金属化聚丙烯膜脉冲电容器过载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单次使用的脉冲功率装置的紧凑化是国内外近年来研究的一项重要内容。正是由于单次使用,为脉冲功率各部件的小型化提供了极大的可能。目前大多数的脉冲功率装置都采用脉冲电容器作为初级能源,具有安全、可靠的特点。以金属化聚丙烯膜脉冲电容器(MPP capacitor)为代表的高储能密度电容器技术的发展,为构建紧凑化的初级能源系统提供了极大的便利。商业提供的金属化聚丙烯膜脉冲电容器在额定电压和额定电流下,都有一定的寿命,即重复放电次数(一般大于1000次)。如果在确保其一次或几次可靠工作的前提下,人为提高其工作电压和放电电流,则可以大大提高其储能密度,从而可以构建极为紧凑的初级能源。本文的研究结果为金属化聚丙烯膜脉冲电容器的过载使用展现了很好的发展前景,为以后制作可靠的单次或者几次使用的紧凑初级能源奠定了坚实的基础。本文的研究内容主要包括以下几方面:
     首先,对金属化聚丙烯膜脉冲电容器的发展及特点进行了概述,简要介绍了金属化聚丙烯膜脉冲电容器相关的基础知识,对国外相关过载研究进行了简要总结,并对过载实验中电容器各项参数、温度、高电压和脉冲大电流的测试方法进行了简单的介绍。
     其次,对不同温度下电容器单元的过载特性进行了详细的研究,通过温度和耐压实验得到了MMJ4-6.6电容器单元在-45℃~60℃范围内电容量C随温度的变化率k_C≈-1.2×10~(-3)μF/°C,其安全过载充电的储能密度是额定储能密度的1.8倍以上;根据过载放电特性实验结果可知,其放电能力超过100kA/kJ;对漏电特性实验结果进行分析,该电容器单元充电所需的最小充电电流不能小于500μA,这为脉冲功率初级能源的紧凑化设计提供重要的实验依据。
     最后,对串并联电容器单元的过载放电特性进行了初步的研究,通过耐压特性研究得到了MKMJ3-50电容器单元在置信水平0.7、充电电压4kV时的耐压可靠度单侧置信下限约为0.81。单元过载放电特性研究结果表明,置信水平0.7、放电电流30kA时,该电容器单元的单次可靠放电单侧置信下限约为0.94。根据串并联过载放电实验数据可知,该电容器单元通流能力在一次性破坏的情况下,达到了48kA,这对金属化聚丙烯膜脉冲电容器的过载放电研究具有重要的指导意义。
Currently, the compact pulsed power devices for single use have attracted more and more attention. Because of single use, more compact pulsed power devices are possible. The pulsed capacitors due to their safety and reliability are the main primary energy sources for pulsed power devices. Especially, the developments of MPP capacitor technology provide great convenience for building compact primary energy system. The MPP capacitor at rated voltage and rated current has a certain life. If the capacitor is designed to work reliably once or several times in over-voltage and over-current status, the energy density can be improved greatly, this method can be applied in building an extremely compact primary energy in pulsed power devices. This dissertation has investigated the overload characteristics of the MPP capacitors. The results make a good foundation for conducting compact primary energy sources operating at once or several times. The main content of the dissertation are as follows:
     Firstly, the developments and characteristics of MPP capacitors are described, the related knowledge of MPP capacitor is introduced, the research of overload experiments in foreign is briefly summarized, and the test methods of capacitor parameters, temperature, high voltage and pulse current of overload experiments are briefly introduced.
     Secondly, the overload characteristics of capacitor units under different temperature are studied in detail. The results of temperature experiment show that the capacitance with temperature change rate of MMJ4-6.6 capacitor units is k_C≈-1.2×10~(-3)μF/°C at -45℃~60℃. The overload energy storage density is more than 1.8 times of the rated energy storage density at -45℃~60℃. According to the results of overload discharge experiment, the discharge capability of these units is more than 100kA/kJ. The leakage experiment indicates that the charging current of MMJ4-6.6 capacitor units must be larger than 500μA. These provide an important experimental basis for the design of compact primary energy sources.
     Lastly, the overload characteristics of capacitor units in series-parallel connection are researched preliminarily. The results of withstand voltage experiment show that the voltage-reliability confidence lower limit of MKMJ3-50 capacitor units is 0.81 and the confidence level is 0.7 at 4kV. The results of overload discharge experiment show that the single reliable discharge (30kA) reliability of MKMJ3-50 capacitor units is 0.94 at the confidence level of 0.7. Based on the results of overload discharge experiments of capacitor units in series-parallel connection, the discharge current capacity of MKMJ3-50 capacitor units reaches 48kA for single use. These make a good foundation for conducting compact primary energy sources operating at once or several times.
引文
[1]赵正涛,高能密陶瓷电容器寿命特性及影响因素的研究[D].武汉:华中科技大学, 2006.
    [2]曾正中,脉冲功率技术引论[M].西安:陕西科学技术出版社, 2003.
    [3]王科,杨兰均,张乔根,许继业,金玲,一种新结构自愈式高储能密度脉冲电容器的实验研究[J].高压电器, 2005, 41(6): 445-448.
    [4]孔中华,金属化膜脉冲电容器若干问题的研究[D].武汉:华中科技大学, 2008.
