高储能密度金属化膜电容器应用性能及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属化膜电容器(Metallized Film Capacitor,MFC)是脉冲功率系统中关键储能器件,其应用性能直接影响到脉冲功率系统的输出技术参数。本文的研究对象是以双向拉伸聚丙烯(Biaxially Oriented Polypropylene,BOPP)作为介质的MFC,针对其应用性能中关键的两个方面——工作寿命和电压保持性能进行了研究,并通过试验和理论分析研究了自愈特性、电导特性、松弛极化特性对MFC应用性能的影响。
     首先,介绍了MFC应用性能试验研究。探讨了MFC工作寿命随工作场强幅值和反峰系数的衰减规律,以及MFC电压在各种工作条件下(包括不同工作场强、工作温度、充电速率和电压保持时间)的损失规律和特征。试验结果表明,MFC工作寿命与工作场强有较大相关性。MFC工作寿命随电场幅值增加而衰减,衰减函数为L/L0=(E/E0)-7.32;MFC工作寿命与反峰系数的关系满足函数式L/L0=(lnβ0/lnβ)-0.7。MFC电压损失的一般规律是在断开充电电源瞬间,电压降落较快,然后下降趋势趋于平缓。当工作场强和工作温度升高,则在相同时间内MFC电压下降加快;当充电速率越慢,电压保持时间越长,则在相同时间内MFC电压损失下降减慢。初步分析认为MFC应用过程中工作寿命衰减、电压损失等现象与自愈特性、电导特性以及松弛极化特性相关。
     其次,研究了高场强下MFC自愈特性。通过对高方阻(Rsq>30Ω/□)结构金属化膜进行了自愈模拟试验。试验结果表明,金属化膜单次自愈能量与电极方阻的二次方呈反比关系;单次自愈清除的电极面积与自愈能量呈正比关系;自愈能量与BOPP膜击穿电压的二次方呈正比关系;自愈能量随层间压强增大而减小。通过自愈能量与BOPP膜击穿电压的关系,建立自愈损耗-工作场强-工作寿命的关联性,推算出MFC工作寿命与工作场强的关系满足L/L0=(E/E0)-m,与试验结果相符。通过自愈能量与层间气隙的关系,提出通过外包膜加强、热定型优化、真空端封和浸渍优化等技术有效抑制外层气隙对MFC自愈的影响,优化自愈性能,使MFC工作寿命分别提高至1.6倍、1.2倍、1.6倍和4.5倍。通过自愈清除电极面积与自愈能量的线性关系,建立了自愈特征参数-电压损失的关联函数,用于计算因自愈损耗能量所导致的MFC电压损失。
     然后,研究了高场强下MFC电导特性。在Poole-Frenkel效应的基础上推导了高场强下BOPP膜电导率与场强、温度的函数关系,然后测试了高场强下BOPP膜电导率。试验结果表明,BOPP膜电导与场强、温度和结晶度相关。当场强低于10V/μm,BOPP膜电导基本保持不变。当场强在10V/μm~100V/μm时,BOPP膜电导率随场强升高而逐渐增大。当场强高于100V/μm时,BOPP膜电导率随场强增大速率明显加快。当场强达到400V/μm时,BOPP膜电导率已接近10-15S/m量级。温度对BOPP膜电导率的影响主要体现在增加初始载流子浓度,即是增加初始电导率。在高场强下(250V/μm~450V/μm),BOPP膜结晶度越高,电导率越低。当结晶度由46%减小至39%,则电导率增大至2~3倍。在试验及理论研究基础上,推导出了电导率与电压损失的关联函数,用于计算因电导损耗所导致的MFC电压损失。
     最后,研究了高场强下MFC松弛极化特性。通过理论分析建立了MFC松弛极化电路模型,然后对高场强下MFC进行了松弛极化电荷量测试。试验结果表明,高场强下MFC松弛极化时间较长,达到几百甚至几千秒;松弛极化的强度与场强相关,场强越高,BOPP膜内部松弛极化强度越高;400V/μm场强下,当MFC极化过程接近稳态,松弛极化电荷与快极化电荷比值ΔQa/Qh≈13.5%。在试验研究及理论分析的基础上,分析了松弛极化对MFC应用性能的影响主要包括引起介质损耗、造成BOPP膜老化击穿、造成MFC电压损失三方面,可以解释反峰系数对MFC工作寿命的影响以及电压损失与充电速率、充电保持时间的关系。基于试验结果拟合得出MFC松弛极化电路参数,计算出因松弛极化损耗导致的MFC电压损失。研究结果表明,在MFC断开充电电源瞬间,由于松弛极化作用电压损失较快;当充电速率减小、充电保持时间延长时,松弛极化造成的MFC电压损失降低,此时MFC电压损失主要由介质泄漏决定。
The metallized film capacitor (MFC) is a key device in pulsed power systems. Theapplication performances of the MFCs should affect the output characteristics of the system.This paper mainly focuses on the application performances of the MFC, including the lifetimecharacteristic and the voltage maintaining performance. Through experimental and theoreticalanalysis, the effects of the self-healing, the electrical conductivity and relaxation polarization onthe application performance are studied.
