, LI9, 1981.
    133. Page, D. N. and S. W. Hawking, "Gamma Rays from Primordial Black Holes," Astrophys. J. 206, 1, 1976.
    134. Penrose, R., "Gravitational Collapse: The Role of General Relativity," Riu. Nuouo Cim. 1, 252, 1969.
    135. Saenz, R. A. and S. L. Shapiro, "Gravitational Radiation from Stellar Core Collapse. III. Damped Ellipsoidal Oscillations," Astrophys. J. 244, 1033, 1981.
    136. Elley J., Cerenkov Radiation and Its Applications, Pergamon, New York, 1968.
    137. Van Riper, K. A, "Stellar Core Collapse. II .Inner Core Bounce and Shock Propagation," Astrophys. J. 257, 793, 1982.
    138. Heitler, W, The Quantum Theory of Radiation, London. Oxford University
    
    Press, 1964.
    139. Pacholczky, A., Radio Astrophysics, San Fransisco, Freeman. Pinto, P, A. and Woosley, S, E, 1988, Ap. J., 329, 820,1970.
    140. 龙峻汉, 1983, 天体物理中的辐射机制,科学出版社.
    141. Fraser, G, W., X-ray Detectors in Astronomy, Cambridge University. Giacconi et al. 1971, Ap. J. Lett., 165, L27, 1989.
    142. Murakami, T., Gamma-Ray Bursts-Observations, Analyses and Theories (ed. Ho, C., Epstein, R. I. Fenimore, E, E.). 239. Cambridge, 1992.
    143. Aschenbach, B., Supernova Remnants and the Interstellar Medium, Roger and Landecker (eds.), Cambridge Univ. Press, P. 99, 1988.
    144. Panagia, N., High Energy Phenomena Around Collapsed Stars, (ed. Pacini), P. 33, 1987.
    145. 汪珍如, 曲钦岳, 恒星大气物理,高等教育出版社, 1993
    146. Grindlay, J. E., IAU Symp. 126, Globular Cluster Systems in Galaxies, eds., J. E.Grindlay and A. G. D. Philip,?. 347, 1988.
    147. Trimble, V, Evolutionary Processes in Interacting Binary Stars, ed., Y. Kondo et al., P. 91, 1992.
    148. Awaki, H., Proceedings of Workship of the Advanced of Astronomy, 243. Dordrecht, Boston, London: Kluwer Academic Publishers, 1990.
    149. Fabbiano, G., the Reference Encyclopedia of Astronomy and Astrophysics, ed., s. Maran, S, Cambridge: Cambridge University Press, 1990.
    150. Forman, W. et al., Clusters and Groups of Galaxies, eds., F. Mardirossian, et al., 297, 1984.
    151. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.
    152. Ginzburg, V, The Propagation of Electromagnetic Waves in Phasmas, Pergamon London, 1964.
    153. Longair, M, S., High Energy Astrophysics, Cambridge, 1992.
    154. Tuker, W., Radiation Processes in Astrophysics, MIT Press, Cambridge, Mass., 1976.
    155. Frank, H. Shu, The Physics of Astrophysics Volume I: Radiation, University
    
    Science Books, Mill Valley, California, 1992.
    156. Jeffries, I, Spectral Line Formation, Waltham. Mass., Blaisdell, 1968.
    157. Eddington, A., The Internal Constitution of Stars, Cambridge University Press, 1926.
    158. Ginzburg, V. and Syrovatskii, S., The Origin of Cosmic Rays, Pergamon, London, 1964.
    159. Shapiro, S. L. and Teukolsky, S. A., Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, Wiley Interscience, 1983.
    160. Landau, L. and Lifshitz, I., The Classical Theory of Fields, Wesley, Mass., Addison, 1962.
    161. 韦大明, 陆(土炎), 1995a, 天文学进展, 13, 206.
    162. 韦大明, 陆(土炎), 1995b, 天文学进展, 13, 220.
    163. 韦大明, 陆(土炎), 1995c, 天文学进展, 13, 234.
    164. Lu, Zhuguo, et al., NIM in Phys. A, 362, 551, 1995.
    165. Longair, M, S., High Energy Astrophysics. Vol.1, Cambridge University Press, 1993.
    166. Fabian, A. C., Proceedings of X-ray Imaging and Spectroscopy of Cosmic Hot Plasma, eds., F. Makino & K. Mitsuda, Universal Academy Press, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700