一维耦合映象格子中参数噪声影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统复杂的终态行为具有普遍性,其中混沌行为很典型。混沌开创了复杂性演化的细致研究,破除了确定性演化是可预测的传统观念。任何现实系统都会受到噪声的扰动,人们自然要考虑到在噪声扰动下的系统动力学性态。现在人们已经逐渐认识到混沌与噪声之间的一些类似之处,这更激发人们对混沌系统在噪声环境下的性态表现的研究兴趣,特别是具有很强现实意义的时空混沌系统在噪声影响下的表现更加受到了特别关注。本文的工作是以一维耦合映象格子作为研究模型,这是一个被广泛加以研究的时空混沌系统的简化模型,重点考虑了局部动力学参数受到扰动的情况下系统的性态表现,并将之主要应用于目前的混沌同步中,取得了一定阶段性的结果。本文的主要内容如下:
     1、本文首先概述了目前混沌学研究的目前进展,指出对混沌的深入的研究正在促进复杂性科学的形成,并给出了一般性进行混沌研究的基本工具。对于目前混沌应用研究的重要研究领域—混沌控制与同步给予了扼要的介绍,并对目前的噪声在混沌控制与同步的应用给予了较为具体的评述。
     2、考虑一维对称耦合映象格子系统中参数噪声的存在,并给出了具体可能的噪声存在形式,并给予了物理解释。对噪声系统的最大Lyapunov指数的数值计算方法进行了研究。这是判断是否是混沌态
    
    广西大学硕士研究生学位论文
    中文摘要
    的重要判据。分析认为只要噪声系统的MLE小于零,就存在着应用嗓
    声将两个混沌系统驱动同步的可能。
     3、应用了最大幼.pun0Pv指数具体研究了少体和一般的CM工s
    在噪声影响下的系统性态表现,发现了对噪声响应敏感的系统参数区
    域,并重点研究了系统在噪声影响的一些性态表现,发现存在对噪声
    的响应是非平庸的,较为复杂的敏感参数区间。局域噪声基本很难能
    导致系统整体性态的改变,系统具有自发的抵抗噪声的能力。
     4、对于应用参数噪声驱动O旧JS同步作了研究,一定程度上肯定
    了作者对噪声驱动同步的预测,但是具体表现是非平庸的,并非简单
    的由最大切.punov指数唯一的决定,而且还与噪声的负向随机波动
    的幅度有关,负向随机波动越大,则越有可能获得同步,在这个过程
    中,同步偏差逐渐显示出结构,这反映系统趋向于越来越有序。同时
    考察了徽小噪声对系统的性态的迁移控制作用。
     5、初步探讨了同步的具体过程,发现全局随机同步过程是一种渐
    进的过程,同步过程首先出现局域格点同步或局域格点集团(cl uster)
    同步。发现全局非同步下的局域同步,但是在一定的精度要求内。同
    时还发现存在噪声影响下的更弱的一种同步,局域随机相同步,即只
    有对应的格点之间的相位保持一致,但是状态值不相同。同时对局域
    格点的稳定性进行了初步讨论,利用本文定义的局域稳定指数,可以
    有效地预侧出噪声环境下局域格点的演化性态。
     本文获得了一些关于系统性态是如何响应噪声的影响的有价值
    的结果,并且应用噪声对CML召的控制与同步进行了探究碍到了阶
    
    广西大学硕士研究生学位论文
    中文摘要
    段性的成果。关于噪声驱动同步的内在机制以及局域同步和局域相同
    步的特性量的刻画和预侧尚在进一步深入的研究中。
    本文的工作受助于国家自然科学基金。(基金批准号:10147201)
The complicated long-term state is very common in the nature systems of which chaos is very typical. Chaos initiates meticulous study of the complicated evolutive behavior and explodes the traditional concept of being forcasted to the determinate evolvement. As any system in the reality exists in the noise surroundings, we should take the affect of noise very seriously if the noise is inevitable and continual. Now it has been already realized that there is some similarity between noise and chaos . People has the great interest to the noise affect on the chaos systems, especially the noise affect on the Spatiotemporal chaos.
    Taken the one-dimensional coupled map lattices(CMLs) which is introduced as a simple model with the essential features of spatiotemporal systems as our study model, the affect of parameter noise on one-dimensional coupled map lattices and stochastic synchronization has been studied in this paper. The main results are listed as follows:
    1 In the first section we summarize the progress in the chaos study and point out that study of chaos deeply is promoting the formation of the complex science. The basic tools for the study of chaos and the important
    field of chaos application-chaos control and synchronization are
    
