用户名: 密码: 验证码:
遥爪与嵌段功能齐聚物的合成及阴离子聚合机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究阴离子聚合方法合成含苯乙烯链节遥爪聚合物和含有环氧侧基聚苯乙烯嵌段共聚物,苯乙烯本体阴离子聚合动力学以及聚合过程中相关实验现象的理论解释。
     首先,分别以正丁基锂(n-BuLi).环己烷和双环氧化合物(丁二醇二缩水甘油醚,BDE和新戊二醇二缩水甘油醚,NGDE)为引发剂、溶剂和封端剂合成含有端环氧基团聚苯乙烯遥爪聚合物。分别研究了封端反应温度、封端剂、滴加方式、封端剂的稀释等因素对端环氧基含量的影响。GPC结果表明,使用双环氧化合物对聚苯乙烯活性种进行封端时,无论采用正向滴加和反向滴加方式,均发生偶合副反应;同样反应条件下,使用NGDE封端比BDE封端得到偶合副产物量稍小。由于合成产物中端环氧基团的相对浓度较低,产物端环氧基团的存在很难使用FT-IR和1H-NMR表征方法证实。产物端环氧基团可以采用盐酸-二氧六环银量法进行测定。使用正向滴加方式时,升温、提高聚苯乙烯活性种分子量和提高封端剂用量有利于降低偶合副产物,但整体偶合副产物的量偏高。使用反向滴加方式和降低温度可以较为有效地降低偶合副产物。使用不同溶剂稀(如THF和甲苯)释封端剂也不能有效提高封端效率,DPE预封端聚苯乙烯活性种增大阴离子空间位阻的方式也未能有效降低偶合副产物。
     其次,采用环己烷(和甲苯)为溶剂,正丁基锂为引发剂制备聚苯乙烯活性种,然后加入GMA单体继续聚合制备PS-PGMA嵌段共聚物。在常温下,以环己烷为溶剂的聚合体系中,研究了GMA添加量和聚合反应温度的影响。结果表明,加入GMA单体后,部分GMA分子上的环氧基团发生开环反应。GMA添加量增大时,开环反应越显著,特别是在[GMA]/[n-BuLi]≥20时,聚合体系出现交联现象。同时也发现,升高温度不利于环氧基团的保留。降低GMA聚合温度,采用甲苯为溶剂,在聚合体系中引入添加剂LiCl并将聚苯乙烯活性种使用二苯基乙烯(DPE)预封端后加入GMA单体进行聚合,结果可以得到分子量分布指数接近1的含数个环氧侧基的PS-nGMA嵌段共聚物。GPC. FT-IR.1H-NMR.13C-NMR.TLC和盐酸-二氧六环银量法等分析结果表明,环氧基团在聚合过程中保存完好,并未发生开环反应。还发现,当GMA聚合温度高于-40℃时和低于-65℃时,产物分子量分布变宽。升高温度对GMA单体的阴离子聚合副反应控制不利,而温度太低则对聚合产物中GMA链节在甲苯溶剂中的溶解不利。继续增大GMA用量,共聚物中GMA链节溶解性更差,体系粘度增大,产物分子量变宽。加入THF后可降低体系粘度,使产物分子量分布变窄。使用1,4-二溴甲基苯(2-BMB)偶联剂偶联PS-PGMA活性种的方法未能成功制备纯的PS-PGMA-PS三嵌段共聚物,只能得到两嵌段和三嵌段共聚物的混合物。
     再次,假定聚苯乙烯活性种的二缔合体、六缔合体和缔合数较大的缔合体均能引发苯乙烯单体聚合并假定该聚合过程属于非稳态,建立了苯乙烯本体阴离子聚合的动力学模型。该模型给出了聚合反应转化率和产物分子量分布的各阶矩,并结合实验结果对模型参数(各个聚苯乙烯活性种缔合物之间的平衡转化以及其引发苯乙烯单体聚合的链增长反应速率常数)进行估算。结果表明,二缔合体和六缔合体之间的缔合平衡常数与其引发单体的链增长速率常数数量级相当,故而稳态假定不适用于本体聚合体系。缔合数很大的缔合物与六缔合体之间的平衡转化比二缔合体和六缔合体之间的平衡转化快很多(约1000倍左右)。苯乙烯本体阴离子聚合中,各个活性种缔合物的链增长速率常数与同等温度下溶液聚合的链增长速率数量级基本相同。其中二缔合体的引发活性最低,而缔合数很大的缔合物的引发活性最高,六缔合体次之。
     最后,使用DFT方法在B3LYP/TZVP//B3LYP/SVP水平上对正丁基锂(n-BuLi)引发体系、聚苯乙烯活性种体系以及P配合物存在下的n-BuLi引发体系和聚苯乙烯活性种体系中可能存在的缔合物几何结构进行优化和能量计算。结果发现,无论在气相和溶剂(苯乙烯和THF)中,正丁基锂的六缔合体最为稳定。在溶剂中,随着溶剂极性的增加,六缔合体稳定的优势逐渐减弱;特别是在THF中,在没有考虑THF与n-BuLi发生缔合的情况下,理论计算结果显示,六缔合体稳定性与四缔合体大致相当。分别使用HStLi和H(St)2Li作为模型化合物对聚苯乙烯活性种所可能存在的缔合物几何结构进行优化和能量计算时均发现二缔合体最为稳定。同时还发现聚苯乙烯活性种末端的锂原子被夹在与其相邻的两个苯环之间,而并非“裸露”在最外面。引入P配合物后,n-BuLi引发体系和聚苯乙烯活性种体系缔合物结构均发生变化,两者的单量体在与P配合物的缔合作用下最为稳定。增加P配合物的摩尔比,则会使得两者的单量体更加稳定,从形成的缔合物中解缔合所需的能量更大。
This work is focused on the synthesis of styrenic telechelic polymer and block copolymer with pendent epoxy groups, the derivation of the kinetics of anionic bulk polymerization and the explanation of some experimental phenomena using quantum-chemical computation tools during anionic bulk polymerization of styrene.
     The end-epoxy functionalized telechelic polystyrene (PS-ep) has been synthesized by end-capping polystyryl precursors using diepoxides (1,4-butanediol diglycidyl ether (BDE) and neopentyl glycol diglycidyl ether (NGDE)). Polystyryl precursors were prepared at0℃using cyclohexane, a small amount of tetrahydrofuran (THF) and n-butyllithium (n-BuLi) as solvent, additives and initiator, respectively. The effects of termination reaction temperature, terminating reagents, normal/reverse addition and dilution of terminating reagent on the content of end-epoxy group in the products were investigated. Results from GPC show the existence of unexpected polystyrene dimers, the major byproduct from both oxirane rings opening reaction, whenever either normal or reverse additions were adopted. Under the same reaction conditions, the dimeric byproduct in the crude PS-ep product prepared using NGDE as terminating reagent is slightly lower compared to that using BDE. The lowest dimeric byproduct content in the product (c.a.20%) was obtained at0℃by reverse addition and molar ratio of NGDE and PSLi being3:1. The oxirane ring cannot be found from FT-IR or1H-NMR spectra owing to its very low concentration in the product. The concentration of epoxy group in PS-ep was determined by end-epoxy group titration (HCl-dioxane argentometry). The content of dimeric byproduct was reduced by increasing the reaction temperature and terminating reagent under normal addition; however, it is always higher than that from reverse addition. Under reverse addition, increasing the amount of terminating reagent resulted in lower dimeric byproduct content. It was also found that diluting the terminating reagents by adding THF, toluene and end-capping the polystyryl precursors by diphenylethylene (DPE) did not significantly reduce the dimer content.