     Firstly, this paper carries out the experimental investigation on the applicationperformance of MFCs. The experimental results show that the lifetime of MFCs decreaseswith the peak value of charged electric field in high pulsed discharge applications, and thedecreasing function is (L/L0)∞(E/E0)-7.32. And results also reveal that the lifetime of MFCsdecreases with the reversal coefficient in underdamped circuits. The decreasing function is(L/L0)∞[ln(RF0)/ln(RF)]-0.7. These results provide basises for the lifetime prediction ofMFCs applied in high pulsed power systems. In addition, the research results show that theelectric field, operating temperature, charging rate and hold time all play important roles inthe voltage decay process. It can be observed that the general curve of the voltage decay hasa rapid initial drop and then the curve can usually be fitted to a pure exponential function.The higher the electric field or the operating temperature is, the more significant the voltagedecay is. In addition, the faster the charging rate is, the more significant the voltage decay is.But, if the charged voltage is maintained for a specified period of time, the voltage decaywill reduce dramatically. Initial analysis shows that application performances of MFCs arerelated to the self-healing, electrical conductivity and relaxation polarization.
     Secondly, this paper verifies the effects of sheet resistance (Rsq>30Ω/□) and pressurebetween layers on the self-healing characteristic through experiments. The experimentalresults show that the self-healing energy is approximately inversely proportional to thesquare of the sheet resistance, and is approximately proportional to the clearing area of theelectrode and the square of the breakdown voltage. The self-healing energy decreases with the increase of the pressure. Then, the effect of the interlayer air on the discharge arc in theself-healing process is analyzed. Meanwhile, the paper presents that the lifetime can beextended through excluding or decreasing the interlayer air. At last, four methods areprovided: wrap strengthening, heat treatment, end-sealing and impregnation in the vacuum.The experimental results show that the lifetime can be increased up to1.6,1.2,1.6and4~5times respectively through these four methods. Through the linear relationship between theself-healing energy and the clearing area, this paper presents the function of the voltagedecay of MFCs on self-healing energy.
     Thirdly, this paper concentrates on the electrical conduction characteristics of theBOPP films. The conductivity as a function of the electric field and the temperature isdeduced based on the Poole-Frenkel effect and the field-enhanced carrier mobility. Andexperiments are performed to measure the conductivities of the BOPP at different electricfields, temperatures and crystallinities. The results show that conductivities are almost thesame at low fields (lower than10V/μm), and then increase rapidly as the electric fieldincreases but the increasing trend slows down as the electric field is up to400V/μm. Theinfluence of the temperature on the conductivity of BOPP film is mainly reflected on theincrease of the initial conductivity or the carrier concentration. The results also reveal thatconductivity decreases by2~3times as the crystallinity increases from39%to46%.Eventually the voltage decay resulting from the electrical conduction of the BOPP film isderived and calculated on the basis of the electric conduction theory and experimentalresults.