    
    
    introduced compactly. At the same time , we emphases expatiating the application of the noise affect on chaos control and synchronization.
    2 The parameter noise existing in the one-dimensional coupled map lattices is considered and different kinds of noise are gived. The numerical computation of The Maximum Lyapunov Exponent (MLE) has been studied which decided whether the system exists in the chaos state. We analyze that if the MLE of random CMLs is negative, there exits the possibility of driving the two CMLs to synchronize.
    3 we take the CMLs of few-body and many-body as our study model. The change of state of CMLs under the noise affect by the MLE is studied and we found there exit systems parameter fields very sensitive to noise which show complicated behavior. Local noise is very difficult to change the state of whole system which has the ability of standing against the noise spontaneously.
    4 we study the synchronization of CMLs under the noise driving and support our forecast to some extent which also express the complicated behavior. The synchronization is not only decided by the MLE ,but also decided by the range of the random negative fluctuation . The possibility for synchronization of CMLs will increase with the enlarge the negative random fluctuation range. During this course, synchronization windage will show the structure along the time steps, it means systems tend to order little by little. We also find the little noise can induce the CMLs to
    
    periodic state or chaos.
    5 we study the synchronization process and find the global synchronization is a gradual process that the local synchronization or cluster synchronization appear firstly. In the some limited precision, we can find the local synchronization in the loss of synchronization of whole CMLs systems. At the same time ,it exits a weaker local synchronization-local phase synchronization which means the phase of corresponding lattices is locked, but state variable is different. Further more ,the stability of the local lattice is probed into and the long-term evolutive behavior of the local lattice in the noise surroundings can be forecast effectively through the local characteristic exponent defined by this article.
    This article obtained some results of the CMLs how to response the parameter noise .At same time, the synchronization under the parameter noise driving can be obtained through this article study . The inherent mechanism about the synchronization under the parameter noise driving and local synchronization phase synchronization will need to farther study deeply.
    This Project is supported by the National Natural Science Foundation (Grant No.10147201)
引文
[1] 郝柏林.分岔,混沌奇怪吸引子,湍流及其它[J] 物理学进展,1983(3):329-416.
    [2] E.Ott, Chaos in Dynamical Systems (Cambridge University Press,Cambridge, 1993).
    [3] 王光瑞 陈光旨:非线性常微分方程的混沌运动 广西科学技术出版社 1995
    [4] 陈式刚.映象与混沌.北京:国防工业出版社.1992
    [5] E.Lorenz: Deterministic non-periodic flows,J.Atmosphere science.Vol.20.pp. 130-141,1963.
    [6] I.Priogine, From being to becoming. W.H.Freeman and company, New York, 1980.
    [7] 王梓坤 著:非线性混沌科学及应用 中国科学技术大学出版社 1996
    [8] K. Seki, V. Balakrishnan,and G. Nicolis, Sensitivity to initial conditions in stochastic systems Phys. Rev .E 47(1993) 155-163.
    [9] Beck. C, Roepstoff G. Effect of phase space discretization on the long-time behavior of dynamical systems. Physics D, 1987. 25, 173: 180
    [10] P.-L.shi, D.-H.He,W.Kang et al, Chaoslike behavior in nonchaotic systema at finite computation precision. Phys. Rev .E 63, 046310(2001)
    [11] 刘适达 梁福明 刘式适等 编著 自然科学中的混沌和分形 北京大学出版社 2003
    [12] L.E.Reichl, A Mordern course in Statistical Physics, University of Texas Press, Austin, 1980
    [13] M.J. Feigenbaum, Quantitive universality for a class of nonlinear transformations, J. Stat.Phys., 19(1978)25.
    [14] Y. Pomeau and Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Commum. Math. Phys.,74(1980) 189
    [15] C.Grebogi, E.Ott and J. A. Yorke, Chaotic attractor in crisis, Phys.Ret.Lett., 48(1982) 1507.
    [16] C.Grebogi, E.Ott and J.A.Yorke, Crisis, sudden changes in chaotic attractors, and transient chaos, Physica, 7D(1982) 181.
    [17] Sunghwan .R, Dong-Uk. H and Chil-Min K Phys.Rev.Lett. 85 (2000) 2304
    [18] 杨维明著:时空混沌和耦合映象格子 上海科技教育出版社 1994
    [19] D.Ruelle and F. Takens, on the nature of turbulence. Commun. Math.Phys.20(1971) 167
    [20] G. Nicolis and I.Prigogine, self-organization in Nonequilibrium System, Wiley-Inter Science, New York, 1976
    [21] Lee Smolin, Scientific American, the atoms of space and time. January 2004, p56-65.
    
