光学子波并行处理技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文全面系统地阐述了光学子波并行处理技术的基本理论和构成策略。
     深入研究了光学子波并行处理的实现技术及其在图象特征提取、纹理分割和模
     式识别等方面的应用。
     提出光学子波并行处理的基本思路和实现方法,包括阵列器件的组合、空
     分复用、图象缩放旋转与滤波器多楔多环之间的均衡等,其关键是解决二维输
     入图象子波变换输出的四维显示问题。在频域空分复用策略的指导下,构建了
     微光学楔环子波检测系统,研制了集子波滤波、分束和会聚功能于一体的二元
     光学全互连器件,通过仿真和实验证明了器件在特征提取上的有效性。针对器
     件使用中出现的零级谱问题,提出了重新分布输出面滤波图象和增加Dammann
     光栅减轻器件负担两种改进方案。
     首次完整地计算和研究了体全息传统相关和子波相关衍射特性中sinc函数
     对相关输出的调制规律和两个不同扫描记录方向的串扰噪声状况,表明子波变
     换的引入除减小水平方向扫描记录的串扰噪声外,还明显减小了竖直方向扫描
     记录的退化噪声,使并行相关输出由传统相关的一维扩充至二维。提出并比较
     了子波变换与体全息存储的三种结合方式,选择具有最小串扰噪声的“子波特
     征读取子波特征”方式构建了光折变晶体体全息子波相关处理系统。通过实验
     验证了于波变换在改善相关输出质量和提高相关检测准确性方面的重要作用。
     通过对晶体体全息子波相关处理系绞中几个重要问题(并行性能、多通道
     拓展、子波参数选择和抗畸变识别能力)的专题研究和解决;全面提高了系统
     的整体性能和实用效果。提出了系统并行性能的估算方法及相应的提高途径;
     提出了系统的神经网络模型,利用该模型实现了子波滤波器参数的优化设计;
     提出并实现了多输入通道和多子波通道并行处理的新构思和新系统,拓展了系
     统的多通道特性;通过计算和实验对系统的抗畸变能力进行了研究和分析,得
     出提高平移不变性的关键是增大变换透镜的焦距,还提出并实现了一种具有任
     意角度旋转不变性的方案。
     深入研究了光学子波并行处理的后续综合方法。提出模拟退火模糊聚类算
     法实现了纹理图象的精确分割;通过子波展开特征的不同组合来提高识别的缩
     放和旋转不变性。提出并实现了模糊综合评判和模糊均值聚类两种模糊识别方
    
     >
    
    
    法,弥补了光学输出结果精度较低的不足,获得了很好的识别效果。
     运用构建的光电混合型楔环子波检测系统和晶体体全息子波相关处理系统
    进行了纹理分割、关联检索、人身鉴别和车牌识别等方面的应用实验研究。
The fundamental theory of optical wavelet parallel processing and its implementations are systematically described in this dissertation. The techniques for realization of optical wavelet parallel processing are analyzed in detail. The applications in feature extraction, texture segmentation and pattern recognition are explored.
    The basic ideas and methods to realize optical wavelet parallel processing, including combination of array elements, spatial division multiplexing and balance between input image's scale-rotation and multiple wedge-ring filters, are proposed. The key problem of the implementations is to display the 4-D outputs of optical wavelet transform. A micro-optical wedge-ring wavelet detector is constructed by the means of spatial division multiplexing in the frequency domain. A binary optical element with functions of multiple wavelet-filtering, beam splitting and focusing is designed and fabricated. The simulated and experimental results testify the validity in feature extraction with the element. Two improved schemes, redistribution of the outputs and adding a Dammann grating to release the burden of the element, are brought forward to overcome the zero grade spectrum.