     At last, the relaxation polarization characteristic of MFCs under high electric fields isstudied. The relaxation polarization circuit model of MFCs is established through theoreticalanalysis. And then, the relaxation polarization charge is tested. The experimental resultsshow that the time constant of relaxation polarization reaches hundreds or even thousandsof seconds under high electric fields. The relaxation polarization strength is related to theelectric field. When the polarization process in MFCs is close to the steady-state, the ratioof the relaxation polarization charge and fast polarization charge is about13.5%under400V/μm. On the basis of experimental research and theoretical analysis, this paperpresents the effects of the relaxation polarization on the application performance of MFCs: the dielectric loss, aging and breakdown of the BOPP film, voltage decay. Through thecircuit model analysis, it is revealed that the relaxation polarization does cause the rapidinitial voltage decay. After the static capacitance value has been reached, the voltage decaydue to the leakage is at a much smaller pace, and can usually be fitted as a pure exponentialdecay.
引文
[1]刘锡三.高功率脉冲技术(第2版)[M].北京:国防工业出版社,2007.
    [2]邱毓昌,白峰.利用脉冲功率技术对岩石进行钻孔[J].高压电器.2001,37(2):26~31.
    [3]李冬黎,曹丰文.脉冲功率技术在环境工程领域的应用[J].高电压技术.2002,28(10):35~38.
    [4] Wisken H G, Podeyn F, Weise T H G G. High energy density capacitors for ETC gunapplications [J]. IEEE Transactions on Magnetics,2001,37(1):332~335.
    [5] Slenes K M, Bragg L E. Compact capacitor technology for future electromagneticlaunch applications [J]. IEEE Transactions on Magnetics,2005,41(1):326~329.
    [6] Macdougall F W, Yang X H, Ennis J B, et al. High energy density capacitors for EMLapplications[C].12thSymposium on Electromagnetic Launch Technology, Snowbird,Utah,2004:229~232.
    [7] Dyvik J, Herbig J, Appleton R, et al. Recent Activities in Electrothermal ChemicalLauncher Technologies at BAE Systems [J]. IEEE Transactions on Magnetics,2007,43(1):303~307.
    [8] Arnold P A, Hulsey S D, Ullery G T, et al. An Update on the Status of the NIFPower-Conditioning System [J]. IEEE Transactions on Plasma Science,2008,36(2):383~388.
    [9] Scholz T, Winsor P, Hudis M. Development of a high energy density storage capacitorfor NIF[C].12thIEEE International Pulsed Power Conference, Monterey, CA, USA,1999,1:114~117.
    [10] Smith D L, Hammon J, Wilson J M, et al. FANTM: First Article NIF Test Module [J].IEEE Transactions on Plasma Science,2000,28(5):1316~1323.
    [11] Borelli G, Picci G, Rabuffi M, et al. Metallized BOPP main energy storage andpreionization capacitors for ISKRA-6facility[C].34thIEEE International Conferenceon Plasma Science, Albuquerque, NM,2007:266.
    [12] Newton M A, Fulkerson E S, Hulsey S D, et al. Overview and status of the powerconditioning system for the National Ignition Facility [C]. Pulsed Power PlasmaScience, Las Vegas, NV, USA,2001,1:405~408.
    [13]Macdonald J R, Schneider M A, Ennis J B, et al. High energy density capacitors [C].Electrical Insulation Conference, Montreal, QC,2009:306~309,
    [14] Picci G, Rabuffi M. Pulse handling capability of energy storage metallized filmcapacitors[J]. IEEE Transactions on Plasma Science,2000,28(5):1603~1606.
    [15]林福昌,代新,徐智安,等.高储能密度电容器[J].强激光与粒子束.2003(1):94~96.
    [16]孙权.神光Ⅲ惯性约束聚变激光装置可靠性研究[D].长沙:国防科学技术大学,2005.
    [17] Connolly J, Dunn M. High energy density capacitor development at ABB PowerT&D[C].6th IEEE Conference on Conduction and Breakdown in Solid Dielectrics,Vasteras,1998:110~113.
