长寿命产品退化试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能退化的可靠性评估试验是解决高可靠性、长寿命产品寿命预测问题的重要手段,是近年来可靠性试验新的研究方向。随着科学和工程技术的发展,产品的失效机理日趋复杂,对于许多高可靠性、长寿命产品,通过截尾寿命试验或加速寿命试验已不能有效获取产品的失效寿命数据,因此,许多研究人员开始从产品的性能退化数据中提取寿命信息,以弥补高可靠性、长寿命产品可靠性评估过程中信息量不足的问题。然而,面对日新月异的现代科技与生产技术,许多现有的退化试验方法已不能有效满足某些高可靠性、长寿命产品的可靠性评估需求。本文以长寿命产品退化试验方法为研究对象,针对现有退化试验方法所存在的问题,结合相关理论提出了改进试验方法,解决了实际工程中存在的一些问题。论文的主要内容包括以下几个方面:
     (1)传统的可靠性评估试验方法。详细介绍了两类传统的可靠性评估试验方法——寿命试验和退化试验,通过对比分析截尾寿命试验、加速寿命试验、常应力退化试验以及加速退化试验的试验设计方案,总结了它们各自的优缺点,并以此为基础提出了一些改进方法,从而为本文的研究工作奠定了理论基础。
     (2)利用缩减样本的退化试验方法。针对如何有效获取性能退化数据的问题以及性能退化数据一致性检验的问题,提出了一种新的基于性能退化的可靠性评估试验方法——利用缩减样本的退化试验方法,并以金属化膜脉冲电容器的可靠性评估为例详细介绍了试验设计与数据收集方法,给出了数据一致性检验方法,最后结合一个应用实例,验证了所提出方法的有效性。
     (3)含验证信息的加速退化试验方法。针对可靠性模型验证问题,提出了一种新的基于性能退化的可靠性评估试验方法——含验证信息的加速退化试验方法,对该试验方法的试验设计与数据收集方法同样以金属化膜脉冲电容器的可靠性评估为背景进行了介绍,并给出了模型验证方法,最后结合一个应用实例,分析了该试验方法的优缺点。
In recent years, reliability assessment test method based on performance degradation is a new research direction in the field of reliability test. It can effectively predict the lifetime of products with high reliability and long lifetime. With the development of the technology and engineering, the failure mechanism of products is becoming more and more complex. For many products with high reliability and long lifetime, their failure life data can not be obtained from the censoring life test or the accelerated life test. So many researchers try to extract the life information from performance degradation data to offset the lack of information in the reliability assessment of products with high reliability and long lifetime. However, with the rapid progress in the technology and manufacturing, many existed degradation test methods can not meet the needs that assess the reliability of products with high reliability and long lifetime. To solve the problem, this dissertation studies degradation test methods of products with high reliability and long lifetime. Based on the correlative theories, we propose some improved test methods and apply them in practice. The main achievements of the dissertation are as follows.
     (1) Conventional reliability assessment test methods are discussed. Two types of conventional reliability assessment test methods are explicitly introduced, including life test and degradation test. Then we compare the test design methods of the censoring life test, the accelerated life test, the normal-stress degradation test and the accelerated degradation test, and summarize their advantages and disadvantages. According to these conclusions, we propose some effective methods to improve the existed degradation tests, which are the theoretical basics of the dissertation.
     (2) Degradation test method using reduced sample is presented. To effectively obtain performance degradation data and check the consistency of the data, we present a new reliability assessment test method based on performance degradation which is called degradation test method using reduced sample. Using the reliability assessment of metallized film pulse capacitors, we explicitly introduce the methods of test design, data collection and data consistency check. At last, we apply the degradation test method using reduced sample to a case study, and show the validity of the test method.
     (3) Accelerated degradation test method with validation information is proposed. To validate reliability model, we propose a new reliability assessment test method based on performance degradation which is called accelerated degradation test method with validation information. Using the reliability assessment of metallized film pulse capacitors, we detailedly investigate the methods of test design, data collection and model validation. At last, we apply the accelerated degradation test method with validation information to a case study. Based on the results, we summarize the advantages and disadvantages of the test method.
引文
[1]冯静,孙权,罗鹏程,金光,颜兆林,刘敬军.装备可靠性与综合保障[M].长沙:国防科技大学出版社, 2008.
    [2] Pecht M G, Kapur K C,康锐,张叔农.可靠性工程基础[M].北京:电子工业出版社, 2011.
    [3] Gertsbackh I B, Kordonskiy K B. Models of Failure [M]. New York: Springer-Verlag, 1969.
    [4] Tseng S T, Yu H F. A termination rule for degradation experiments [J]. IEEE Transactions on Reliability, 1997, 46(1): 130-133.
    [5] Yu H F, Tseng S T. Designing a degradation experiment [J]. Naval Research Logistics, 1999, 46(6): 589-706.
    [6] Wu S J, Chang C T. Optimal design of degradation tests in presence of cost constraint [J]. Reliability Engineering & System Safety, 2002, 76(2): 109-115.