    
    [22] Kaneko K. period-doubling of kind-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattices. towards a prelude of a "field theory of chaos", Prog.Theor. Phys. 1984(72) 480
    [23] 欧阳颀著,反应扩散系统中的斑图动力学.上海,上海科技教育出版社.2000
    [24] 蔡绍洪 戴陵洪 胡林等,非平衡相变的临界标度理论及普适性.物理学进展.1999.19
    [25] Helbing D, Traffic and related self-driven many-particle systems. Rev. Mod.Phys. 2001, 73, 1067
    [26] Reka Albert and Alber-Laszio Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys.74 (2002) 48-97.
    [27] Wolf A, Swiift J B, Swinney H L,et al. Determining Lyapunov expoent from a time series. Physics,1985 ,D 16: 85.
    [28] S. Boccaletti et al. The synchronization of chaotic systems. Physics Report 329(2000) 103-197.
    [29] S. Boccaletti et al. The control of chaos. theory and applications. Physics Report 366(2002) 1-101.
    [30] L.M. Pecora, T.L.Carroll, Driving systems with chaotic signals. Phys.Rev.A 44(1991) 2374.
    [31] 邹恩 李祥飞 陈建国 编著,混沌控制及其优化应用.长沙,国防科技大学出版社,2002.
    [32] Kutkani J R, Verma R K. Deterministic chaos and long range prediction of Indian summer error in time series.Nature,1990, 334.
    [33] E.Ott, C.Grebogi and J.A.York, Controlling chaos. Phys.Rev.Lett.64(1990) 1196
    [34] 方锦清 非线性系统中混沌的控制与同步及其应用前景(一)、(二)物理学进展 第16卷 第1期、第2期
    [35] A.Hubler, Helv.Phys.ACTA, 1989,62: 343.
    [36] W.L.Ditto, S.N.Rauseo and M.L.Spano, Experimental control of chaos. Phys.Rev.Lett.65(1990)3211
    [37] L.M.Pecora, T.L.Carroll, Synchronization in chaotic systems. Phys.Rev.Lett. 64 (1990) 821
    [38] G. Nitsche,U. Dressler, Physica, D58(1992) 153
    [39] F.J.Romciras, C.Grebogi, E.Ott, etc.,Physica, D58(1992)165
    [40] H.K.Qammar, F.Mossaychi,L.Murply, Dynamical complexity arising in the adaptive control of a chaotic system. Phys. lett. A 1993 (178)279.
    