    [18] Michalczyk P, Bramoulle M. Ultimate properties of the polypropylene film for energystorage capacitors[J]. IEEE Transactions on Magnetics,2003,39(1):362~365.
    [19] Ennis J, Yang X H, Macdougall F, et al. High energy density capacitorcharacterization [C].26thPower Modulator Symposium, San Francisco, CA,2004:68~71.
    [20] Macdougall F, Ennis J, Yang X H, et al. Large high energy density pulse dischargecapacitor characterization [C]. Pulsed Power Conference, Monterey, CA,2005:1215~1218.
    [21] Barshaw E J, White J, Chait M J, et al. High Energy Density (HED)Biaxially-Oriented Poly-Propylene (BOPP) Capacitors For Pulse PowerApplications[J]. IEEE Transactions on Magnetics,2007,43(1):223~225.
    [22] Macdougall F, Ennis J, Yang X H, et al. The development and performance of highenergy density capacitors [C].16th IEEE International Pulsed Power Conference,Albuquerque, NM,2007,1:278~281.
    [23] Macdougall F, Jow R, Ennis J, et al. Pulsed Power Capacitors [C]. IEEE InternationalPower Modulators and High Voltage Conference, Las Vegas, NE,2008:167~169.
    [24]南俊民,杨勇,林祖赓.电化学电容器及其研究进展[J].电源技术.1996(04):152~156.
    [25]张治安,邓梅根,胡永达,等.电化学电容器的特点及应用[J].电子元件与材料.2003(11):1~5.
    [26]陈永真,李锦.电容器手册[M].科学出版社,2008.
    [27] Marbur R E. Power Capacitors [M]. McGraw-Hill Book Co. Inc.,1949.
    [28] Bramoulle M, Marret J P, Michalczyk P, et al. Evolution of the DC Capacitors [C].12thIEEE International Pulsed Power Conference, Monterey, CA, USA,1999,1:106~109.
    [29] Larson D W, Macdougall F W, Yang X H. The Impact of High energy DensityCapacitors with Metallized Electrodes in Large Capacitor Banks for The Impact ofHigh energy Density Capacitors with Metallized Electrodes in Large Capacitor Banksfor Nuclear Fusion Applications [C].9thIEEE Pulsed Power Conference,Albuquerque,NM,1993:735~738.
    [30] Sarjeant W J. Capacitors [J]. IEEE Transactions on Plasma Science.1998,26(5):1368~1392.
    [31] Wisken H G, Weise T H G G. Capacitive pulsed power supply systems for ETC guns[J]. IEEE Transactions on Magnetics,2003,39(1):501~504.
    [32] Lehmann P. Overview of the electric launch activities at the French-GermanResearch Institute of Saint-Louis (ISL)[J]. IEEE Transactions on Magnetics.2003,39(1):24~28.
    [33] Michalczyk P, Bramoulle M. Ultimate properties of the polypropylene film for energystorage capacitors [J]. IEEE Transactions on Magnetics.2003,39(1):362~365.
    [34] Spahn E, Buderer G, Hatterer F. Compact50kJ pulse forming unit, switched bysemiconductors [J]. IEEE Transactions on Magnetics.1995,31(1):78~83.
    [35] Spahn E, Sterzelmeier K, Gauthier-Blum C, et al.50-kJ Ultracompact Pulsed-PowerSupply Unit for Active Protection Launcher Systems [J]. IEEE Transactions onMagnetics.2009,45(1):462~466.
    [36] Ennis J B, Macdougall F W, Yang X H, et al. Recent advances in high voltage, highenergy capacitor technology [C]. IEEE34thInternational Conference on PlasmaScience, Albuquerque, NM,2007:265.
    [37]代新.自愈式高储能密度脉冲电容器的研究[D].武汉:华中科技大学,2002.
    [38]孔中华.金属化膜脉冲电容器若干问题的研究[D].武汉:华中科技大学,2008.
    [39]彭波.金属化膜电容器自愈关键参数研究[D].武汉:华中科技大学,2010.