    Diffraction properties of conventional correlation and wavelet correlation based on the volume holographic storage are simulated perfectly for the first time. The modulation of sine function and the cross-talk noise on two different recording directions are studied. The cross-talk noise is decreased evidently with the join of wavelet transform in the volume holographic correlation system. The correlation outputs are extended from one dimension to two dimensions. Three combination forms of volume holographic storage and wavelet transform are proposed and compared. A volume holographic wavelet correlation system in a photorefractive crystal based on the combination form named "wavelet extracted features read out wavelet extracted features" is constructed, which has the minimal cross-talk noise. Experiments are performed to validate the importance of wavelet transform for the improvement of the correlation quality and the recognition accuracy.
    Several important issues of the volume holographic wavelet correlation system in a photorefractive crystal are discussed specially to improve the performance of the system. These issues are parallelism, multichannel development, choice of wavelet parameters and recognition invariance. An estimation method and some enhancement
    
    
    
    approaches of the parallelism are proposed. A neural network is designed to optimize parameters of the wavelet filters. Two novel systems to implement the parallel processing of multiple input-image-channels and multiple wavelet-filter-channels are constructed. The invariance of the system is studied by simulation and experiments. It is concluded that the shift invariance can be improved with a bigger focal length of the transform lens, and a scheme with the rotation invariance at any rotation angle is proposed and realized.
    Post-processing methods of the optical outputs are studied thoroughly. A fuzzy c- means clustering algorithm combined with the simulated annealing mechanism is developed for texture segmentation. Different integration forms of the extracted features are used to improve the scale and rotation invariance. A fuzzy synthesis judgement algorithm and a fuzzy clustering recognition algorithm are proposed to improve the recognition performance of the system.
    The applications of the proposed systems in texture segmentation, associative searches, human identification and car plate recognition are performed by experiments.
引文
[1] 张德富.并行处理技术.南京:南京大学出版社,1992.8~13
    [2] 温志庆.光学神经网络几个问题的研究:[博士学位论文].北京:清华大学精仪系,1994.1~18
    [3] 秦秉坤.光计算机.北京:北京理工大学出版社,1989.1~5
    [4] D. Gabor. Theory of communication. J. Inst. Elect. Eng., 1946, 93:429~457
    [5] F.T.S. Yu and G. Lu. Short-time Fourier transform and wavelet transform with Fourier-domain processing. Appl. Opt., 1994, 33(8): 5262~5270
    [6] K.R.Castleman.朱志刚等(译).数字图象处理.北京:电子工业出版社,1998.224~226
    [7] J.M. Combes, A. Grossman and P. Tchamitchin. Wavelets, time-frequency methods and phase space. New York: Springer-Verlag, 1989.68~98
    [8] 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994.1~4
    [9] 赵松年,熊小芸.子波变换与子波分析.北京:电子工业出版社,1996
    [10] I. Daubechies. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
    [11] I. Daubechies. Orthogonal bases of compactly supported wavelets. Commun. on Pure and Appl. Math., 1988, 41: 909~996
    [12] 胡广书.数字信号处理—理论、算法与实现.北京:清华大学电机系,1995.100~103
    [13] H. H. Szu, B. Telfer and J. Garcia. Wavelet transforms and neural networks for compression and recognition. Neural Networks, 1996, 9(4): 695~708
    [14] T. Kugarajah, Q. Zhang. Multidimensional wavelet frames. IEEE Trans. on Neural Networks, 1995, 6(6): 1552~1556
    [15] SY Lee, H. H. Szu. Fractional Fourier transforms, wavelet transforms, and adaptive neural networks. Opt. Eng., 1994, 33(7): 2326~2330
    [16] W. Wang, Z. Bao, Q. Meng, et al. Hand recognition by wavelet transform and neural network. Proc. of SPIE, 1995, 2484:347~353
    [17] C. Lin and S. Wang. Fuzzy modelling using wavelet transforms. Electronics Letters, 1996, 32(24): 2255~2256
    [18] A. Mecocci, P. Gamba, A. Marazzi, et al. Texture segmentation in remote sensing images by means of packet wavelets and fuzzy clustering. Proc. of SPIE, 1995, 2584:142~151
    [19] W. Feng, W. Wang, Y. Yan, et al. Texture segmentation system based on optoelectronic hybrid fuzzy neural network. Yixin Zhong, eds. Proceedings of International Conference on Neural Information Processing. Beijing: Publishing House of Electronics Industry, 1995.2: 745~748.