    
    [41] S.Sinha and D.Biswas, Adaptive dynamics on a chaotic lattice. Phys. Rev. Lett.71 (1993) 2010.
    [42] Rhode M A ,Thooes J, Rollins R W, et al Automated adaptive recursive control of unstable orbits in high-dimensional chaotic systems. Phys. Rev.E ,1996,54: 4880.
    [43] Chen G R 1981 IEEE Trans. Circuits Syst. soc. Newsletter, Match 1998,1
    [44] Chen G. Ueta T. Yet another chaotic attactor, Int .J. Bifurcation chaos. 1999,9(7) 1465-1466.
    [45] E.R.Hunt, Stabilizing high-period orbits in a chaotic system: The diode resonatorPhys. Rev. Lett,67(1991) 1953
    [46] Hunt. E. R. Stabilizing high-period orbits in a chaotic systems: the divide resonator. Phys.Rev.Lett.,1991,67: 1953.
    [47] K.Pyragas. peedictable chaos in slightly perturbed unpredictable chaotic systems. Phys. Lett.A170(1992),and 181(1993)201.
    [48] J.Guemez and M.A.Matias, control of chaos in unidimensional maps. Phys. Lett, A 181 (1993)29.
    [49] M.A.Matias and J.Guemez, Stabilization of chaos by proportional pulses in the system variables. Phys.Rev.Lett.72(1994) 1455.
    [50] Matias M A, Guemez J.Stabilization of chaos by proportional pulees in the system variables. Phys. Rev.Lett, 1994,72: 1455.
    [51] Y.Liu, L.L.Barbosa,J.R.Rios Leite, Phys. Lett.A 1994, 193: 259.
    [52] B.Lima, M. Pettini, Suppression of chaos by resonant parametric perturbations Phys. Rev.A. 41(1990) 726
    [53] Y.Braiman,I.Goldhirsch,Taming chaotic dynamics with weak periodic perturbations Phys.Rev.Lett.66(1991)2545.
    [54] R.Roy, T.W.Murply, Jr.,T.D.Maier, Z.Gills, Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys.Rev. Lett,68(1992) 1259.
    [55] R. Chacón and J. Díaz Bejarano, Routes to suppressing chaos by weak periodic perturbations. Phys.Rev.Lett,71 (1993) 3103.
    [56] S.Krempl,Eiscnhammcr.A.Hubler and G. Mayer-Kress, Optimal stimulation of a conservative nonlinear oscillator: Classical and quantum-mechanical calculationsPhys.Rev.Lett.69(1992)430
    [57] B.B.Plapp and A.Hubler, Nonlinear resonances and suppression of chaos in the rf-biased Josephson junction. Phys.Rev.Lett.65(1990) 2302
    
    
    [58] T.Kapitaniak, L.Kocarev and L.O.Chua, Int.j.of Bif.Chaos,3(1993) 459.
    [59] P.M. Alising, A.Gavriclidcs,Y.Kovanis, Using neural networks for controlling chaos Phys.Rev.E 49(1994) 1225-1231.
    [60] A.Neiman, Synchronizationlike phenomena in coupled stochastic bistable systems Phys. Rev.E 49(1994)3484.
    [61] Maritan A and J.R.Banavar, Chaos, noise, and synchronization. Phys.Rev.Lett. 72 (1994) 1451
    [62] J.Deppisch,H.-U.Bauer and T.GEISEL,Phys.Lett.A 158(1991) 57
    [63] S.Rajasekar, L.Lakshmannan, Int.J.of Bif.Chaos,3(1993) 459.
    [64] G Hu,Y.Zheng and H. A. Cerdeira et al, From Low-Dimensional Synchronous Chaos to High-Dimensional Desynchronous Spatiotemporal Chaos in Coupled Systems Phys.Rev.Lett,85(2000) 3377.
    [65] Hu Gang, He Kaifen, Controlling chaos in systems described by partial differential equations. Phys. Rev. Lett,71 (1993) 3794.
    [66] Hu Gang, Jinghua, Junzhong Yang.et al , Synchronization of spatiotemporal chaos and its applications. Phys.Rev. E .56(1997) 2738.
    [67] D.Auerbach, Controlling extended systems of chaotic elements. Phys. Rev.Lett,72(1994) 1184.
    [68] N.F.Rulkov, M.M.,Sushchik,L.S.Tsimring ,H.D.I.Abarbanel, Phys.Rev. E 51 (1995) 980.
    [69] M.G.Rosenblum. A.S.Pikovisky, J.Kurths, Phase Synchronization of Chaotic Oscillators. Phys. Rev. Lett, 76(1996) 1804.
    [70] M.A.Zaks,E.-H.Park,M.G.Rosenblum,J.Kurths, Alternating Locking Ratios in Imperfect Phase Synchronization. Phys. Rev. Lett, 82(1999) 4228.
    [71] M.G. Rosenblum.A.S.Pikovisky, J.Kurths, From Phase to Lag Synchronization in Coupled Chaotic Oscillators. Phys.Rev. Lett,78(1997) 4193
    [72] Baroni L, Livi R.Transition to stochastic synchronization in spatially extended systems[J]. Phys.Rev.E,2001, 63(3): 036226-1—036226-10.
    [73] K.Pyragas,Phys..Rev.E 54(1996) Weak and strong synchronization of chaos. R4508.
    [74] V.N.Belykh, E.Mosekilde, One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures Phys..Rev.E 54(1996) 3196.
    [75] K.Kaneko," Clustering, Coding, Switching, Hierarchical Ordering, and Control in Network of
    