     PS-PGMA was prepared using cyclohexane and n-BuLi as solvent and initiator, respectively, by adding GMA into polystryl precursors under ambient temperature. The effects of GMA dosage and GMA polymerization temperature have been investigated. It is shown that the oxirane ring opening reaction occurs when more GMA momoners were introduced (e.g. more than10GMA units per polystyrene chain). In particular, if the molar ratio of GMA to n-BuLi is over20, cross-linking takes place during GMA polymerization. The oxirane ring opening reaction of GMA was enhanced by increasing the GMA polymerization temperature. PS-nGMA block copolymers with narrow molecular weight distribution (≈1) have been synthesized in toluene by reducing the GMA polymerization temperature and end-capping the polystyryl precursors with DPE in the presence of LiCl. GPC, FT-IR,1H-NMR,13C-NMR, TLC and chemical titration results show that the oxirane were retained without ring opening reaction during GMA polymerization. It was also found that the molecular weight distribution broadened if the polymerization temperature of GMA was lower than-65℃and greater than-40℃. The reactivity of oxirane ring may increase with temperature and hence ring opening side reaction occurs. At very low temperature (≤-65℃), the solubility of PGMA segments becomes poor in toluene and poorer if larger PGMA segments are introduced. It was also found that the viscosity of PS-PGMA due to the poor solubility of GMA segments may be reduced by introducing THF in the system. PS-PGMA-PS was not successfully prepared using1,4-Bis(Bromomethyl)benzene (2-BMB) to link PS-PGMA anions. Only the mixture of PS-PGMA and PS-PGMA-PS was obtained.
     The kinetics of anionic bulk polymerization of styrene have been developed under the non-steady state assumption and assuming that all the living species (dimeric, hexameic and very large aggregates of polystyryllithium) can intiate the polymerization of styrene. The dependences of monomer conversion and various moments of molecular weight distribution on the time have been established in terms of model parameters (i.e. equilibrium contants between different aggregates and propogation rate constant of each aggregate). These established relationships were compared with the experimental data to estimate the model parameters. It has been shown that the propogation rate constants of dimeric and hexameric aggregates and equilibrium constants between them are almost of the same order of magnitude. In this context, the steady state assumption is not suitable for the anionic bulk polymerization of styrene. It is also interesting to find that the equilibrium constant between very large aggregates and hexameric aggregates is significantly greater (c.a.1000times) than that between dimeric and hexameric aggregates. The propogation rate constant of each aggregate is of the same order of magnitude with the apparent propogation rate constant in anionic solution polymerization of styrene reported in the literature. Among the propogation rate constants of the three aggregates, the propogation rate constant of very large aggregate is the greatest and that of the dimeric aggregate is the lowest.
     Quantum-chemical density functional theory (DFT) calculations at B3LYP/TZVP//B3LYP/SVP level of theory were performed to find the most stable aggregates of n-BuLi and PSLi living species during anionic bulk polymerization of styrene. It has been found that the hexamer of n-BuLi is the most stable aggregates in both gas and solution. In addition, dimeric PSLi is the most stable aggregates according to the DFT calculations using both HStLi and H(St)2Li as the models of PSLi. It was also found that the Li atom of monomeric PSLi chain-end is "wrapped" between the two benzene rings adjacent to the Li atom. To interpret the effect of P-ligands on the structure of n-BuLi and PSLi aggregates during the anionic polymerization of styrene, DFT calculations on the possible geometrical structures and relative stabilities of the living species and initiators in the presence of P-ligands were carried out. It was shown that the presence of P-ligands facilitated the deaggregation of the PSLi dimers and n-BuLi hexamers to form more stable mixed aggregates of P-ligands+monomeric n-BuLi and P-ligands+monomeric PSLi. It has also been demonstrated that the higher is the number of P-ligands coordinated with n-BuLi (or PSLi), the higher are their stabilities to bind n-BuLi (or PSLi) and their energies required to disaggregate n-BuLi (or PSLi) from the mixed aggregates.
引文
[1]周颖坚,张锴,孙刚,刘彩芹,郑安呐.反应挤出合成苯乙烯/丁二烯多嵌段共聚物[J].合成橡胶工业.2005,28(006):473-473
    [2]周颖坚,张锴,孙刚,危大福,郑安呐.苯乙烯/丁二烯聚合反应挤出多嵌段共聚物结构表征及共聚机理的研究[J].高分子学报.2006,003):437-442
    [3]周颖坚,张锴,孙刚,郑安呐.反应挤出两次分段加料法合成苯乙烯/异戊二烯共聚物[J].高校化学工程学报.2009,23(002):333-338
    [4]孙刚,周颖坚,张锴,胡福增,郑安呐.苯乙烯/丁二烯的阴离子反应挤出聚合机理[J].高分子材料科学与工程.2008,24(011):141-144
    [5]张锴,周颖坚,孙刚,郑安呐.用反应挤出法合成苯乙烯-异戊二烯嵌段共聚物[J].合成橡胶工业.2007,30(1):64-64
    [6]Szwarc M.'Living' Polymers[J].Nature.1956,178(4543):1168-1169
    [7]张洪敏,侯元雪.活性聚合[M].北京:中国石化出版社,1998
    [8]Hsieh H,Quirk R P. Anionic polymerization:principles and practical applications[M]. New York:Marcel Dekker, Inc.,1996
    [9]Dhara M G,Sivaram S. Living anionic polymerization of methyl methacrylate: Block-copolymers, star-polymers and macromonomers[M]. Saarbrucken, Germany:VDM, 2010
    [10]Quirk R P,Lee B. Experimental criteria for living polymerizations[J].Polymer International.1992,27(4):359-367
    [11]Webster O W. Living Polymerization Methods[J].Science.1991,251(4996):887-893
    [12]Hadjichristidis N, Pispas S,Floudas G. Block copolymers:synthetic strategies, physical properties, and applications[M]. Hoboken, New Jersey:John Wiley & Sons,2002