    [7] Yang G B. Reliability Enhancement Through Degradation Testing [D]. Wayne: Wayne State University, 2000.
    [8] Yu H F, Chiao C H. An optimal designed degradation experiment for reliability improvement [J]. IEEE Transactions on Reliablity, 2002, 51(4): 427-433.
    [9] Chiao C H, Hamada M. Analyzing experiments with degradation data for improving reliability and for achieving robust reliability [J]. Quality and Reliability Engineering International, 2001, 17(5): 333-344.
    [10]姚增起.系统退化和系统可靠性研究[D].北京:中国科学院自动化研究所, 1988.
    [11] Meeker W Q, Hamada M. Statistical tools for the rapid development & evaluation of high-reliability products [J]. IEEE Transactions on Reliability, 1995, 44(2): 187-198.
    [12] Nelson W B. Analysis of performance degradation data from accelerated tests [J]. IEEE Transactions on Reliability, 1981, 30(2): 149-154.
    [13] Nelson W B. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis [M]. New York: John Wiley & Sons, 1990.
    [14] Carey M B, Koenig R H. Reliability assessment based on accelerated degradation: a case study [J]. IEEE Transactions on Reliability, 1991, 40(5):499-506.
    [15] Tang L C, Chang D S. Reliability prediction using nondestructive accelerated-degradation data: case study on power supplies [J]. IEEE Transactions on Reliability, 1995, 44 (4): 562-566.
    [16] Padgett W J, Tomlinson M A. Inference from accelerated degradation and failure data based on Gaussian process models [J]. Lifetime Data Analysis, 2004, 10(2):191-206.
    [17] Park C, Padgett W J. Accelerated degradation models for failure based on geometric Brownian motion and Gamma processes [J]. Lifetime Data Analysis, 2005, 11(4): 511-527.
    [18] Boulanger M, Escobar L A. Experimental design for a class of accelerated degradation tests [J]. Technometrics, 1994, 36(3): 260-272.
    [19] Park J I, Yum B J. Optimal design of accelerated degradation tests for estimating mean lifetime at the use condition [J]. Engineering Optimization, 1997, 28(3): 199-230.
    [20] Yu H F, Tseng S T. On-line procedure for terminating an accelerated degradation test [J]. Statistica Sinica, 1998, 8: 207-220.
    [21] Li Q S. Accelerated Degradation Test Planning and Optimization [D]. Tucson: The University of Arizona, 2002.
    [22] Li Q S, Kececioglu D B. Design of an optimal plan for an accelerated degradation test: a case study [J]. International Journal of Quality & Reliability Management, 2006, 23(4): 426-440.
    [23] Yang G B, Yang K. Accelerated degradation-tests with tightened critical values [J]. IEEE Transactions on Reliability, 2002, 51(4): 463-468.
    [24] Belie N D, Monteny J, Taerwe L. Apparatus for accelerated degradation testing of concrete specimens [J]. Materials and Structures, 2002, 35(7): 427-433.
    [25] Doughty D H, Thomas E V, Junqst R G, Roth E P. Experimental Design and Analysis for Accelerated Degradation Tests with Li-Ion Cells [R]. Sand Report, 2003.
    [26] Yu H F. Designing an accelerated degradation experiment by optimizing the estimation of the percentile [J]. Quality and Reliability Engineering International, 2003, 19(3): 197-214.
    [27] Yu H F. Designing an accelerated degradation experiment with a reciprocal Weibull degradation rate [J]. Journal of Statistical Planning and Inference, 2006, 136: 282-297.
    [28] Polavarapu I. Optimal Design of An Accelerated Degradation Experiment with Reciprocal Weibull Degradation Rate [D]. Florida: University of South Florida, 2004.
    [29] Polavarapu I, Okogbaa G. An interval estimate of mean-time-to-failure for a product with reciprocal Weibull degradation failure rate [C]. The Proceedings of 2005 Annual Reliability and Maintainability Symposium, 2005:261-265.
    [30]徐先芝,招誉颐.氧化锌避雷器加速老化试验评述[J].电瓷避雷器. 1993, (1): 38-39.
    [31]黄宝臣.航空有机玻璃全紫外线加速老化方法初探[J].飞机设计, 1995, (1):35-40.
    [32]吕伟利,王长华.用加速老化试验快速评估产品贮存可靠性的计算方法[J].电子产品可靠性与环境试验, 1998, (3): 3-10.
    [33]孙贵之,安振涛,高欣宝,李隆瑞. PAP-D型铝塑复合防潮材料湿热加速老化试验研究[J].表面技术, 2004, 33(3): 27-28.
    [34]张凯,黄渝鸿,马艳,周德惠.橡胶材料加速老化试验及其寿命预测方法[J].化学推进剂与高分子材料, 2004, 2(6): 44-48.
    [35]胡文军,刘占芳,陈勇梅.橡胶的热氧加速老化试验及寿命预测方法[J].橡胶工艺, 2004, 51(10): 620-624.