    [20] W. Qian and L. P. Clarke. Wavelet-based neural network with fuzzy-logic adaptivity for nuclear image restoration. Proc. of the IEEE, 1996, 84(10): 1458~1473
    
    
    [21] E. Freysz, B. Pouligny, F. Argoul, et al. Optical wavelet transform of fractal abbregates. Phys. Rev. Lett., 1990, 64(7): 745~748
    [22] 张继贤,李德仁.影象纹理的多尺度分析.环境遥感,1996,11(1):1~13
    [23] 朱治军,李后强.小波分析在分形科学中的应用.应用基础与工程科学学报,1994,4(2):275~281
    [24] C. P. Veronin, K. L. Priddy, S. K. Rogers, et al. Optical image segmentation using neural-based wavelet filtering techniques. Opt. Eng., 1992, 31(2): 287~294
    [25] H. H. Suz, B. Telfer and S. Kadambe. Neural network adaptive wavelets for signal representation and classification. Opt. Eng., 1992, 31(9): 1907~1916
    [26] H. H. Szu and H. John Caulfield. Special section on wavelet transforms. Opt. Eng., 1992, 31(9): 1823~1916
    [27] Special issue on wavelets and signal processing. IEEE Trans. on Signal Processing, 1993, 40(12)
    [28] Special issue on adaptive wavelet transform. Opt. Eng., 1994, 33(7)
    [29] Special issue on applications of limited-extent waves. Appl. Opt., 1994, 33(8)
    [30] Special issue on wavelets. Proc. of the IEEE, 1996, 84(5)
    [31] D. Mendlovic, I. Ouzieli, I. Kiryuschev, et al. Two dimensional wavelet transform achieved by computer-generated multi-reference matched filter and Dammann grating. Appl. Opt., 1995, 34(35): 8213~8219
    [32] D. Mendlovic and N. Kanforti. Optical realization of the wavelet transform for two-dimentional objects. Appl. opt., 1993, 32(32): 6542~6546
    [33] I. Ouzieli and D. Mendlovic. Two-dimensional wavelet processor. Appl. Opt., 1996, 35(29), 5839~5846
    [34] J. Garcia, Z. Zalevsky, D. Mendlovic. Two-dimensional wavelet transform by wavelength multiplexing. Appl. Opt., 1996, 35(35), 7019~7024
    [35] D. Mendlovic, Z. Zalersky, D. Mas, et al. Fractional wavelet transform. Appl. Opt., 1997, 36(20): 4801~4806
    [36] D. Mendlovic. Continuous two-dimensional on-axis optical wavelet transformer and wavelet processor with white-light illumination. Appl. Opt., 1998, 37(8): 1279~1282
    [37] G. Shabtay, D. Mendlovic and Z. Zalevsky. Optical implementation of the continuous wavelet transform. Appl. Opt., 1998, 37(14): 2964~2966
    [38] L. K. Shark and D. Qi. Approach to wavelet transform implementation: wavelet- like filter banks. Electronics Letters, 1997, 33(24): 2011~2012
    [39] R. A. Maestre, J. Garcia and C. Ferreira. Pattern recognition using sequential matched filtering of wavelet coefficients. Opt. Comm., 1997, 133(1-6): 401~414
    [40] R. Tripathi, J. Joseph and K. Singh. Pattern discrimination using wavelet filters in a photorefractive joint-transform correlator. Opt. Comm., 1997, 143(1/3): 5~10
    [41] O. Rioul and P. Duhamel. Fast algorithms for discrete and continue wavelet transforms. IEEE Trans. Information Theory, 1992, 38(2): 569~586
    [42] C. Chakrabarti, M. Vishwanath and R.M. Owens. Architectures for wavelet transforms: A survey. Journal of VLSI Signal Processing Systems for Signal Image and Video Technology, 1996, 14(2): 171~192
    
    