    [13]Morton M. Anionic polymerization:principles and practice[M]. New York:Academic Press,1983
    [14]Guyot P, Favier J C, Fontanille M,Sigwalt P. New perfectly difunctional organolithium initiators for block copolymer synthesis:2. Difunctional polymers of dienes and of their triblocks copolymers with styrene[J].Polymer.1982,23(1):73-76
    [15]Guyot P, Favier J C, Uytterhoeven H, Fontanille M,Sigwalt P. New perfectly difunctional organolithium initiators for block copolymer synthesis:Synthesis of dilithium initiators in the absence of polar additives[J].Polymer.1981,22(12):1724-1728
    [16]Tung L H,Lo G Y S. Hydrocarbon-Soluble Di- and Multifunctional Organolithium Initiators[J].Macromolecules.1994,27(7):1680-1684
    [17]Bandermann F, Speikamp H-D,Weigel L. Bifunctional anionic initiators:A critical study and overview[J].Die Makromolekulare Chemie.1985,186(10):2017-2024
    [18]Pitsikalis M, Sioula S, Pispas S, Hadjichristidis N, Cook D C, Li J,Mays J W. Linking reactions of living polymers with bromomethylbenzene derivatives:Synthesis and characterization of star homopolymers and graft copolymers with polyelectrolyte branches[J] Journal of Polymer Science Part A:Polymer Chemistry.1999,37(23):4337-4350
    [19]Bellas V, Iatrou H,Hadjichristidis N. Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star Co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene[J].Macromolecules.2000,33(19):6993-6997
    [20]Hahn S F,Vosejpka P C. Synthesis of poly(ethylene-b-dimethylsiloxane-b-ethylene) by anionic polymerization and hydrogenation[J].Polymer Preprints.1999,40(2):970-971
    [21]薛莲宝,金关泰.阴离子聚合的理论和应用[M].北京:中国友谊出版公司,1990
    [22]Schulz D N, Sandra J C,Willoughby B G. Functionally terminal polymers via anionic methods [M]. Washington, D C:American Chemical Society,1981
    [23]应圣康,郭少华.离子型聚合[M].北京:化学工业出版社,1988
    [24]Hirao A,Hayashi M. Recent advance in syntheses and applications of well-defined end-functionalized polymers by means of anionic living polymerization[J].Acta Polymerica. 1999,50(7):219-231
    [25]Jerome R, Henrioulle-Granville M, Boutevin B,Robin J J. Telechelic polymers:Synthesis, characterization and applications[J].Progress in Polymer Science.1991,16(5):837-906
    [26]Priddy D. Recent advances in styrene polymerization[M]. Berlin/Heidelberg:Springer, 1994
    [27]Quirk R P,Pickel D L. Controlled End-Group Functionalization (Including Telechelics)[M]. Amsterdam:Elsevier,2012
    [28]Jagur-Grodzinski J. Preparation of functionalized polymers using living and controlled polymerizations[J].Reactive and Functional Polymers.2001,49(1):1-54
    [29]Mansson P. Reactions of polystyryl anions with carbon dioxide and oxygen. Analysis of products by silica gel chromatography[J].Journal of Polymer Science:Polymer Chemistry Edition.1980,18(6):1945-1956
    [30]Quirk R P,Ma J-J. Characterization of the functionalization reaction product of poly(styryl)lithium with ethylene oxide[J] Journal of Polymer Science Part A:Polymer Chemistry.1988,26(8):2031-2037
    [31]Quirk R P,Cheng P L. Functionalization of polymeric organolithium compounds. Amination of poly(styryl)lithium[J].Macromolecules.1986,19(5):1291-1294
    [32]Quirk R P,Kim J. Anionic synthesis of model ionomers:co-lithium poly(styrene)sulfonates[J].Macromolecules.1991,24(16):4515-4522
    [33]Hirao A, Loykulnant S,Ishizone T. Recent advance in living anionic polymerization of functionalized styrene derivatives[J].Progress in Polymer Science.2002,27(8):1399-1471
    [34]Tasdelen M A, Kahveci M U,Yagci Y. Telechelic polymers by living and controlled/living polymerization methods[J].Progress in Polymer Science.2011,36(4):455-567
    [35]Sakellariou G, Pispas S,Hadjichristidis N. Model co-Functionalized Linear Polystyrenes with One, Two, and Three Sulfobetaine End Groups:Synthesis, Characterization, and Association Behavior[J].Macromolecular Chemistry and Physics.2003,204(1):146-154
    [36]Hirao A, Matsuo A, Morifuji K, Tokuda Y,Hayashi M. Synthesis of heteroarm star-branched polymers by means of anionic living polymerization[J].Polymers for Advanced Technologies.2001,12(11-12):680-686
    [37]Hadjichristidis N, Hirao A, Tezuka Y,Prez F D. Complex macromolecular architectures: synthesis, characterization, and self-assembly [M]. John Wiley & Sons,2011
    [38]Hadjichristidis N, Iatrou H, Pitsikalis M,Mays J. Macromolecular architectures by living and controlled/living polymerizations[J].Progress in Polymer Science.2006,31(12): 1068-1132
    [39]Hadjichristidis N, Pitsikalis M, Pispas S,Iatrou H. Polymers with complex architecture by living anionic polymerization[J].Chemical Reviews.2001,101(12):3747-3792
    [40]Milkovich R,Chiang M T. Chemically joined, phase separated thermoplastic graft copolymers[P].U.S.:CPC International Inc.,3786116,1974
    [41]Milkovich R,Chiang M T. Glycol terminated macromolecular monomers have a substantially uniform molecular weight distribution[P].U.S.:CPC International Inc., 3846393,1974
    [42]潘少波,谢洪泉.端环氧基聚苯乙烯与ECH的接枝共聚物及其产物性能[J].合成橡胶工业.1991,14(3):193-196
    [43]Xie H-Q, Pan S-B,Guo J-S. Ring-opening copolymerization of epoxy-terminated polystyrene macromer with epichlorohydrin and study on properties of the copolymers[J].European Polymer Journal.2003,39(4):715-724
    [44]张健.聚苯乙烯遥爪低聚物的合成与应用研究[D].硕士,上海:华东理工大学,2006
    [45]何晓燕,张健,黄辉,危大福,郑安呐.聚苯乙烯-聚甲基丙烯酸缩水甘油酯嵌段共聚物的合成与表征[J].功能高分子学报.2009,22(2):173-177
    [46]黄辉,张健,危大福,胡福增,郑安呐.甲基丙烯酸缩水甘油酯封端的聚苯乙烯遥爪低聚物的合成.2006年全国高分子材料科学与工程研讨会论文集[C].2006,
    [47]Huang H, Zhang J, Wei D, Hu F, Zheng A,Xiao H. Studies on the Synthesis and the Reaction Mechanism of Epoxy-Terminated Polystyrene Oligomer[J].Polymer Bulletin.2008, 60(4):477-486
