基于图像稀疏表示的红外小目标检测与跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,红外设备和红外技术得到了越来越广泛的应用,红外图像的处理与识别随之也扮演越来越重要的角色。在红外图像中目标距离较远且噪声干扰较大,对红外小目标的检测和跟踪技术提出了巨大的挑战。
     近年来,伴随着压缩传感的兴起,稀疏表示理论作为压缩传感的基础也受到了广泛的关注。它不再受限于传统的傅里叶变换、小波变换等对于基函数的构造,而是采用冗余的超完备字典来实现对信号的表示。在超完备字典中,基原子的个数总是大于它自身的维数,因此寻找采用最少的基原子来对信号进行最优表示的方法,即稀疏表示应运而生。虽然稀疏表示的理论仍然在进一步的探索和完善中,但是其在信号处理领域的应用已经收获了许多优秀的成果,展现出了未来发展的巨大潜能。
     本文正是基于上述背景,采用基于图像稀疏表示的技术对红外小目标检测和跟踪进行了深入的研究。在前人对于红外小目标研究的基础上,本文进一步提出了新的检测和跟踪算法:
     1.采用图像稀疏表示理论来获得待测子图像块在超完备字典下的稀疏表示系数,其中超完备字典由修正高斯灰度模型建立。由于目标子图像块和背景子图像块在稀疏域中表现出显著的差异性,因此通过评估整幅图像的稀疏集中程度可以获得图像中目标分布的描述。最终通过简单的阈值操作就可以分离出所需的目标集,提高了红外小目标检测性能。
     2.更进一步地,对于稀疏表示理论中字典构造进行了研究,利用字典学习的方法成功获得了最优表示的红外小目标字典。基于该最优字典可以获得目标子图像在稀疏域中的最优表示,从而能够十分精确地重建图像。因此,对于重建后的残差图像进行分析就可以高效地抑制背景中的杂波和噪声,提高图像的信噪比。
     3.基于上述稀疏表示在红外目标检测中表现出的对噪声抗干扰能力较强和对遮挡的不敏感性,在粒子滤波的框架下提出了对红外目标进行跟踪的方法。该方法通过构建目标子空间和表示噪声与遮挡的平凡子空间,利用稀疏表示作为目标观测模型,提高了对目标描述的鲁棒性;同时,采用在线学习的方法对目标子空间进行更新,使其进一步适应背景中光照等因素引起的变化,提升了跟踪算法的有效性和稳健性。
With the development of modern science, infrared related techniques have been extensively used and infrared image processing and recognition also play a more and more important role. Because of far distance when equipment capturing object and large noise in the environment, small target detection and tracking is always a challenge area.
     Recently, compressed sensing which is based on sparse representation theory attracts huge attentions. Instead of being constrained to traditional basis construction such as Fourier transform and wavelet transform, sparse representation uses overcomplete dictionary to represent signal. A normal overcomplete dictionary always obtain more atoms than the dimension of itself, and therefore sparse representation search for the least number of atoms in a single representation. Although the theory is still not fully explored and need for further improvement, lots of its applications reach excellent result and imply a promising future.
     Based on such background, this paper approaches small target detection and tracking via sparse representation. The proposed algorithms are as follows:
     1. Apply sparse representation theory to obtain sparse coefficients of testing image based on a small target dictionary built by Modified Gaussian Intensity Model. Then, taking advantage of the difference between representations of target and background sub-images, sparse concentration index can be used to describe target distribution in the image. Finally, a simple threshold can easily reveal target class and improve detection performance.
     2. Furthermore, train an optimal small target dictionary ground on research of dictionary learning. Upon that, the best representation of the dictionary has ability to rebuild image in a high accuracy and similarity. As a result, residual between original and rebuilt image could achive higher signal-to-noise ratio by background and clutter suppression.
     3. Benifit from outstanding antinoise ability and occlusion insensitivity of sparse representation, a new infrared target tracking technique is proposed under particle filter framework. The algorithm employs sparse representation as observation model which is implemented by building target and noise subspace, and successfully enhances object decription outcome. Meanwhile, online learning is used to dynamically update the target subspace in order to adapt to background variation and improve the efficiency and robust of the algorithm.