    Chaotic Elements" Physica 41 D (1990) 137-172
    [76] K.Kaneko, "Globally Coupled Circle Maps", Physica 54 D (1991) 5-19
    [77] K.Kaneko, "Mean field flctuation of a network of chaotic elements", Physica 55 D (1992) 368-384
    [78] K. Kaneko, "Relevance of Clustering to Biological Networks", Physica 75 D (1994) 55-73
    [79] A.Crisanti, M.Falcioni, A.Vulpiani, Broken Ergodicity and Glassy Behavior in a Deterministic Chaotic Map. Phys.Rev.Lett,76(1996) 612.
    [80] M.S.Vieira, A.J.Lichtenberg, Nonuniversality of weak synchronization in chaotic systems. Phys.Rev.E 56(1997) R3741.
    [81] D.H.Zanette,A.S.Mikhalov, Condensation in globally coupled populations of chaotic dynamical systems Phys.Rev.E 57(1998) 276.
    [82] M.Hasler, Yu.Malstrenko, O.Popovich, Simple example of partial synchronization of chaotic systems. Phys. Rev.E 58(1998) 6843.
    [83] A.T.Winfree, Timing of Biological, Scientific American Library,1987.
    [84] S.H.Strogatz, C.M.Marus,R.M.Westervelt, R.E.Mirollo, Simple Model of Collective Transport with Phase Slippage Phys.Rev.Lett,61 (1988) 2380
    [85] 郑志刚著,耦合非线性系统的合作行为与时空动力学.北京,高等教育出版社,2003
    [86] S.H.Strogatz, C.M.Marus,R.M.Westervelt, R.E.Mirollo, Simple Model of Collective Transport with Phase Slippage. Phys. Rev.Lett.61 (1988) 2380-2383.
    [87] S.H.Strogatz, C.M.Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press, 1988.
    [88] Maria de Sousa Vieira, etc., Synchronization of regular and chaotic systems Phys. Rev. A46(1992) R7359.
    [89] Rong He and P.G. Vaidya., Analysis and synthesis of synchronous periodic and chaotic systems Phys. Rev. A46(1992)7387.
    [90] T.L.carroll and L.M.Pecora, Physica, D67(1993) 126.
    [91] H.G.Winful and L.Rahman, Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers.Phys.Rev. Lett. 1990,65: 1575.
    [92] R. Roy and K. Scott Thornburg, Jr. Experimental synchronization of chaotic lasers. Phys. Rev. Lett, 72(1994) 2009.
    
    
    [93] T.Sugawara, etc., observation of synchronization in laser chaos. Phys. Rev.Lett,72(1994) 3505.
    [94] G.V.Osipov, J.Kurths, Regular and chaotic phase synchronization of coupled circle maps Phys. Rev.E65(2002) 016216.
    [95] G. Hu, Y.Zhang and H. A. Cerderira, From Low-Dimensional Synchronous Chaos to High-Dimensional Desynchronous Spatiotemporal Chaos in Coupled Systems Phys.Rev.Lett, 85(2000) 3377.
    [96] K.Pyragas, continuous control chaos by self-controlling feedback. Phys.Lett.A 170(1992) 421
    [97] K.Pyragas and A.Tamasevicius, Experimental control of chaos by delayed self-controlling feeback Phys. Lett.A 180(1993) 99.
    [98] Y.H.Yu,K.Kuak and T.K.Lim, synchronization via small continuous feedback. Phys. Lett. A191(1994) 233.
    [99] G.Hu, J.Xiao,J. Yang et al, Synchronization of spatiotemporal chaos and its applications Phys.Rev.E 56(1997) 2738
    [100] Pikovsky A S, Comment on "Chaos, Noise, and Synchronization" Phys. Rev.Lett. 73 (1994) 2931
    [101] Maritan and Banavar, Maritan and Banavar Reply. Phys.Rev.Lett 73 (1994) 2932
    [102] L.Longa, E.M.F.Curado, and F.A.Oliveira, Roundoff-induced coalescence of chaotic trajectories. Phys.Rev.E 54, R2201 (1996).
    [103] O. E. Rossler, Phys.Lett.A 71(1979) 155
    [104] B.van.der.PolandJ.vander.Mark: Frequency dimultiplicayion, Nature, Vol.20.No.3019,pp. 363-364, 1927
    [105] R.L.Stratonovich: Topic in the theory of random noise , [2, Vols] trans.R.A.Silverman, New York: Gordon and Breach, (1967) .
    [106] C.Nicolis and G.Nicolis: Effective noise of the Lorentz attractor, Physics Review A,Vol.34,No.3,pp.2384-2390, 1986.
    [107] A.S.Pikovsky, Statistic of trajectory separation in noisy dynamical systems, Phys. Lett. A 165(1992) 33-36
    [108] 裴留庆 顾勇 混沌与噪声 电子学报 1991(6):80-90
    [109] 朱位秋,《非线性随机动力学与控制—-Hamilton理论体系框架》,科学出版社 2003
    [110] 刘先斌,陈虬.非线性随机系统的稳定性和分岔研究[J]力学进展,1996,26:437-452
    