    [48]黄辉.苯乙烯-甲基丙烯酸缩水甘油酯嵌段共聚物的合成研究[D].硕士,上海:华东理工大学,2008
    [49]Quirk R P,Zhuo Q. Anionic Synthesis of Epoxide-Functionalized Macromonomers by Reaction of Epichlorohydrin with Polymeric Organolithium Compounds[J].Macromolecules. 1997,30(6):1531-1539
    [50]Ji H, Farmer B S, Nonidez W K, Advincula R C, Smith G D, Kilbey S M, Dadmun M D,Mays J W. Anionic Synthesis of Epoxy End-Capped Polymers[J].Macromolecular Chemistry and Physics.2007,208(8):807-814
    [51]Takenaka K, Hirao A,Nakahama S. Synthesis of end-functionalized polymer by means of living anionic polymerization.4. Synthesis of polyisoprene and polystyrene with epoxy termini by reaction of their anionic living polymers with 2-bromoethyloxirane[J].Polymer International. 1995,37(4):291-295
    [52]高鸿宾.有机活性中间体[M].北京:高等教育出版社,1988
    [53]汪焱刚.亲核加成反应[M].北京:高等教育出版社,1994
    [54]C.赖卡特.有机化学中的溶剂效应[M].北京:化学工业出版社,1987
    [55]Allen R D, Long T E,McGrath J E. Preparation of high purity, anionic polymerization grade alkyl methacrylate monomers[J].Polymer Bulletin.1986,15(2):127-134
    [56]Hild G,Lamps J-P. Diblock copolymers, triblock copolymers andmodel networks synthesized by sequential anionic polymerization of styrene and 2,3-epoxypropyl methacrylate[J].Polymer.1998,39(12):2637-2649
    [57]Hild G,Lamps J-P. Anionic functional polymers, triblock copolymers and model networks derived from 2,3-epoxypropyl methacrylate[J].Polymer.1995,36(25):4841-4850
    [58]韩丙勇,杨万泰,金关泰.阴(负)离子聚合二十年[J].高分子通报.2008,0(7):29-34
    [59]Jerome R, Teyssie P, Vuillemin B, Zundel T,Zune C. Recent achievements in anionic polymerization of (meth)acrylates[J].Journal of Polymer Science Part A:Polymer Chemistry. 1999,37(1):1-10
    [60]Zune C,Jerome R. Anionic polymerization of methacrylic monomers:characterization of the propagating species[J].Progress in Polymer Science.1999,24(5):631-664
    [61]Baskaran D. Strategic developments in living anionic polymerization of alkyl (meth)acrylates[J].Progress in Polymer Science.2003,28(4):521-581
    [62]Baskaran D,Muller A H E. Anionic vinyl polymerization-50 years after Michael Szwarc[J].Progress in Polymer Science.2007,32(2):173-219
    [63]Marchal J, Fontanille M,Gnanou Y. New σ-μ ligands for the anionic polymerization of methacrylates in apolar medium[J].Macromolecular Symposia.1998,132(1):249-262
    [64]Varshney S K, Hautekeer J P, Fayt R, Jerome R,Teyssie P. Anionic polymerization of (meth)acrylic monomers.4. Effect of lithium salts as ligands on the "living" polymerization of methyl methacrylate using monofunctional initiators[J].Macromolecules.1990,23(10): 2618-2622
    [65]侯元雪,张洪敏.α-甲基丙烯酸2,3-环氧丙基酯的选择性阴离子聚合[J].高等学校化学学报.1995,16(16):974-977
    [66]Leemans L, Fayt R, Teyssie P, Uytterhoeven H,De Winter W. Controlled "living" anionic polymerization of glycidyl methacrylate[J] Journal of Polymer Science Part A:Polymer Chemistry.1990,28(8):2187-2193
    [67]Antoun S, Wang J S, Jerome R,Teyssie P. Anionic polymerization of various methacrylates initiated with LiCl-complexed sBuLi[J].Polymer.1996,37(25):5755-5759
    [68]Zhang H,Ruckenstein E. Graft, Block-Graft and Star-Shaped Copolymers by an in Situ Coupling Reaction[J].Macromolecules.1998,31(15):4753-4759
    [69]Ruckenstein E,Zhang H. Grafting by in situ coupling of epoxy groups of a living copolymer with an anionic living polymer [J] Journal of Polymer Science Part A:Polymer Chemistry.1999,37(1):105-112
    [70]Kokubo H,Watanabe M. Anionic polymerization of methyl methacrylate in an ionic liquid[J].Polymers for Advanced Technologies.2008,19(10):1441-1444
    [71]Kubisa P. Ionic liquids as solvents for polymerization processes-Progress and challenges[J].Progress in Polymer Science.2009,34(12):1333-1347
    [72]Szwarc M. Living polymers and mechanisms of anionic polymerization[M]. Berlin: Springer,1983
    [73]Bywater S. Structure and mechanism in anionic polymerization[J].Progress in Polymer Science.1994,19(2):287-316
    [74]Szwarc M,Van Beylen M. Ionic polymerization and living polymers[M]. New York: Chapman&Hall,1993
    [75]Rivero P,Herrera R. Modeling the kinetics of anionic polymerization in cyclohexane as a non-complexing solvent[J] Journal of Polymer Research.2011,18(4):519-526
    [76]Niu A Z, Stellbrink J, Allgaier J, Willner L, Richter D, Koenig B W, Gondorf M, Willbold S, Fetters L J,May R P. A New View of the Anionic Diene Polymerization Mechanism[J].Macromolecular Symposia.2004,215(1):1-15
    [77]Fetters L J, Balsara N P, Huang J S, Jeon H S, Almdal K,Lin M Y. Aggregation in Living Polymer Solutions by Light and Neutron Scattering:A Study of Model Ionomers[J].Macromolecules.1995,28(14):4996-5005
    [78]Stellbrink J, Willner L, Richter D, Lindner P, Fetters L J,Huang J S. Self-Assembling Behavior of Butadienyllithium Headgroups in Benzene via SANS Measurements[J].Macromolecules.1999,32(16):5321-5329
    [79]Stellbrink J, Willner L, Jucknischke O, Richter D, Lindner P, Fetters L J,Huang J S. Self-Assembling Behavior of Living Polymers[J].Macromolecules.1998,31(13):4189-4197
    [80]Niu A Z, Stellbrink J, Allgaier J, Willner L, Radulescu A, Richter D, Koenig B W, May R P,Fetters L J. An in situ study of the t-butyllithium initiated polymerization of butadiene in d-heptane via small angle neutron scattering and 1H-NMR[J].The Journal of Chemical Physics. 2005,122(13):134906
    [81]Yamauchi K, Hasegawa H, Hashimoto T, Tanaka H, Motokawa R,Koizumi S. Direct Observation of Polymerization-Reaction-Induced Molecular Self-Assembling Process:In-Situ and Real-Time SANS Measurements during Living Anionic Polymerization of Polyisoprene-block-polystyrene[J].Macromolecules.2006,39(13):4531-4539