    [5]江伟华,张弛,脉冲功率系统的原理与应用[M].北京:清华大学出版社, 2008.
    [6]林福,代新,徐智安,李劲,姚宗干,高储能密度电容器[J].强激光与粒子束, 2003, 15(1): 94-96.
    [7] MMJ高储能密度脉冲电容器产品介绍,武汉长城华科电容电气有限公司.
    [8] Robert W Brown, Donald Campbell Gray, Alan Harvey, A Classical Capacitor Equivalent Circuit with Dependent Values[J]. IEEE, 2006.
    [9]天津大学无线电材料与元件教研室.电容器[M],北京:技术标准出版社, 1981.
    [10] Heywang H, Physical and chemical process in self-curing plastic capacitors[J]. Colloid and polymer science, 1976.
    [11] D. G. Shaw, S. W. Cichanowski, A. Yializis, A changing capacitor technology failure mechanisms and design innovations[J]. IEEE Transactions on Electrical Insulation, 1981, 16(5): 399-413.
    [12] J. Kammermaier, Chemical processes during electrical breakdown in an organic dielectric with evaporated thin electrodes[J]. IEEE Transactions on Electrical Insulation, 1987, 22(2): 145-149.
    [13] C. W. Reed, S. W. Cichanowski, The Fundamentals of Aging in HV Polymer-film Capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5).
    [14] Walter J. Sarjeant, Jennifer Zirnheld, Frederick W. MacDougall, Capacitors [J]. IEEE Transactions on Plasma Science, 1998, 26(5): 1368-1392.
    [15]陈永真,李锦,电容器手册[M].北京:科学出版社, 2008.
    [16]方海泉,有机介质电容器的吸收效应[J].12-17.
    [17]叶雾,陈志坚,电容器介质吸收效应的测量原理和测试方法[J].仪器仪表学报, 1982, 3(4):352-358.
    [18] S.I. Shkuratovt, M. Kristiansen, J. Dickens, L.L. Hatfield and E. Horrocks,PULSED, HIGH ENERGY TESTING OF RESISTORS[J]. IEEE, 1999: 712-715.
    [19] Sergey I. Shkuratov, Magne Kristiansen, James C. Dickens, Lynn L. Hatfield and E. Horrocks, High-Current and High-Voltage Pulsed Testing of Resistors [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28(5): 1607-1614.
    [20] S. I. Shkuratov, E.F. Talantsev, M. Kristiansen and J. Dickens, HIGH VOLTAGE TESTING OF CAPACITORS[J]. IEEE, 2002: 1559-1562.
    [21] Sergey I. Shkuratov, Lynn L. Hatfield, James C. Dickens and Magne Kristiansen, Single-Shot, Repetitive and Lifetime High-Voltage Testing of Capacitors [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30(5): 1943-1949.
    [22] Sergey I. Shkuratov, Evgueni F. Talantsev, James C. Dickens and Magne Kristiansen, SINGLE SHOT OVERSTRESSING OF HIGH VOLTAGE CAPACITORS FOR COMPACT ARKADIEV-MARX GENERATOR[J]. IEEE, 2003: 723-726.
    [23] Tim Crowley, William Shaheen, TESTING OF HIGH ENERGY DENSITY CAPACITORS[J]. IEEE, 2007: 357-360.
    [24] S. I. Shkuratov, M. Kristiansen, J. Dickens and E. Horrocks, HIGH CURRENT TESTING OF BATTERIES[J]. IEEE, 2002: 1563-1566.
    [25] D. Hemmert and J. Walter, High power discharge testing of small batteries to power an ultra-compact current seed source[J]. IEEE, 2005: 1349-1352.
    [26]胡海洋, Agilent 428X系列LCR表用户培训, Agilent Technologies.
    [27]张泽厚,电容器等效电路方式选择[J].电子元件与材料, 1994, 13(6): 57-58.
    [28]陆建东,热电偶的测温原理及误差分析[J].宁夏电力, 2007(2): 76-81.
    [29]张友良,马玉凡,基于热电偶的多点温度测量仪的设计[J].技术与应用, 2010: 15-17.
    [30]张晓萍,脉冲功率及其诊断技术讲义.长沙:国防科技大学, 2008.
    [31]程汉湘,骆国铭, Rogowski线圈电流传感器分析[J].科技交流, 2006(6): 65-66.
    [32]李芙英,陈翔,葛荣尚,基于Rogowski线圈和压频变换的电流测量方法[J].清华大学学报, 2000, 40(3): 28-31.
    [33]李黎,林福昌,李劲,代新,高场强下金属化膜电容器自愈失败的原因[J].高电压技术, 2001, 27(1): 43-49.
    [34]马晖,杨会民,陈珺,绝缘电阻及其测量[J].仪表与计量技术, 2009: 43-44.
    [35]秦英孝,可靠性·维修性·保障性概论[M].北京:国防工业出版社, 2002.
    [36]刘春和,陆祖建,武器装备可靠性评定方法[M].北京:中国宇航出版社,2009.
    [37]冯静,孙权,罗鹏程,金光,颜兆林,刘敬军,装备可靠性与综合保障[M].长沙:国防科技大学出版社, 2008.
    [38]二项分布可靠度单侧置信下限,中华人民共和国国家标准GB4083. 3-85, 1985: 60-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700