引文
[1]陈玉波,陈乐,曲长征,石艳霞.红外制导技术在精确打击武器中的应用.红外与激光工程. 2007, 36(z2): 35-38.
    [2]白洪斌,胡凡俊.红外制导技术发展综述.科技信息. 2009, 19: 29.
    [3]范永杰,金伟其,刘崇亮.前视红外成像系统的新进展. 2010, 39(2): 189-194.
    [4]李那,向娅彤.红外对抗技术综述.中国科技博览. 2010, 10: 116-117.
    [5]范晋祥,岳艳军.军用红外成像系统新概念新体制的发展.红外与激光工程. 2011, 40(1): 1-6.
    [6]王鑫.复杂背景下红外目标检测与跟踪算法研究[博士论文].南京:南京理工大学. 2010.
    [7] Wei Zhang, Mingyu Cong, Liping Wang. Algorithm for optical weak small targets detection and tracking: Review[C]. IEEE International Conference on Neural Networks and Signal Processing (ICNNSP). Nanjing, China. 2003, 1: 643-647.
    [8]张惠娟,梁彦,程咏梅,潘泉,张洪才.运动弱小目标先跟踪后检测技术的研究进展.红外技术. 2006, 28(7): 423-430.
    [9]刘瑞明.复杂环境下红外目标检测及跟踪技术研究[博士论文].上海:上海交通大学. 2007.
    [10]侯志强,韩崇昭.视觉跟踪技术综述.自动化学报. 2006, 32(4): 603-617.
    [11]许彬,郑链,王永学,宋承天.红外序列图像小目标检测与跟踪技术综述.红外与激光工程. 2004, 33(5): 482-487.
    [12] Suyog D. Deshpande, Meng H. Er, V. Ronda, Philip Chan. Max-mean and max-median filters for detection of small targets[C], in Signal and Data Processing of Small Targets. Denver, USA. 1999, SPIE 3809: 74-83.
    [13]彭嘉雄,周文琳.红外背景抑制与小目标分割检测.电子学报. 1999, 27(12): 47-51.
    [14]张金锁,宋利权,靳民会,李金宗.基于带通滤波的红外小目标捕获算法研究.红外与激光工程. 2002, 31(4): 294-296.
    [15] L. Yang, J. Yang, K. Yang. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters. 2004, 40(17):1083-1085.
    [16] Spyros Panagopoulos, John J. Soraghan. Small-target detection in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(7): 1355-1361.
    [17] G.-D. Wang, C.-Y. Chen, X.-B. Shen. Facet-based infrared small target detection method[J]. Electronics Letters. 2005, 41(22): 1244-1246.
    [18] Sun-Gu Sun, Dong-Min Kwak, Won Bum Jang, Do-Jong Kim. Small target detection using center-surround difference with locally adaptive threshold[C], in International Symposium on Image and Signal Processing and Analysis (ISPA). Nanjing, China. 2005, 402-407.
    [19]孙殿星,王学伟,周晓东,涂三军.海空背景下确定弱小目标潜在区域的方法.红外技术. 2009, 31(11): 663-667.
    [20] Victor T. Tom, Tamar Peli, May Leung, Joseph E. Bondaryk. Morphology-based algorithm for point target detection in infrared backgrounds[C], in Signal and Data Processing of Small Targets. Orlando, USA. 1993, SPIE 1954: 2-11.
    [21] Zhenfu Zhu, Zhongling li, Haochen Liang, Bo Song, Anjun Pan. Gray-scale morphological filter for small-target detection[C], in Infrared Technology and Applications XXVI. San Diego, USA. 2000, SPIE 4130: 28-34.
    [22]叶斌,彭嘉雄.基于形态学Top-Hat算子的小目标检测方法.中国图像图形学报. 2002, 9(A7): 638-642.
    [23]温佩芝,史泽林,于海斌.基于形态学的海面背景红外点目标检测方法.光电工程. 2003, 30(6): 55-58.