    [82]Matsuda Y, Nojima R, Sato T,Watanabe H. Reversed Micelle of Polybutadiene Living Anions in Cyclohexane[J].Macromolecules.2007,40(5):1631-1637
    [83]Zhao Y, Tanaka H, Miyamoto N, Koizumi S,Hashimoto T. Combined SANS, SEC, NMR, and UV-Vis Studies of Simultaneous Living Anionic Copolymerization Process:Simultaneous Elucidation of Propagating Living Chains at Three Different Length Scales[J].Macromolecules. 2009,42(5):1739-1748
    [84]Zhao Y, Miyamoto N, Koizumi S,Hashimoto T. Combined SANS, SEC, NMR, and UV-vis Studies of Simultaneous Living Anionic Copolymerization Process in a Concentrated Solution:Elucidation of Building-Up Processes of Molecules and Their Self-Assemblies[J].Macromolecules.2010,43(6):2948-2959
    [85]Oishi Y, Watanabe H, Kanaya T, Kaji H,Horii F. Dynamics of Monofunctional Polybutadienyl Lithium Chains Aggregated in Benzene[J].Polymer Journal.2006,38(3): 277-288
    [86]Li J, Luo S, He W, Zhang G,Wu C. The association of living polystyryllithium in benzene[J].Chinese Journal of Polymer Science.2009,27(3):407-414
    [87]Oishi Y, Matsumiya Y,Watanabe H. Kinetics of Anionic Polymerization of Polybutadienyl Lithium in Benzene: An Osmotic Effect on Propagation Process[J].Polymer Journal.2007, 39(4):304-317
    [88]Van Beylen M,Morita H. Peculiarities of the Anionic Copolymerization of Styrene and Dienes in Non-Polar Solvents with Li+ as Counter-ion mvb[J].Macromolecular Symposia. 2011,308(1):12-16
    [89]Mishima E, Matsumiya Y, Yamago S,Watanabe H. Kinetics of Living Anionic Polymerization of Polystyrenyl Lithium in Cyclohexane[J].Polymer Journal.2008,40(8): 749-762
    [90]管涌,王宁,胡迪航,张晋玉,曹华威,郑安呐.苯乙烯阴离子本体聚合引发剂缔合及其机理的研究[J].中国科学:化学.2012,42(1):1-9
    [91]郑安呐,代文,管涌,郑云龙,危大福.苯乙烯阴离子高温本体聚合引发机理的新发现(一)[J].功能高分子学报.2011,2011(2):109-115
    [92]郑安呐,郑云龙,管涌,代文,李书召.苯乙烯阴离子高温本体聚合引发机理的新发现(二)[J].功能高分子学报.2011,2011(2):116-124
    [93]Miyamoto N, Yamauchi K, Hasegawa H, Hashimoto T,Koizumi S. Aggregation behavior of polyisoprene chain ends during living anionic polymerization as investigated by time-resolved small-angle neutron scattering[J].Physica B:Condensed Matter.2006,385-386, Part 1(0):752-755
    [94]Bywater S. Active Center Aggregation in Lithium-Based Anionic Polymerization. Are Very Large Aggregates Present?[J].Macromolecules.1998,31(18):6010-6013
    [95]Young R N, Fetters L J, Huang J S,Krishnamoorti R. Some light on the concept of unreactivity arising from active center association in anionic polymerizations[J].Polymer International.1994,33(2):217-231
    [96]Margl P. Mechanisms for anionic butadiene polymerization with alkyl lithium speciesl[J].Canadian Journal of Chemistry.2009,87(7):891-903
    [97]周亚红.聚α-氰基丙烯酸乙酯和聚甲基丙烯酸乙酯的制备、表征及其密度泛函理论研究[D].博士,南京:南京理工大学,2004
    [98]Yakimansky A V,Miiller A H E. Quantum-Chemical Study of the Effect of Triethylaluminum on the Chain-End Structure, Reactivity, and Microtacticity of Poly(N,N-dimethylacrylamide) with Lithium Counterion in Nonpolar Solvents[J].Macromolecules.2010,43(15):6337-6342
    [99]Yakimansky A V,Muller A H E. Quantum-Chemical Study of the Effect of Triethylaluminum on the Chain-End Structure and Tacticity of Poly(N,N-dimethylacrylamide) with Lithium Counterion in THF[J].Macromolecules.2006,39(12):4228-4234
    [100]Weiss H, Steiger S, Jungling S, Yakimansky A V,Muller A H E. Quantum-Chemical Study of Structure and Activity of Chain Ends in Metal-Free Anionic Polymerization of Methacrylates[J].Macromolecules.2003,36(9):3374-3379
    [101]Yakimansky A V, Muller A H E,Van Beylen M. Density Functional Theory Study on the Aggregation and Dissociation Behavior of Lithium Chloride in THF and Its Interaction with the Active Centers of the Anionic Polymerization of Methyl Methacrylate and Styrene[J].Macromolecules.2000,33(15):5686-5692
    [102]Yakimansky A V,Muller A H E. Quantum-Chemical (Density Functional Theory) Study of Lithium 2-Methoxyethoxide, Methyl a-Lithioisobutyrate, and Their Mixed Aggregates as Models of the Active Center in the Anionic Polymerization of Methacrylates[J].Macromolecules.1999,32(6):1731-1736
    [103]Weiss H, Yakimansky A V,Muller A H E. Quantum-Chemical Study of the Structure, Aggregation, and NMR Shifts of the Lithium Ester Enolate of Methyl Isobutyrate[J].Journal of the American Chemical Society.1996,118(37):8897-8903
    [104]Matsuda Y, Sato T, Oishi Y,Watanabe H. Association of polybutadiene living anions in cyclohexane[J] Journal of Polymer Science Part B:Polymer Physics.2005,43(12):1401-1407
    [105]Stellbrink J, Allgaier J, Willner L, Richter D, Slawecki T,Fetters L J. Real time SANS study on head group self-assembly for lithium based anionic polymerizations[J].Polymer.2002, 43(25):7101-7109
    [106]Fetters L J, Huang J S, Sung J, Willner L, Stellbrink J, Richter D,Lindner P. Aggregation Behavior of Polymer Chains with Living Anionic Lipophobic Head-Groups[M]. American Chemical Society,1998
    [107]Frischknecht A L,Milner S T. Model for the aggregation state of living anionic polymers[J].The Journal of Chemical Physics.2001,114(2):1032-1050
    [108]Brown T L. On the mechanism of organolithium reactions in hydrocarbon solution[J].Journal of Organometallic Chemistry.1966,5(2):191-194
    [109]Graham G, Richtsmeier S,Dixon D A. Electronic structure of the alkyllithium clusters, (CH3Li)n, n= 1-6, and (C2H5Li)n, n=1-2[J] Journal of the American Chemical Society.1980, 102(18):5759-5766
    [110]黄继红,徐洁.阴离子聚合的分子量分布的动力学分析[J].北京石油化工学院学报.2000,01):71-74
    [111]Maliakal A, Greenaway H, O'Shaughnessy B,Turro N J. Chain Length Dependent Polymer End-End Reaction Rate Constants in the Reaction of Polystyryllithium with a Styrene-Terminated Fluorescent-Labeled Polystyrene[J].Macromolecules.2003,36(16): 6075-6080