    [40] Fuchang L, Xin D, Jin L, et al. On the failure mechanism of metallized polypropylenepulse capacitors [C]. Annual Report Conference on Electrical Insulation and DielectricPhenomena,2000,2:592~595.
    [41] Slenes K M, Winsor P, Scholz T, et al. Pulse power capability of high energy densitycapacitors based on a new dielectric material[J]. IEEE Transactions on Magnetics.2001,37(1):324~327.
    [42] Zhang S, Zou C, Zhou X, et al. Polymer film capacitors with high dielectric constant,high capacitance density, and high energy density [C]. IEEE International PowerModulator and High Voltage Conference, Victoria, BC,2010,2:592~595.
    [43]汤清华,潘晓光.高储能密度电容器复合介质材料的研究[J].华中理工大学学报.1996,24(3):64~67.
    [44]黄佳佳,张勇,陈继春.高储能密度介电材料研的究进展[J].材料导报:纳米与新材料专辑.2009(002):307~312.
    [45] Smith N J, Rangarajan B, Lanagan M T, et al. Alkali-free glass as a high energydensity dielectric material [J]. Materials Letters.2009,63(15):1245~1248.
    [46]严璋.金属化膜电容器老化判据的选择[J].电力电容器.1994(2):1~5.
    [47]Tortai J H, Denat A, Bonifaci N. Self-healing of capacitors with metallized filmtechnology: experimental observations and theoretical model [J]. Journal ofElectrostatics.2001,53(2):159~169.
    [48] Tortai J H, Bonifaci N, Denat A. Insulating properties of some liquids after anelectrical arc[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(1):3~9.
    [49]Tortai J H, Bonifaci N, Denat A, et al. Self-healing of aluminium metallizedpolypropylene films: a spectroscopic investigation [C].14th International Conferenceon Dielectric Liquids, Graz, Austria,2002:190~193.
    [50]Walgenwitz B, Tortai J, Bonifaci N, et al. Self-healing of metallized polymer films ofdifferent nature [C]. IEEE International Conference on Solid Dielectrics,2004,1:29~32.
    [51]Reed C W, Cichanowskil S W. The fundamentals of aging in HV polymer-filmcapacitors [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(5):904~922.
    [52] Shaw D G, Cichanowski S W, Yializis A. A changing capacitor technology-failuremechanisms and design innovations [J]. IEEE Transactions on Electrical Insulation.1981(5):399~413.
    [53] Sassoulas P, Gosse B, Gosse J. Self-healing breakdown of metallized polypropylene[C].7th International Conference on Solid Dielectrics, Eindhoven,2001:275~278.
    [54] Xin D, Fuchang L, Jin L, et al. Influence factors for the self-healing of metallizedpolypropylene capacitors[C]. Annual Report Conference on Electrical Insulation andDielectric Phenomena,2000,2:461~465.
    [55] Schneuwly A, Gr O Ning P, Schlapbach L. Uncoupling behaviour of current gates inself healing capacitors[J]. Materials Science and Engineering: B.1998,55(3):210~220.
    [56] Hua L, Yaohong C, Fuchang L, et al. The capacitance loss mechanism of metallizedfilm capacitor under pulsed discharge condition [J]. IEEE Transactions on Dielectricsand Electrical Insulation,2011,18(6):2089~2094.
    [57]金伟山.金属化膜电容器生产中热老练工艺[J].电力电容器.1994(1):26.
    [58]余飞春.金属化膜电容器元件端面质量探求[J].电力电容器.1996(1):25~26.
    [59]林福昌,代新,李劲.改善金属化膜脉冲电容器端部接触的一些探讨[J].高压电器.2003(1):37~39.
    [60]林福昌,徐智安,何磊,等.金属化膜电容器接触电阻的计算[J].高电压技术.2003(1):35~36.
    [61]徐智安.高储能密度脉冲电容器的理论模型与实验研究[D].武汉:华中科技大学,2002.