    
    [111] Matsamoto K, Tsuda I, Noise-induce order. J Star Phys, 1983,31: 87-106
    [112] Minora Y and Shigeru K Chaos control using noise material Science-Engineering C, 2000,12: 63-66.
    [113] Herzel H, Ebeling W. The decay of correlations in chaotic maps. Phys Lett A, 1985,111: 1-4
    [114] Herzel H, Pompe B. Effects of noise on a nonuniform chaotic map. Phys Lett A,1987,122: 121-125.
    [115] Molgedey L,Schuchart J,Schuster H G. Suppressing chaos in neural networks by noise. Phys. Rev Lett, 1992, 69: 3917-3919.
    [116] S.Rajasekar, L. Lakshmanan, Int.J.of Bif. Chaos,2 (1992)201.
    [117] Herzel H, Ebeling W.Schul meister T. Nonuniform chaotic dynamics of noise in biochemical systems. Z Naturforsch, 1987,42: 136-142
    [118] Herzel H, Stabilization of chaotic orbits by random noise. Z. Angew Math Mech, 68, 1988, 582-583
    [119] R.Benzi,A.Sutera,A.Vulpiani,Tbe mechanism of stochastic resonance J. Phys. A14(1981)L453.
    [120] 胡岗著.随机力与非线性系统.上海,上海科技教育出版社.1994.P144.
    [121] L.Gammaitoni, P. Hanggi, P.Jung, F.Marchesoni, Stochastic resonance Rev. Mod.Phys.70(1998)223.
    [122] Wang Shuanglian, Guo Yimu, Gan Chunbiao. Noise-induce chaotic motion in hamitonion system with slow-varying parameters, A cta Mechanica S inica, 2001,17(3): 281-288.
    [123] Lim.W.Y, Zhu W.Q and Huang. Z.L, Effect of bounded noise on chaotic motion of duffing oscillator under parameter excitation.Chaos-Solition Fractal, 2001,12: 527-537.
    [124] S. Fahy, D. R. Haman, Transition from chaotic to nonchaotic behavior in randomly driven systems. Phys.Rev.Lett 69(1992) 761
    [125] M.A. Munoz and R.P. Satorras, Stochastic Theory of Synchronization Transitions in Extended Systems Phys. Roy. Lett. 90 (2003) 204101
    [126] M. Kardar, G. Parisi and Y.-C.Zhang, Dynamic Scaling of Growing Interfaces Phys. Rev. Lett 56(1986) 889
    [127] Theory and application of cellular automata,ed.S.Wolfram,World Sci.Pub., 1986.
    [128] U. Frisch, B.Hasslacher and Y.Pomeau, Lattice-gas automata for the Navier-Stokes
    
    equation, Phys.Rev.Lett.,56(1986)1505.
    [129] Ippei Shimada and Tomomasa Nagashima, A numerical approach to ergodic problem of dissipative dynamical systems. Prog.Thero.Phys.61 (1979), 1605-1616.
    [130] G. Benettin, L.Galgani,J-M.Strelcyn. Kolmogorov entropy and numerical experiments.Phys.Rev.A 14(1976) 2338-2345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700