    [112]Madani A E, Favier J-C, Hemery P,Sigwalt P. Kinetics of the polymerization of isoprene initiated by a, co-dilithiopolyisoprene in hexane[J].Die Makromolekulare Chemie, Rapid Communications.1990,11(7):329-335
    [113]唐敖庆.高分子反应统计理论[M].北京:科学出版社,1985
    [114]郑昌仁.高聚物分子量及其分布[M].北京:化学工业出版社,1986
    [115]Levresse B, Franta E,Rempp P. Kinetics of anionic polymerization of styrene in tetrahydrofurane[J].European Polymer Journal.1971,7(7):863-868
    [116]Roovers J E L,Bywater S. Kinetics of the anionic polymerization of styrene in benzene. Effect of the alkali-metal counter-ion[J].Transactions of the Faraday Society.1966,62(701-706
    [117]Kim D-M,Nauman E B. Anionic Polymerization of Styrene in a Tubular Reactor [J].Industrial & Engineering Chemistry Research.1999,38(5):1856-1862
    [118]Worsfold D J,Bywater S. Anionic polymerization of styrene:conductivity measurements[J] Journal of the Chemical Society (Resumed).1960,5234-5238
    [119]Worsfold D J,Bywater S. Anionic polymerization of styrene[J].Canadian Journal of Chemistry.1960,38(10):1891-1900
    [120]Alvarino J M, Bello A,Guzman G M. Polymerization kinetics of isoprene initiated by 1,1'-diphenyl-n-hexyl-lithium[J].European Polymer Journal.1972,8(1):53-62
    [121]Hofmans J, Maeseele L, Wang G, Janssens K,Beylen M V. The influence of π-complexing additives on the dissociation of organolithium compounds in non-polar medium: a long time unexplored area in anionic polymerization[J].Polymer.2003,44(15):4109-4115
    [122]Worsfold D J. Anionic copolymerization of styrene and isoprene in cyclohexane[J]Journal of Polymer Science Part A-1:Polymer Chemistry.1967,5(11): 2783-2789
    [123]Johnson A F,Worsfold D J. Anionic polymerization of butadiene and styrene[J] Journal of Polymer Science Part A:General Papers.1965,3(2):449-455
    [124]Litvinenko G. Computational Studies of Polymer Kinetics[M]. Weinheim:John Wiley & Sons,2010
    [125]郑安呐,郑云龙,管涌,危大福,胡福增,王书忠.一种研究高温本体阴离子聚合反应动力学的装置及方法[P].中国:200810201038.X,2008
    [126]王宁.苯乙烯阴离子聚合引发剂缔合以及引发机理的研究[D].硕士,上海:华东理工大学,2012
    [127]陈敏伯.计算化学-从理论化学到分子模拟[M].北京:科学出版社,2009
    [128]帅志刚.理论化学研究进展以及在可持续发展中的应用[J].化学进展.2009, 21(11):2259-2270
    [129]Foresman J B,Frisch A. Exploring Chemistry with Electronic Structure Method[M]. Pittsburgh, PA:Gaussian, Inc 1993
    [130]Thomas L H. The calculation of atomic fields.Proceedings of the Cambridge Philosophical Society[C].1927, pp.542-555
    [131]Fermi E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente[J].Zeitschrift fur Physik.1928,48(1-2):73-79
    [132]Hohenberg P,Kohn W. Inhomogeneous Electron Gas[J].Physical Review.1964,136(3B): 864-871
    [133]Kohn W,Sham L J. Self-consistent equations including exchange and correlation effects[J].Physics Review.1965,140(4A):A1133-1138
    [134]Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics[J].Chemical Reviews.1991,91(5):651-667
    [135]Koch W,Holthausen M C A Chemist's Guide to Density Functional Theory,2nd Edition[M]. Weinheim:Wiley-VCH,2001
    [136]Kohanoff J,Gidopoulos N I. Density Functional Theory:Basics, New Trends and Applications[M]. Chichester:John Wiley & Sons, Ltd,2003
    [137]徐光宪,黎乐民,王德民.量子化学(第2版)--基本原理和从头计算法[M].北京:科学出版社,2009
    [138]Parr R G,Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford: Oxford University Press,1994
    [139]Becke A D. A new mixing of Hartree--Fock and local density-functional theories[J].The Journal of Chemical Physics.1993,98(2):1372-1377
    [140]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J].Physical Review B.1986,33(12):8822-8824
    [141]Lee C, Yang W,Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Physical Review B.1988,37(2):785-789
    [142]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J].The Journal of Chemical Physics.1993,98(7):5648-5652
    [143]王莹.溶剂效应的量子化学研究[D].硕士,成都:四川大学,2006
    [144]Field M J, Bash P A,Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations[J].Journal of Computational Chemistry.1990,11(6):700-733
    [145]马建毅,李娟琴,何荣幸,傅克祥,李象远.电子转移溶剂重组能计算的自洽反应场新方法[J].物理化学学报.2005,21(08):829-833
    [146]蒋华良,陈凯先.溶剂效应量子化学研究进展[J].化学通报.1995,58(4):1-6
    [147]Karelson M M, Katritzky A R, Szafran M,Zerner M C. Quantitative predictions of tautomeric equilibria for 2-,3-, and 4-substituted pyridines in both the gas phase and aqueous solution:combination of AM1 with reaction field theory[J].The Journal of Organic Chemistry. 1989,54(26):6030-6034
    [148]Szafran M, Karelson M M, Katritzky A R, Koput J,Zerner M C. Reconsideration of solvent effects calculated by semiempirical quantum chemical methods[J].Journal of Computational Chemistry.1993,14(3):371-377
    [149]Klamt A,Schuurmann G. COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J] Journal of the Chemical Society, Perkin Transactions 2.1993,0(5):799-805
    [150]Miertus S, Scrocco E,Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects[J].Chemical Physics.1981,55(1):117-129
    [151]Foresman J B, Keith T A, Wiberg K B, Snoonian J,Frisch M J. Solvent Effects.5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations[J].The Journal of Physical Chemistry.1996,100(40): 16098-16104
    [152]Onsager L. Electric Moments of Molecules in Liquids[J] Journal of the American Chemical Society.1936,58(8):1486-1493
    [153]Tapia O,Goscinski O. Self-consistent reaction field theory of solvent effects[J].Molecular Physics.1975,29(6):1653-1661
    [154]Wong M W, Frisch M J,Wiberg K B. Solvent effects.1. The mediation of electrostatic effects by solvents [J] Journal of the American Chemical Society.1991,113(13):4776-4782
    [155]陈兆旭,肖鹤鸣.密度泛函理论和从头算方法对四唑负离子的比较研究[J].高等学校化学学报.1999,20(5):782-787
    [156]Noyes R M. Thermodynamics of Ion Hydration as a Measure of Effective Dielectric Properties of Water [J] Journal of the American Chemical Society.1962,84(4):513-522