    [24] Jian-Nan Chi, Ping Fu, Dong-Shu Wang, Xin-He Xu. A detection method of infrared image small target based on order morphology transformation and image entropy difference[C], in International Conference on Machine Learning and Cybernetics (ICMLC). Guangzhou, China. 2005, 8:5111-5116.
    [25] Xiangzhi Bai, Fugen Zhou, Ting Jin, Yongchun Xie. Infrared small target detection and tracking under the conditions of dim target intensity and clutter background[C], in Multispectral Image Processing and Pattern Recognition (MIPPR). Wuhan, China. 2007, SPIE 6786: 67862M.
    [26] Xiangzhi Bai, Fugen Zhou. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition. 2010, 43(6): 2145-2156.
    [27] Xiangzhi Bai, Fugen Zhou, Ting Jin. Enhancement of dim small target through modified top-hat transformation under the condition of heavy clutter[J]. Signal Processing. 2010, 90(5): 1643-1654.
    [28]徐军,向健勇,林晓春,周翔.背景预测方法在空中红外弱小目标检测、识别中的应用.西安电子科技大学学报. 1998, 25(4): 471-474.
    [29]朱红,赵亦工.基于背景自适应预测的红外弱小运动目标检测.红外与毫米波学报. 1999, 18(4): 305-310.
    [30] H. Leung, A. Young. Small target detection in clutter using recursive nonlinear prediction[J]. IEEE Transactions on Aerospace and Electronic Systems. 2000, 36(2): 713-718.
    [31] B. S. Denney, R. J. P. de Figueiredo. Optimal point target detection using adaptive auto repressive background prediction[C], in Signal and Data Processing of Small Targets. Orlando, USA. 2000, SPIE 4048: 46-57.
    [32] Meng Li, T. X. Zhang, Z. R. Zuo, X. C. Sun, W. D. Yang. Novel dim target detection and estimation algorithm based on double threshold partial differential equation[J]. Optical Engineering Letters. 2006, 45(9): 090502.
    [33] Biyin Zhang, Tianxu Zhang, Zhiguo Cao, Kun Zhang. Fast new small-target detection algorithm based on a modified partial differential equation in infrared clutter[J]. Optical Engineering. 2007, 46(10): 106401.
    [34]管志强,陈钱,钱惟贤,胡永生.一种背景自适应调整的弱点目标探测算法.光学学报.2007, 27(12): 2163-2168.
    [35] Hong Li, Shaohua Xu, Luoqing Li. Dim target detection and tracking based on empirical mode decomposition[J]. Signal Processing: Image Communication. 2008, 23(10): 788-797.
    [36] Yuan Cao, Ruiming Liu, Jie Yang. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis[J]. Journal of International Infrared Millimeter Waves. 2008, 29(2): 188-200.
    [37]李凡,刘上乾,洪鸣,秦翰林.基于背景预测的红外弱小目标检测新算法.西安电子科技大学学报. 2009, 36(6): 1075-1078.
    [38]李国宽,彭嘉雄.基于小波变换的红外成像弱小目标检测方法.华中理工大学学报. 2000, 28(5): 69-71.
    [39] Ying Wei, Zelin Shi, Haibin Yu. An automatic target detection algorithm based on wavelet analysis for infrared image small target in background of sea and sky[C], in Acquisition, Tracking, and Pointing XVII. Orlando, USA. 2003, SPIE 5082: 123-131.
    [40] Yu-Qiu Sun, Jin-Wen Tian, Jian Liu. Background suppression based-on wavelet transformation to detect infrared target[C], in International Conference on Machine Learning and Cybernetics (ICMLC). Guangzhou, China. 2005, 8: 4611-4615.
    [41] Yu-Qiu Sun, Jin-Wen Tian, Jian Liu. Novel method on dual-band infrared image fusion for dim small target detection[J]. Optical Engineering. 2007, 46(11): 116402.
    [42] B. J. Chambers, W. D. Reynolds, D. S. Campbell, D. K. Fennell, R. Ansari. Wavelet-based target detection using multiscale directional analysis[C], in Automatic Target Recognition XVII. Orlando, USA. 2007, SPIE 6566: 656608.