    [43] L. Onural. Diffraction from a wavelet point of view. Opt. Lett., 1993, 18(11): 846~848
    [44] M. Friedmann, T. Kotzer and J. Shamir. High-resolution surface reconstruction using optically measured Gabor expansion coefficients. Opt. Eng., 1997, 36(7): 2068~2073
    [45] J. M. Florence and L. A. Yoder. Display system for digital micromirror device (DMD) based projectors. Proc. of SPIE, 1996, 2650:193~208
    [46] 宋菲君,S.Jutamulia.近代光学信息处理.北京:北京大学出版社,1998.208~214
    [47] D. Casasent, J. Smokelin and A. Ye. Wavelet and gabor transforms for detection. Opt. Eng., 1992, 31(9): 1893~1898
    [48] A. Ye and D. Casasent. Morphological and wavelet transforms for object detection and image processing. Appl. Opt., 1994, 33(5): 8226~8239
    [49] D. Casasent and J. Smokelin. Real, imaginary and clutter Gabor filter fusion for detection with reduced false alarms. Opt. Eng., 1994, 33(7): 2255~2263
    [50] X. Yang, H. H. Szu, Y. Sheng, et al. Optical Haar wavelet transform of binary iamges. Opt. Eng., 1992, 31(9): 1846~1851
    [51] W. Wang, G. Jin, Y. Yan, et al. Joint wavelet transform correlator for image features extraction. Appl. Opt., 1995, 34(2): 370~376
    [52] 王文陆,严瑛白,金国藩,等.光学多通道纹理分割技术.红外与毫米波学报,1996,15(2):145~150
    [53] T. P. Weldon, W. E. Higgns and D. F. Dunn. Gabor filter design for multiple texture segmentation. Opt. Eng., 1996, 35(10): 2852~2863
    [54] S.J. Schiff. Resolving time-series structure with a controlled wavelet transform. Opt. Eng., 1992, 31(11): 2492
    [55] S.J. Schiff, J. Milton, J. Heller, et al. Wavelet transforms and surrogate data for electroencephalographic spike and seizure localization. Opt. Eng., 1994, 33(7): 2162~2169
    [56] K. M. Iftekharuddin, T. D. Schechinger and K. Jemili. Feature-based neural wavelet optical character recognition system. Opt. Eng., 1995, 34(11): 3193~3199
    [57] 王君,王汝笠,华铁均,等.光学FT和子波变换在指纹实时识别中的应用研究.红外与毫米波学报,1996,15(1):55~59
    [58] G. R. Barrett, T. G. Clapp, K. J. Titus. On-line fabric classification technique using a wavelet-based neural network approach. Textile Research Journal, 1996, 66(8): 521~528
    [59] A. Harr. Zur theorie der orthogonalen funktionen-systeme. Math. Annal., 1910, 69:331~371
    [60] A. Grossman and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 1984, 15: 723~736
    [61] C. K. Chui. An introduction to wavelets. San Diego: Academic Press, 1992
    [62] Y. Meyer. Wavelets: algorithms & applications, society for industrial and applied mathematics. Philadelphia: PA, 1993
    
    
    [63] 王文陆.光学子波变换及其在图象处理中的应用:[博士学位论文].北京:清华大学精仪系,1995.20~40
    [64] 宋菲君,S.Jutamulia.近代光学信息处理.北京:北京大学出版社,1998.147~151
    [65] H.H. Suz, Y. Sheng and J. Chen. Wavelet transform as a bank of the matched filters. Appl. Opt., 1992, 31(7): 3267~3277
    [66] Y. Sheng, D. Roberge and H. H. Szu. Optical wavelet transform. Opt. Eng., 1992, 31(9): 1840~1845
    [67] K. R. Castlemal.朱志刚等(译).数字图象处理.北京:电子工业出版社,1998.269~299
    [68] A. K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 1991, 24(12): 1167~1186
    [69] T. P. Weldon, W. E. Higgins and D. F. Dunn. Gabor filter design for multiple texture segmentation. Opt. Eng., 1996, 35(10): 2852~2863