    [62]吕霏.层间空气对金属化膜电容器工作特性影响的研究[D].武汉:华中科技大学,2012.
    [63] Avx. DISFIM Products[EB/OL]. http://www.avx.com/docs/catalogs/discharge.pdf.
    [64] General Atomics Electronic Systems, Inc.. Capacitors [EB/OL].http://www.ga-esi.com/support/ep/tech-bulletins/capacitor-engineering-bulletins.pdf.
    [65] Li H, Lin F, Zhong H, et al. Study on Metallized Film Capacitor and Its VoltageMaintaining Performance [J]. Magnetics, IEEE Transactions on.2009,45(1):327~330.
    [66]张血琴.高压储能电容器绝缘失效机理及测试技术的研究[D].成都:西南交通大学,2007.
    [67]张血琴,吴广宁,曲衍宁,等.高压储能电容器的直流局放测试[J].高电压技术.2007(8):126~130.
    [68] Tortai J H, Bonifaci N, Denat A, et al. Diagnostic of the self-healing of metallizedpolypropylene film by modeling of the broadening emission lines of aluminumemitted by plasma discharge[J]. Journal of Applied Physics.2005,97(5):53304.
    [69] Sarjeant W J, Macdougall F W, Larson D W, et al. Energy storage capacitors: aging,and diagnostic approaches for life validation[J]. IEEE Transactions on Magnetics,1997,33(1):501~506.
    [70] Tandon S. Modeling of stresses in cylindrically wound capacitors characterization andthe influence of stress on dielectric breakdown of polymeric film[D]. University ofMassachusetts Amherst Thesis,1997.
    [71] Schneuwly A, Gr ning P, Schlapbach L, et al. Temperature-dependent dielectricbreakdown strength of oil impregnated polypropylene foils [J]. Materials Science andEngineering: B.1998,54(3):182~188.
    [72] Schneuwly A, Gr ning P, Schlapbach L. Uncoupling behaviour of current gates in selfhealing capacitors[J]. Materials Science and Engineering: B.1998,55(3):210~220.
    [73] Rabuffi M, Picci G. Status quo and future prospects for metallized polypropyleneenergy storage capacitors[J]. IEEE Transactions on Plasma Science,2002,30(5):1939~1942.
    [74] Bel Ko V O, Bondarenko P N, Emel Yanov O A. The dynamic characteristics ofself-healing processes in metal film capacitors [J]. Russian Electrical Engineering.2007,78(3):138~142.
    [75] Heywang H. Physical and chemical processes in self-curing plastic capacitors [J].Colloid and Polymer Science.1976,254:138~147.
    [76] Kammermaier J. Physical and chemical conditions for self-healing in metallizedcapacitors [C]. Proceedings of the Symposium on High-energy-density Capacitors andDielectric Materials, NRC,1981:78.
    [77] Kammermaier J, Siemens A G, Rittmayer G, et al. Modeling of plasma-inducedself-healing in organic dielectrics[J]. Journal of Applied Physics.1989,66(4):1594~1609.
    [78] Yaohong C, Hua L, Fuchang L, et al. Effect of interlayer air on performance ofdry-type metalized film capacitor in DC, AC and pulsed applications [J]. IEEETransactions on Dielectrics and Electrical Insulation,2011,18(4):1301~1306.
    [79]雷清泉.高电场下电介质电导[J].哈尔滨电工学院学报.1981(2):1~14.
    [80] Gupta D D, Joyner K. A study of absorption currents in polypropylene [J]. Journal ofPhysics D-applied Physics.1976,9(14):2041~2048.
    [81] Karanja P, Nath R. Charge trapping and conduction in pure and iodine-dopedbiaxially-oriented polypropylene [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,1994,1(2):213~223.
    [82] Umemura T, Akiyama K, Couderc D. Morphology and Electrical Properties ofBiaxially-oriented Polypropylene Films [J]. IEEE Transactions on Electrical Insulation,1986, EI-21(2):137~144.