    [157]Bucher M,Porter T L. Analysis of the Born model for hydration of ions[J].The Journal of Physical Chemistry.1986,90(15):3406-3411
    [158]Babu C S,Lim C. Solvation free energies of polar molecular solutes:Application of the two-sphere Born radius in continuum models of solvation[J].The Journal of Chemical Physics. 2001,114(2):889-898
    [159]Born M. Volume and heat of hydration of ions[J].Zeitschrift fur Physik.1920,1(0): 45-48
    [160]周亚红,卑凤利,杨绪杰,陆路德,汪信.α-氰基丙烯酸乙酯阴离子聚合的密度泛函理论研究[J].南京理工大学学报(自然科学版).2004,62(24):2369-2373
    [161]周亚红,朱俊武,杨绪杰,陆路德,汪信.正丁基锂引发甲基丙烯酸乙酯阴离子聚合的理论研究[J].南京理工大学学报(自然科学版).2007,31(3):380-384
    [162]曾玉香,王超,卑凤利,杨绪杰,陆路德,汪信.马来酰亚胺阴离子聚合链引发反应机理研究[J].分子科学学报:中英文版.2007,23(1):13-17
    [163]谭姚,李世荣,聂光华,田大听.原子净电荷分布对乙烯基类单体聚合机理的判定[J].湖北民族学院学报(自然科学版).2011,29(1):5-7
    [164]史丰田.等规聚苯乙烯的高真空阴离子合成及其在一体化橡胶中的应用[D].博士,北京:北京化工大学,2011
    [165]Yakimansky A V. Mechanisms of living polymerization of vinyl monomers[J].Polymer Science. Series C.2005,47(7):1-49
    [166]Andre X, Benmohamed K, Yakimansky A V, Litvinenko G I,Muller A H E. Anionic Polymerization and Block Copolymerization of N,N-Diethylacrylamide in the Presence of Triethylaluminum. Kinetic Investigation Using In-Line FT-NIR Spectroscopy[J].Macromolecules.2006,39(8):2773-2787
    [167]Schmitt B, Schlaad H, Muller A H E, Mathiasch B, Steiger S,Weiss H. NMR and Quantum-Chemical Study on the Structure of Ester Enolate-Aluminum Alkyl Complexes as Models of the Active Center in the Anionic Polymerization of Methacrylates in Toluene[J].Macromolecules.1999,32(25):8340-8349
    [168]Schmitt B, Schlaad H, Muller A H E, Mathiasch B, Steiger S,Weiss H. Anionic Polymerization of (Meth)acrylates in the Presence of Tetraalkylammonium Halide-Trialkyl Aluminum Complexes in Toluene.2.(?) NMR and Quantum-Chemical Study on the Structure of Ester Enolate Complexes as Models of the Active Center[J].Macromolecules.2000,33(8): 2887-2893
    [169]Eichkorn K, Treutler O, Ohm H, Haser M,Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290)[J].Chemical Physics Letters.1995,242(6):652-660
    [170]Eichkorn K, Treutler O, Ohm H, Haser M,Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials[J].Chemical Physics Letters.1995,240(4):283-290
    [171]Schafer A, Huber C,Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr[J].The Journal of Chemical Physics.1994,100(8): 5829-5835
    [172]Ming Keong W,Popov A I. Vapor phase osmometric studies of alkali metal salts in acetone and tetrahydrofuran solutions[J].Journal of Inorganic and Nuclear Chemistry.1972, 34(12):3615-3622
    [173]Van Beylen M, Van Lierde P, Zimm B H,Szwarc M. Dual influence of lithium chloride on the reactivity of polystyryllithium in ethereal solvents[J].Macromolecular Rapid Communications.1997,18(2):113-115
    [174]Bhattacharyya D N, Smid J,Szwarc M. A Novel Approach to Studies of Triple-Ion Formation[J] Journal of the American Chemical Society.1964,86(22):5024-5025
    [175]Bhattacharyya D N, Lee C L, Smid J,Szwarc M. Reactivities and Conductivities of Ions and Ion Pairs in Polymerization Processes[J].The Journal of Physical Chemistry.1965,69(2): 612-623
    [176]Yakimansky A, Wang G, Janssens K,Van Beylen M. Influence of π-complexing agents on the anionic polymerization of styrene with lithium as counterion in cyclohexane.2. Quantum-chemical density functional theory calculations[J].Polymer.2003,44(21):6457-6463
    [177]Kwon O, Sevin F,McKee M L. Density Functional Calculations of Methyllithium, t-Butyllithium, and Phenyllithium Oligomers:Effect of Hyperconjugation on Conformation[J].The Journal of Physical Chemistry A.2001,105(5):913-922
    [178]Kaufmann E, Raghavachari K, Reed A E,Schleyer P V R. Methyllithium and its oligomers. Structural and energetic relationships[J].Organometallics.1988,7(7):1597-1607
    [179]Bickelhaupt F M, van Eikema Hommes N J R, Fonseca Guerra C,Baerends E J. The Carbon-Lithium Electron Pair Bond in (CH3Li)n (n= 1,2,4)[J].Organometallics.1996, 15(13):2923-2931
    [180]Quirk R P, Contractor A, Polce M J,Wesdemiotis C. Functionalization and Linking Chemistry of Poly(styryl)lithium with 1,3-Butadiene Diepoxide[J].Macromolecular Chemistry and Physics.2006,207(24):2280-2288
    [181]肖苗苗.端环氧基聚苯乙烯低聚物的合成与研究[D].硕士,上海:华东理工大学,2008
    [182]Gilman H,Haubein A H. The quantitative analysis of alkyllithium compounds [J] Journal of the American Chemical Society.1944,66(9):1515-1516
    [183]Stenmark G A. Argentimetric method of epoxides[J].Analytical Chemistry.1957,29(9): 1367-1369
    [184]Hild G, Lamps J P,Rempp P. Synthesis and characterization of anionic 2,3-epoxypropyl methacrylate polymers and of related random and block copolymers with methyl methacrylate[J].Polymer.1993,34(13):2875-2882
    [185]Fowells W, Schuerch C, Bovey F A,Hood F P. Solvation Control in the Anionic Polymerization of Stereospecifically Deuterated Acrylate and Methacrylate Esters[J] Journal of the American Chemical Society.1967,89(6):1396-1404
    [186]Gatzke A L,Vanzo E. Chain transfer to toluene in n-butyl-lithium initiated polymerization of styrene[J].Chemical Communications (London).1967,22):1180-1181
    [187]Wang L S, Favier J C,Sigwalt P. Chain transfer to toluene in anionic polymerization of styrene[J].Polymer Communications.1989,30(8):248-250
    [188]Fayt R, Forte R, Jacobs C, Jerome R, Ouhadi T, Teyssie P,Varshney S K. New initiator system for the living anionic polymerization of tert-alkyl acrylates[J].Macromolecules.1987, 20(6):1442-1444
    [189]Seebach D. Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures[J].Angewandte Chemie International Edition in English.1988,27(12):1624-1654