    [70] A. Haar. Zur Theories der orthogonalen funktionen systeme. Math. Ann., 1910, 69:331~371
    [71] W. Wang, G. Jin, Y. Yan, et al. Image Features Extraction with Optical Haar Wavelet Transform. Opt. Eng., 1995, 34(4): 1238~1242
    [72] T. J. Burns, K. H. Fielding, S. K. Rogers, et al. Optical Haar Wavelet transform. Opt. Eng., 1992, 31(9): 1852~1858
    [73] F. T. S. Yu and S. Jutamulia. Hybrid-optical signal processing. K. Chang (Ed.). Optical signal processing, computing and neural networks. New York: Wiley, 1992. 203~248
    [74] R. Tripathi and K. Singh. Pattern discrimination using a bank of wavelet filters in a joint transform correlator. Opt. Eng., 1998, 37(2): 532~538
    [75] M. R. Turner. Texture discrimination by Gabor functions. Biol. Cybern, 1986, 55:71~82
    [76] A. C. Bovik, M. Clark and W. S. Geisler. Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12: 55~73
    [77] R. K. Martinet, J. Morlet and A. Grossmann. Analysis of sound pattern through wavelet transforms. J. Patt. Rec., Artificial Intell. 1987, 1(2): 273
    [78] R. Nararro and A. Tabernero. Gaussian wavelet transform: two alternative fast implemetations for images. M. A. Fiddy and M. Nieto-Vesperinas (Ed.). Optical signal processing: a special issue of multidimentional systems and signal processing. Boston: Klvwer, 1991, 2(4): 421~436
    [79] Z. He, M. Honma, S. Masuda, et al. Optical Haar wavelet transforms with liquid crystal elements. Japanese Journal of Applied Physics, 1995, 34(12A): 6433~6438
    [80] Y. Itoh, C. Hiraide, K. Kodate, et al. Applications of high-resolution active-matrix liquid crystal spatial light modulators to parallel optical processing. Proc. of SPIE, 1994, 2175:200~207
    [81] K. Hirokawa, K. Itoh and Y. Ichioka. Optical wavelet processor by holographic bipolar encoding and joint-transform correlation. Appl. Opt., 1997, 36(5): 1023~1026
    
    
    [82] P. G. Block, S. K. Rogers and D. W. Ruck. Optical wavelet transforms from computer-generated holography. Appl. Opt., 1994, 33(23): 5275~5278
    [83] J. Joseph, T. Oura and T. Minemoto. Optical implementation of a wavelet transform by the use of dynamic holographic recording in a photorefractive material. Appl. Opt., 1995, 34(20): 3997~4003
    [84] C. Decusatis, J. Koay and P. Das. Hybrid optical implementation of discrete wavelet transforms: a tutorial. Optics & Laser Technology, 1996, 28(2), 51~58
    [85] J. Li, Y. Zhang and J. Hu. Object recognition with a wavelet transform based joint transform correlator. Opt. Eng., 1996, 35(3): 775~777
    [86] Y.L. Sheng and D. Roberge. Optical wavelet matched filters for shift-invariant pattern recognition. Opt. Lett., 1993, 18(4): 299~301
    [87] 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990
    [88] 阎平凡,黄端旭.人工神经网络—模型、分析与应用.合肥:安徽教育出版社,1993
    [89] T. Wolf, B. Gutmann, H. Weber, et al. Application of fuzzy-rule-based postprocessing to correlation methods in pattern recognition. Appl. Opt., 1996, 35(35): 6955~6963
    [90] R. J. Offen. 许耀昌等(译).图象的并行处理技术.北京:科学出版社,1989.179~181