    [43] Stephen DelMarco, Sos Agaian. The design of wavelets for image enhancement and target detection[C], in Mobile Multimedia/Image Processing , Security, and Applications. Orlando, USA. 2009, SPIE 7351: 735103.
    [44] B. X. Li, S. Haykin. Chaotic detection of small target in sea clutter[C], in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Minneapolis, USA. 1993, 1: 237-240.
    [45] R.-J. Liou, M. R. Azimi-Sadjadi. Dim target detection using high order correlation method[J]. IEEE Transactions on Aerospace and Electronic Systems. 1993, 29(3): 841-856.
    [46] P. B. Chapple, D. C. Bertilone, R. S. Caprari, G. N. Newsam. Stochastic model-based processing for detection of small targets in non-gaussian natural imagery[J]. IEEE Transactions on Image Processing. 2001, 10(4): 554-564.
    [47] S. Leonov. Nonparametric methods for clutter removal[J]. IEEE Transactions on Aerospace and Electronic Systems. 2001, 37(3): 832-848.
    [48] Zhijun Liu, Caoyang Chen, Xubang Shen, Xuecheng Zou. Detection of small objects in image data based on the nonlinear principal component analysis neural network[J]. Optical Engineering. 2005, 44(9): 093604.
    [49] Peng Zhang, Jianxun Li. Neural-network-based single-frame detection of dim spot target in infrared images[J]. Optical Engineering. 2007, 46(7): 076401.
    [50] I. S. Reed, R. M. Gagliardi, H. M. Shao. Application of three-dimensional filtering to moving target detection[J]. IEEE Transactions on Aerospace and Electronic Systems. 1983, 19(6):898-905.
    [51] I. S. Reed, R. M. Gagliardi, L. Stotts. Optical moving target detection with 3-D matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems. 1988, 24(4): 327-336.
    [52] P. L. Chu. Optimal projection for multidimensional signal detection[J]. IEEE Transacations on Acoustics, Speech and Signal Processing. 1988, 36(5): 775-786.
    [53] S. D. Blostein, T. S. Huang. Detecting small moving objects in image sequences using sequential hypothesis testing[J]. IEEE Transactions on Signal Processing. 1991, 39(7): 1611-1629.
    [54] S. Tantaratana, H. V. Poor. Asymptotic efficiencies of truncated sequential tests[J]. IEEE Transactions on Information Theory. 1982, 8(6): 911-923.
    [55] Y. Barniv. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems. 1985, 21(1): 144-156.
    [56] Y. Barniv, O. Kella. Dynamic programming solution for detecting dim moving targets Part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems. 1987, 23(6): 776-788.
    [57]张长城,杨德贵,王宏强.红外图像中弱小目标检测前跟踪算法研究综述.激光与红外. 2007, 37(2): 104-107.
    [58]凌建国.红外目标稳健跟踪和识别研究[博士论文].上海:上海交通大学. 2007.
    [59]杨戈,刘宏.视觉跟踪算法综述.智能系统学报. 2010, 5(2): 95-105.
    [60]王强.图像目标跟踪技术综述,见第二届全国信号处理与应用学术会议论文集.南京,中国. 2008, 271-275.
    [61] Shan Li, M. C. Lee. Fast visual tracking using motion saliency in video[C], in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Honolulu, USA. 2007, I-1073-I-1076.
    [62] C. R. Wren, A. Azarbayejani, T. Darrell, A. P. Pentland. Pfinder: real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(7): 780-785.
    [63] Xiaotong Yuan, Shutang Yang, Hongwen Zhu. Region tracking via HMMF in joint feature-spatial space[C], in IEEE Workshop on Motion and Video Computing (ACVMOT). Breckenridge, USA. 2005, 72-77.
    [64] Alper Yilmaz, Omar Javed, Mubarak Shah. Object tracking: a survey[J]. ACM Computing Surveys (CSUR). 2006, 38(4): 1-45.