    [83] Ieda M, Sawa G, Kato S. A Consideration of Poole-Frenkel Effect on ElectricConduction in Insulators [J]. Journal of Applied Physics.1971,42(10):3737~3740.
    [84] Ho J, Jow T R. High field conduction in biaxially oriented polypropylene at elevatedtemperature [J]. IEEE Transactions on Dielectrics and Electrical Insulation.2012,19(3):990~995.
    [85] Huzayyin A, Boggs S, Ramprasad R. Quantum mechanical studies of carbonylimpurities in dielectric polyethylene [J]. IEEE Transactions on Dielectrics andElectrical Insulation.2010,17(3):920~925.
    [86] Teyssedre G, Laurent C. Charge transport modeling in insulating polymers: frommolecular to macroscopic scale [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2005,12(5):857~875.
    [87] Leonard E, Amborski. Electrical Conduction and Breakdown Properties of SeveralBiodegradable Polymers [J]. Journal of Polymer Science.1962,62(174):331~346.
    [88] Kazuo I, Takanobu K, Toshio S. Effect of crystallinity on electrical conduction inpolypropylene [J]. Japanese Journal of Applied Physics.1981,20(3):609~615.
    [89] Nakane E, Kaneko K, Mori T, et al. Effects of electrodes on space charge inpolypropylene [C]. Annual Report Conference on Electrical Insulation and DielectricPhenomena, Nashville, Tennessee, USA,2005:653~656.
    [90] Nakane E, Kaneko K, Mitzutani T, et al. Comparison of space charge behaviorbetween polypropylene and polyethylene [C]. International Symposium on ElectricalInsulating Materials, Kitakyushu. Japan,2005,3:569~571.
    [91] Bo P, Fuchang L, Hua L, et al. Calculation and measurement of metalized filmcapacitor's inner pressure and its influence on self-healing characteristics[J]. IEEETransactions on Dielectrics and Electrical Insulation.2010,17(5):1612~1618.
    [92] Maddison D S, Tansley T L. Analysis of pressure dependence of electricalconductivity in polypyrrole [J]. Journal of Applied Physics.1992,71(4):1831~1837.
    [93] Semet V, Adessi C, Capron T, et al. Low work-function cathodes from Schottky tofield-induced ballistic electron emission: Self-consistent numerical approach [J].Physical Review B,2007,75(4):45430.
    [94] Ongaro R, Pillonnet A. Poole-Frenkel (PF) effect high field saturation [J]. ReviewPhysics Applied.1989,24:1085~1095.
    [95] Hill R M. Poole-Frenkel conduction in amorphous solids [J]. Philosophical Magazine.1971,23:59~86.
    [96] Adamect V, Calderwood J H. Electrical conduction in dielectrics at high fields [J].Journal of Physics D: Applied Physics,1975,8(5):551~560.
    [97] Nath R, Kaura T, Perlman M M. Steady-state conduction in linear low-densitypolyethylene with Poole-lowered trap depth [J]. IEEE Transactions on ElectricalInsulation.1990,25(2):419~425.
    [98] Chang C Y, Hsu W C, Wang S J, et al. Capture-emission process in doublePoole-Frenkel well traps: Theory and experiments [J]. Journal of Applied Physics.1986,60(3):1042~1045.
    [99] Hartke J L. The Three Dimensional Poole-Frenkel Effect [J]. Journal of AppliedPhysics.1968,39(10):4781~4783.
    [100]Jonscher A K. Electronic properties of amorphous dielectric films [J]. Thin SolidFilms.1967,1(3):213~234.
    [101]马晖,杨会民,陈珺.绝缘电阻及其测量[J].仪器仪表标准化与计量.2009(04):43~44.
    [102]范仰才,李景德,刁胜方.电介质物理[J].工科物理.1994(02):3~6.
    [103]胡汉杰,杨玉良.高分子物理[M].北京:化学工业出版社,2001.
    [104]金维芳.电介质物理学(第二版)[M].西安:西安交通大学出版社,2002.
    [105]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社,2005.
    [106]林福昌.高电压工程(第二版)[M].北京:中国电力出版社,2006.