    [91] 李学干,徐甲同.并行处理技术.北京:北京理工大学出版社,1994.4~9
    [92] 金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社,1998
    [93] M. O. Freeman, A. Fedor, B. Bock, et al. Optical wavelet processor for producing spatially localized ring-wedged-type information. Proc. of SPIE, 1992, 1772:241~250
    [94] Y. Sheng, T. Lu and D. Roberge. Optical N~4 implementation of a twodimensional wavelet transform. Opt. Eng., 1992, 31 (9): 1859~1864
    [95] M. Wen, S. Yin, P. Purwardi, et al. Wavelet matched filtering using a photorefractive crystal. Opt. Comm., 1993, 99:325~330
    [96] F. T. S. Yu, S. Wu, A. W. Mayers, et al. Wavelength multiplexed reflection matched spatial filters using LiNbO_3. Opt. Comm., 1991, 81(6), 343~347
    [97] J. Rodolfo, H. Rajbenbach and J-P. Huignard. Performance of a photorefractive joint transform correlator for fingerprint identification. Opt. Eng., 1995, 34(4), 1166~1171
    [98] Joewono widjaja and Yasuo Tomita. Optical wavelet-matched filtering by fourwave mixing in photorefractive media. Opt. Comm., 1995, 117(1/2): 123~126
    [99] Joby Joseph, Takayasu Oura and Takumi Minemoto. Optical implementation of a wavelet transform by the use of dynamic holographic recording in a photorefractive material. Appl. Opt., 1995, 34(20): 3997~4003
    [100] 康辉等.利用光折变全息术实现的光学子波变换.中国激光,1996,23(1):741~744
    [101] W. Feng, Y. Yan, G. Jin, et al. Wedge-ring wavelet detector. Proc. of SPIE, 1998, 3558:535~541
    
    
    [102] W. Feng, Y. Yan, G. Huang, et al. Microoptical multiwavelet element for hybrid texture segmentation processor. Opt. Eng., 1998, 37(1): 185~188
    [103] W. Feng, G. Huang, Y. Yan, et al. Multichannel wavelet correlators by the use of associative storage in a photorefractive material. Proc. of SPIE, 1998, 3554: 149~154
    [104] G. Huang, W. Feng, Y. Yan, et al. Micro-binary element for optical wavelet. Proc. of SPIE, 1997, 3224:52~59
    [105] W. Feng, Y. Yan, G. Jin, et al. Texture information processing system with binary optical wavelet element. Proc. of SPIE, 1996, 2866:84~89
    [106] 严瑛白,冯文毅,金国藩,等.微光学视网膜器件与光学子波纹理图象分割.仪器仪表学报,1996,17(zl):114~117
    [107] 航天工业部二零七所.现代光学实验系统产品设计说明书,北京:航天工业部二零七所
    [108] 李晓春.晶体大容量体全息数据存储:[博士学位论文].北京:清华大学精仪系,1998.1~6
    [109] J. P. van Heerden. Theory of optical information storage in solids. Appl. Opt., 1963, 2(4): 393~400
    [110] F. H. Mok, Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett., 1993, 18(11): 915~917
    [111] K. Curtis and D. Psaltis. Cross talk in phase encoded holographic memories. J. Opt. Soc. Am. A, 1993, 10(12): 2547~2550
    [112] G. Barbastathis, M. Levene and D. Psaltis. Shift multiplexing with spherical reference waves. Appl. Opt., 1996, 35(4): 2403~2417
    [113] C. Gu, H. Fu and J. R. Lien. Correlation patterns and cross-talk noise in volume holographic optical correlators. J. Opt. Soc. Am. A, 1995, 12(5): 861~868
    [114] J. D. Jackson. Classical Electrodynamics. New York: Wiley, 1975, 427~432
    [115] H. Lee, X. G. Gu and D. Psaltis. Volum holographic interconnections with maximal capacity and minimal cross talk. J.Appl. Phys., 1989, 65:2191~2193