    [65] K. Nickels, S. Hutchinson. Model-based tracking of complex articulated objects[J]. IEEE Transactions on Robotics and Automation. 2001, 17(1): 28-36.
    [66] Dae-Sik Jang, Hyung-II Choi. Acitve models for tracking moving objects[J]. Pattern Recognition. 2000, 33(7): 1135-1146.
    [67] S. L. Dockstader, A. M. Tekalp. Multi-view spatial integration and tracking with Bayesian networks[C], in International Conference on Image Processing (ICIP). Thessaloniki, Greece. 2001, 1: 630-633.
    [68] P. Saeedi, P. D. Lawrence, D. G. Lowe. Vision-based 3-D trajectory tracking for unknown environments[J]. IEEE Transactions on Robotics. 2006, 22(1): 119-136.
    [69] Zhichao Chen, S. T. Birchfield. Person following with a mobile robot using binocularfeature-based tracking[C], in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Diego, USA. 2007, 815-820.
    [70] M. T. Chan. Automatic lip model extraction for constraned contour-based tracking[C], in International Conference on Image Processing (ICIP). Kobe, Japan. 1999, 848-851.
    [71] N. Peterfreund. Robust tracking of position and velocity with Kalman snakes[J]. IEEE Transacations on Pattern Analysis and Machine Intelligence. 1999, 21(6): 564-569.
    [72] T. Schoepflin, V. Chalana, D. R. Haynor, Y. Kim. Video object tracking with a sequential hierarchy of template deformations[J]. IEEE Transactions on Circuits and Systems for Video Technology. 2001, 11(11): 1171-1182.
    [73] U. Ozertem, D. Erdogmus. Nonparametric snakes[J]. IEEE Transactions on Image Processing. 2007, 16(9): 2361-2368.
    [74]杨磊.复杂背景条件下的红外小目标检测与跟踪算法研究[博士论文].上海:上海交通大学. 2006.
    [75] Haralick, M. Robert. Digital step edges from zero crossing of second directional derivatives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984, 6(1): 58-68.
    [76] M. M. Hadhoud, D. W. Thomas. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. IEEE Transactions on Circuits and Systems. 1988, 35(5): 485-494.
    [77] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12(7): 629-639.
    [78]曹原.红外图像中弱小目标的检测技术研究[硕士论文].上海:上海交通大学. 2007.
    [79] David S. K. Chan, David A. Langan, Daniel A. Staver. Spatial processing techniques for the detection of small targets in IR clutter[C], in Signal and Data Processing of Small Targets. Orlando, USA. 1990, SPIE 1305: 53-62.
    [80] K. Fukunaga, L. D. Hostetler. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Transactions on Information Theory. 1975, 21(1): 32-40.
    [81] Y. Z. Cheng. Mean shift, mode seeking and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17(8): 790-799.
    [82]程建,杨杰.一种基于均值移位的红外目标跟踪新方法.红外与毫米波学报. 2005, 24(3): 231-235.
    [83]宋新,沈振康,王平,王鲁平. Mean Shift在目标跟踪中的应用.系统工程与电子技术. 2007, 29(9): 1405-1409.
    [84]康一梅,谢晚冬,胡江,黄琪.目标尺度自适应的Mean Shift跟踪算法.兵工学报. 2011, 32(2): 210-216.
    [85] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing. 2002, 50(2): 174-188.
    [86]程建.基于粒子滤波与层级形状描述的红外目标跟踪.系统工程与电子技术. 2011, 33(6): 1217-1220.
    [87]程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪.红外与毫米波学报. 2006, 25(2):113-117.
    [88] Micheal Elad. Sparse and redundant representations: from theory to applications in signal and image processing[M]. Haifa, Israel. Springer, 2010.
    [89] D. L. Donoho, X. Huo. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory. 2001, 47(7): 2845-2862.
    [90] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory. 2006, 52(2): 489-509.
    [91] S. G. Mallat, Zhifeng Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing. 1993, 41(12): 3397-3415.
    [92] J. A. Tropp, A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory. 2007, 53(12): 4655-4666.