    [107]崔小明.国外聚丙烯生产工艺及催化剂技术新进展[J].国外塑料.2005(03):41~45.
    [108]杨百屯.测量固体介质中陷阱参数的等温电流测量理论及其应用[D].西安:西安交通大学,1989.
    [109]杨百屯,屠德民,刘耀南.等温电荷理论及其检测固体介质中的陷阱分布[J].应用科学学报.1992(03):233~240.
    [110]李小玲,周镇宏,邓颖宇,等.电容器介质吸收电流的测量和表征[J].无机材料学报.1996(02):337~342.
    [111]曹万强,王勇,李景德.聚丙烯的动态和平衡态热刺激电流[J].物理化学学报.1996(12):0-0+0-0.
    [112]何艳阳,李景德,周镇宏.聚丙烯的低温微分时域介电谱[J].中山大学学报(自然科学版).1996(S2):169~171.
    [113]曹万强,王勇,刘俊刁,等.聚合物中极化的冷冻和热刺激[J].物理化学学报.1997(10):921~924.
    [114]Ramo S, Whinnery J R, Van Duzer T. Fields and Waves in CommunicationElectronics [M]. New York: John Wiley and Sons,1965.
    [115]Burfoot J C, Taylor G W. Polar Dielectrics and Their Applications [M]. Berkeley:University of California Press,1979.
    [116] Debye P. Polar Molecules [M]. New York: Chemical Catalog Co.,1929.
    [117]Kundert K. Modeling Dielectric Absorption in Capacitors [EB/OL].2008,http://www.cktsim.org/Modeling/da.pdf.
    [118]Cole K S, Cole R H. Dispersion and absorption in dielectrics-I. alternating currentcharacteristics[J]. Journal of Chemical Physics.1941,9(4):341~352.
    [119]Cole K S, Cole R H. Dispersion and absorption in dielectrics-II. direct cur-rentcharacteristics[J]. Journal of Chemical Physics.1942,10(2):98~105.
    [120]Cole R H. Theories of dielectric polarization and relaxation [C]. in Progress inDielectrics, Heywood,1961,3:47~99.
    [121]Dow P C. An Analysis of Certain Errors in Electronic Differential AnalyzersII-Capacitor Dielectric Absorption [J]. Electronic Computers, IRE Transactions on.1958, EC-7(1):17~22.
    [122]李军浩,司文荣,姚秀,等.油纸绝缘变压器老化状态评估的极化/去极化电流技术研究[J].仪器仪表学报.2009(12):2605~2611.
    [123]李军浩,郭磊,吕亮,等.变压器油老化对其局部放电及介质响应特性的影响[J].陕西电力.2009(11):1~4.
    [124]王伟,曲文韬,杨承龙,等.油浸式电力变压器固体绝缘老化检测技术的应用[J].电气技术.2010(10):39~42.
    [125]肖文章.高压绝缘诊断的介电响应技术研究[D].哈尔滨:哈尔滨理工大学,2011.
    [126]王耀龙.电力变压器介电谱测试分析[J].电工电气.2012(06):29~33.
    [127]唐盼.基于极化去极化电流法的变压器油纸绝缘状态研究[D].上海:上海交通大学,2012.
    [128]王林,周利军,李先浪,等.应用极化/去极化电流法分析油纸绝缘微水扩散暂态过程[J].高电压技术.2013(02):354~359.
    [129]屠德民,刘文斌,庄国平,等.空间电荷自身反电场的介质击穿理论及电荷发射屏的研究[J].西安交通大学学报.1987(S1):1~12.
    [130]屠德民,刘荣生,吕永康,等.聚合物的空间电荷效应与电击穿机理[J].西安交通大学学报.1990(05):109~114.
    [131]杨百屯,屠德民,刘耀南.碰撞电离退陷阱化[J].电工技术学报.1991(02):59~64.
    [132]杨百屯,屠德民,刘耀南.空间电荷碰撞电离退陷阱化导致介质击穿的理论[J].绝缘材料通讯.1991(04):17~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700