    [116] X. Li, Q. He, M. Wu, et al. Diffraction properties of a volume hologram with spherical reference beams. Opt. Comm., 1998, 149:13~18
    [117] X. Li, M. Wu, Y. Yan, et al. Dynamic range metric for a photorefractive crystal in a volume holographic memory system. Opt. Comm., 1997, 138:143~150
    [118] Y. S. Bai, R. R. Neurgaonkar and R. Kachru. High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers. Opt. Lett., 1997, 22(5): 334~336
    [119] M-P. Bernal, G. W. Burr, H. Confal, et al. Holographic data storage materials. MRS Bulletin, 1996, 9:51~59
    [120] A. Pu, K. Curti and D. Psaltis. Exposure schedule for multiplexing holograms in photopolymer films. Opt. Eng., 1996, 35(10): 14~35
    [121] A. Pu, R. Denkewalter and D. Psaltis. Real-time vehicle navigation using a holographic memory. Opt. Eng., 1997, 36(10): 2737~2746
    [122] 冯文毅,严瑛白,金国藩,等.体全息子波相关系统并行性的研究.光子学报(已录用)
    
    
    [123] 严瑛白.应用物理光学.北京:机械工业出版社,1990
    [124] 冯文毅,严瑛白,金国藩,等.多输入通道体全息子波相关系统.中国激光(已录用)
    [125] R. A. Maestre, J. Garcia and C. Ferreira. Pattern recognition using sequential matched filtering of wavelet coefficients. Opt. Comm., 1997, 133(1/3): 401~414
    [126] B. V. K. Vijaya Kumar and L. Hassebrook, Performance measures for correlation filters. Appl. Opt., 1990, 29(20): 2997~3005
    [127] D. P. Casasent. Neural net design of macro Gabor wavelet filters for distortioninvariant object detection in clutter. Opt. Eng., 1994, 33(7): 2264~2271
    [128] 蔡大用.高等数值分析.北京:清华大学应用数学系,1995
    [129] F. T. S. Yu and S. Yin. Bragg diffraction-limitted photorefractive crystal-based correlation. Opt. Eng., 1995, 34(8): 2224~2231
    [130] C. Gu, J. Hong and S. Campbell. 2-D shift-invariant volume holographic correlator. Opt. Comm., 1992, 88:309~314
    [131] Z. Wen and X. Yang. Multichannel photorefractive correlator for rotationinvariant optical pattern recognition. Opt. Comm., 1997, 135:212~216
    [132] X. L. Lisa and G. Beni. A validity for fuzzy clustering. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1991, 13(8): 841~847
    [133] 冯德益,楼世博,等.模糊数学方法与应用.北京:地震出版社,1988
    [134] 冯晋臣,季静秋,曹立宏,等.模糊模式识别.河北:河北科学技术出版社,1985
    [135] 杨松林.工程模糊论方法及其应用.北京:国防工业出版社,1996
    [136] W. Pedrycz. Fuzzy sets in pattern recognition:Methodology and Methods. Pattern Recognition, 1990, 23 (1/2): 121~146
    [137] 湖南省地质矿产局.湖南岩石结构图册,长沙:湖南科学技术出版社,1984
    [138] 王新梅.纠错码与差错控制.北京:人民邮电出版社,1989
    [139] B. J. Goertzen and P. A. Mitkas. Volume holographic storage for large relational databases. Society of Photo-Optical Instrumentation Engineers, 1996, 35(7): 1847~1853
    [140] A. K. Jain, L. Hong, S. Pankanti, et al. An identity-authentication system using fingerprints. Proc. of the IEEE, 1997, 85(9): 1365~1375
    [141] B. M. Mehtre. Fingerprint image analysis for automatic identification. Machine Vision and Appl., 1993, 6:124~139
    [142] 冯文毅,黄高贵,严瑛白,等.多通道体全息子波相关器及其在指纹识别中的应用.光学学报,2000,20(1)(已录用)
    [143] A. Stollfuss, S. Teiwes and F. Wyrowski. Computer-generated optical multiwavelet filters for hybrid image-classification systems. Appl. Opt., 1995, 34(23): 5179~5187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700