    [190]Kunkel D, Muller A H E, Janata M,Lochmann L. The role of association/complexation equilibria in the anionic polymerization of (meth)acrylates[J].Makromolekulare Chemie. Macromolecular Symposia.1992,60(1):315-326
    [191]Anderson B C, Andrews G D, Arthur P, Jacobson H W, Melby L R, Playtis A J,Sharkey W H. Anionic polymerization of methacrylates. Novel functional polymers and copolymers[J].Macromolecules.1981,14(5):1599-1601
    [192]Worsfold D J,Bywater S. Degree of Association of Polystyryl-, Polyisoprenyl-, and Polybutadienyllithium in Hydrocarbon Solvents[J].Macromolecules.1972,5(4):393-397
    [193]Morton M, Fetters L J,Bostick E E. Mechanisms of homogeneous anionic polymerization by alkyllithium initiators [J] Journal of Polymer Science Part C:Polymer Symposia.1963,1(1):311-323
    [194]Bywater S. Anionic polymerization[J].Progress in Polymer Science.1975,4(0):27-69
    [195]Roovers J E L,Bywater S. The Polymerization of Isoprene with sec-Butyllithium in Hexane[J].Macromolecules.1968,1(4):328-331
    [196]Szwarc M. Ionic polymerization fundamentals[M]. New York:Hanser Publishers,1996 [197] Yan D, Ye P,Zhang H. Kinetic model of living ionic polymerization with three active species[J].Science in China Series B:Chemistry.1998,41(3):278-284
    [198]颜德岳,董海.非理想活性聚合反应动力学的一般模型:Ⅰ.稳态理论[J].高分子材料科学与工程.1997,13(2):1-6
    [199]颜德岳,董海.非理想活性聚合反应动力学的一般模型:Ⅱ非稳态理论[J].高分子材料科学与工程.1997,13(3):1-5
    [200]颜德岳,董海,王国明,周志平.非理想活性聚合反应动力学的一般模型:Ⅳ双活性物种体系的非稳态处理[J].科学通报.1998,43(9):943-948
    [201]Korobov V I,Ochkov V F. Chemical Kinetics with Mathcad and Maple[M]. Newyork: Springer,2011
    [202]Jakes J. Kinetic Modelling of Anionic Polymerization Involving a Dynamic Equilibrium between Two Growth Centres with Different Growth Rates[J].Collection of Czechoslovak Chemical Communications.1993,58(10):2349-2361
    [203]Figini V R V. Statistische berechnung uber den wachstumsprozess von polymerketten mit wechselnder aktivitat[J].Die Makromolekulare Chemie.1964,71(1):193-197
    [204]梁俊奇,王庆东.常系数非齐次线性微分方程的一个简捷解法[J].高等数学研究.2002,5(2):14-16
    [205]李国莹,颜德岳,江元生.多官能团活性聚合物的分子量分布[J].同济大学学报(自然科学版).1981,1981(01):23-42
    [206]李洪泊.丁二烯/苯乙烯阴离子溶液连续共聚和研究[D].博士,杭州:浙江大学,2003
    [207]Litvinenko G,Muller A H E. General Kinetic Analysis and Comparison of Molecular Weight Distributions for Various Mechanisms of Activity Exchange in Living Polymerizations[J].Macromolecules.1997,30(5):1253-1266
    [208]Kotoulas C, Krallis A, Pladis P,Kiparissides C. A Comprehensive Kinetic Model for the Combined Chemical and Thermal Polymerization of Styrene up to High Conversions[J].Macromolecular Chemistry and Physics.2003,204(10):1305-1314
    [209]Koizumi T,Kikuchi O. Ab Initio MO Calculations of NMR Spin-Spin Coupling Constants in Methyllithium, tert-Butyllithium, and Methyllithium Oligomers[J]. Organometallics.1995,14(2):987-991
    [210]Pratt L M,Streitwieser A. Ab Initio Analysis of Pentadienyllithium, Pentadienylsodium, and the Pentadienyl Ions[J].The Journal of Organic Chemistry.2000,65(2):290-294
    [211]Ponec R, Roithova J, Girones X, Lain L, Torre A,Bochicchio R. On the Nature of C-Li Bonding in Lithiated Hydrocarbons and Lithiocarbons[J].The Journal of Physical Chemistry A. 2002,106(6):1019-1025
    [212]Jemmis E D,Gopakumar G. The Chemistry of Organolithium Compounds[M]. Chichester, England:John Wiley&Sons,2004
    [213]Gessner V H, Daschlein C,Strohmann C. Structure Formation Principles and Reactivity of Organolithium Compounds[J].Chemistry-A European Journal.2009,15(14):3320-3334
    [214]Sapse A M, Jain D C,Raghavachari K. Lithium Chemistry:A Theoretical and Experimental Overview[M]. New York:John Wiley & Sons,1995
    [215]郑安呐,张健,管涌,胡福增,危大福,王书忠.一种控制阴离子聚合反应的方法[P].中国:ZL200710047817.4,2007
    [216]Zheng A, Zhang J, Guan Y, Hu F, Wei D,Wang S. Method for controlling anionic polymerization[P].PCT:WO2010083657,2010
    [217]Zheng A, Zhang J, Guan Y, Hu F, Wei D,Wang S. Method for controlling anionic polymerization[P].United States:US20120116023,2012
    [218]Carvajal A, Liu X-Y, Alemany P, Novoa J J,Alvarez S. Ligand effects and dimer formation in dicoordinated copper(I) complexes[J].International Journal of Quantum Chemistry.2002,86(1):100-105
    [219]Treutler O,Ahlrichs R. Efficient molecular numerical integration schemes [J].The Journal of Chemical Physics.1995,102(1):346-354
    [220]Frisch M J, Trucks G W,Cheeseman J R. Systematic model chemistries based on density functional theory:Comparison with traditional models and with experiment[M]. Amsterdam: Elsevier,1996
    [221]Verstraete P, Deffieux A, Fritsch A, Rayez J C,Rayez M T. Theoretical study of a series of alkyllithium clusters[J]Journal of Molecular Structure:THEOCHEM.2003,631(1-3): 53-66
    [222]Bauer W, Winchester W R,Schleyer P v R. Monomeric organolithium compounds in tetrahydrofuran:tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding[J].Organometallics.1987,6(11):2371-2379
    [223]Khartabil H K, Gros P C, Fort Y,Ruiz-Lopez M F. A Theoretical study on nBuLi/Lithium Aminoalkoxide Aggregation in Hexane and THF[J].Journal of Organometallic Chemistry. 2008,73(23):9393-9402
    [224]Sygula A,Rabideau P W. An ab initio study of the structure of monomeric, unsolvated benzyllithium. Is covalency of the carbon-lithium bond important?[J].Journal of the American Chemical Society.1992,114(3):821-824
    [225]袁协尧,张晋玉,王宁,吴洋,郑安呐.阴离子聚合理论新见解应用于聚异戊二烯结构控制的研究[J].华东理工大学学报(自然科学版).2012,38(4):429-435
    [226]李晨.甲基丙烯酸甲酯阴离子聚合的研究及副反应的控制[D].硕士,上海:华东理工大学,2011
    [227]Pratt L M, Kwon O, Ho T C,Van Nguyen N. A computational study of lithium methoxide mixed aggregates with alkyllithiums[J].Tetrahedron.2008,64(22):5314-5321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700