    [93] Deanna Needell, Roman Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of computational mathmatics. 2009, 9(3): 317-334.
    [94] D. L. Donoho, Y. Tsaig, I. Drori, J.-L. Starek. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. 2006, preprint.
    [95] I. F. Gorodnitsky, B. D. Rao. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing. 1997, 45(3): 600-616.
    [96] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit[J]. Society for Industrial and Applied Mathematics (SIAM) Review. 2001, 43(1): 129-159.
    [97] E. J. Candes, J. Romberg. l1 -magic: recovery of sparse signals via convex programming. http://users.ece.gatech.edu/~justin/l1magic/
    [98] K. Koh, S.-J. Kim, S. Boyd. L1_ls: simple matlab solver for l1-regularized least squares problems. http://www.stanford.edu/~boyd/l1_ls/
    [99] D. L. Donoho, D. Drori, V. Stodden, Y. Tsaig, M. Shahram. SparseLab: seeking sparse solutions to linear systems of equations. http://sparselab.stanford.edu/
    [100] J. Mairal, F. Bach, J. Ponce, G. Sapiro, R. Jenatton. SPAMS: sparse modeling softwar. http://www.di.ens.fr/willow/SPAMS/
    [101] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Yi Ma. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(2): 210-227.
    [102] R. Rubinstein, A. M. Bruckstein, M. Elad. Dictionaries for sparse representation modeling[J]. Proceeding of the IEEE. 2010, 98(6): 1045-1057.
    [103] E. J. Candes, L. Demanet, D. L. Donoho, L. Ying. Fast discrete curvelet transforms[J]. Multisacale Modeling and Simulation. 2006, 5(3): 861-899.
    [104] M. N. Do, M. Vetterli. Contourlets: A new directional multiresolution image representation[C], in Conference Record of 36th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA. 2002, 1: 497-501.
    [105] Y. M. Lu, M. N. Do. Multidimensional direcional filter banks and surfacelets[J]. IEEETransactions on Image Processing. 2007, 16(4): 918-931.
    [106] E. LePennec, S. Mallat. Sparse geometric image representations with bandelets[J]. IEEE Transactions on Image Processing. 2005, 14(4): 423-438.
    [107] G. Peyre and S. Mallat. Surface compression with geometric bandelets[J]. ACM Transactions on Graphics. 2005, 24(3): 601-608.
    [108] D. Labate, W. Lim, G. Kutyniok, G. weiss. Sparse multidimensional representation using shearlets[J]. Proceeding of SPIE. 2005, 5914: 254-262.
    [109] K. Engan, S. O. Aase, J. Hakon Husoy. Method of optimal directions for frame design[C], in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Phoenix, USA. 1999, 5: 2443-2446.
    [110] S. Lesage, R. Gribonval, F. Bimbot, L. Benaroya. Learning unions of orthonormal bases with thresholded singular value decomposition[C], in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Philadelphia, USA. 2005, 5: 293-296.
    [111] R. Vidal, Y. Ma, S. Sastry. Generalized principal component analysis (GPCA)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(12): 1945-1959.
    [112] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Prcessing. 2006, 54(11): 4311-4322.
    [113] A. Gersho, R. M. Gray. Vector quantization and signal compression[M]. Norwell, USA: Kluwer Academic Publishers. 1991.
    [114] J. S. Liu, R. Chen. Sequential Monte Carlo methods for dynamical systems[J]. Journal of the American Statistical Association. 1998, 93(443): 1032-1044.
    [115] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian non-linear state space models[J]. Journal of Computational Graphical Statistics. 1996, 5(1): 1-25.
    [116] D. A. Ross, J. Lim, R.-S. Lin, M.-H. Yang. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision. 2008, 77(1-3): 125-141.
    [117] Xue Mei, Haibin Ling. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(1): 2259-2272.
    [118] E. Polat, M. Yeasim, R. Sharma. A 2D/3D model-based object tracking framework[J]. Kernel and Subspace Methods for Computer Vision. 2003, 36(9): 2127-2141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700