    [36]刘秀生,刘兰轩,谢鸽平.氟树脂耐加速老化性能的研究[J].中国涂料,2005, 20(6): 21-23.
    [37]乔海霞,顾东雅,曾竟成.聚合物基复合材料加速老化方法研究进展[J].材料导报, 2007, 21(4): 48-51.
    [38]肖鑫,赵云峰,许文,詹茂盛.橡胶材料加速老化实验及寿命评估模型的研究进展[J].宇航材料工艺, 2007, 37(1): 6-10.
    [39]冯志刚,方昌华,李静.国外导弹加速老化试验现状分析[J].导弹与航天运载技术. 2008, (2): 30-34.
    [40]王亚顺.装备寿命预测的仿真基加速试验方案优化设计方法研究[D].长沙:国防科学技术大学, 2008.
    [41] Tseng S T, Wen Z C. Step-stress accelerated degradation analysis for highly reliable products [J]. Journal of Quality Technology, 2000, 32(3): 209-216.
    [42] Park S J, Yum B J. Optimal design of accelerated degradation tests under step-sress loading [C]. The 53rd Session of the International Statistical Institute, 2001.
    [43] Tang L C, Yang G Y, Xie M. Planning of step-stress accelerated degradation test [C]. The Proceedings of 2004 Annual Reliability and Maintainability Symposium, 2004: 287-292.
    [44] Liao C M, Tseng S T. Optimal design for step-stress accelerated degradation tests [J]. IEEE Transactions on Reliability. 2006, 55(1): 59-66.
    [45] Gonzalez J R, Vazquez M, Nunez N, et al. Reliablity analysis of temperature step-stress tests on III-V high concentrator solar cells [J]. Microelectronics Reliability, 2009(49): 673-680.
    [46] Tseng S T, Balakrishnan N, Tsai C C. Optimal step-stress accelerated degradation test plan for Gamma degradation process [J]. IEEE Transactions on Reliability, 2009, 58(4): 611-618.
    [47]王德宏,李雅静,安振峰.大功率半导体激光器步进加速老化研究[J].纳米器件与技术, 2008, 45(9): 508-511.
    [48]汪亚顺,莫永强,张春华,等.双应力步进加速退化试验统计分析研究—模型与方法[J].兵工学报, 2009, 30(4): 451-456.
    [49] Doksum K A, Hoyland A. Model for variable-stress accelerated life testing experiments based on Wiener process and the inverse Gaussian distribution [J]. Technometrics, 1992, 34(1): 74-82.
    [50] Peng C Y, Tseng S T. Progressive-stress accelerated degradation test for highly-reliable products [J]. IEEE Transactions on Reliability, 2010, 59(1): 30-37.
    [51]徐维新,秦英孝.可靠性工程[M].北京:电子工业出版社, 1988.
    [52]张志华.加速寿命试验及其统计分析[M].北京:北京工业大学出版社, 2002.
    [53] Levenbach G J. Accelerated life testing of capacitors [J]. IRE Transactions on Reliability and Quality Control, 1957, 10(1): 9-20.
    [54]郭波,武小悦,张秀斌,张凤林,刘芳,王广伟.系统可靠性分析[M].长沙:国防科技大学出版社, 2002.
    [55]茆诗松,王玲玲.加速寿命试验[M],北京:科学出版社, 1997.
    [56] Nelson W B. A survey of methods for planning and analyzing accelerated tests [J]. IEEE Transactions on Electrical Insulation, 1974, EI-9(1): 12-18.
    [57]陈亮,胡昌华.基于退化建模的可靠性分析现状[J].控制与决策, 2009, 24(9): 1281-1287.
    [58] Shiau J-J H, Lin H H. Analyzing accelerated degradation data by nonparametric regression [J]. IEEE Transactions on Reliability, 1999, 48(2):149-158.
    [59] Zhao W B, Elsayed E A, An accelerated life tesing model involving performance degradation [C]. The Proceedings of 2004 Annual Reliability and Maintainability Symposium, 2004: 324-329.
    [60] Meeker M Q, Escobar L A. Statistical Methods for Reliability Data [M]. New York: John Wiley & Sons, 1997.
    [61]茆诗松,王静龙,史定华,葛广平.统计手册[M].北京:科学出版社, 2003.
    [62] Newton M A, Larson D W, Anderson R L. Power conditioning development for the National Ignition Facility [S]. UCRL-JC-124376, 1996.
    [63]周丕章,郭良福,陈德怀.激光聚变主放大器能源系统评述[J].强激光与粒子束, 2003, 15(4): 346-351.
    [64] Larson D W, Macdougall F W, Hardy P. The impact of high energy density capacitors with metallized electrode in large capacitor banks for nuclear fusion applications [C]. The Proceedings of 9th IEEE International Pulsed Power Conference, 1993: 735-738.
    [65] Merritt B T, Whitham K. Performance and cost analysis of large capacitor banks using Weibull statistics and MTBF [C]. The Proceedings of 3rd IEEE InternationalPulsed Power Conference, 1981: 463-466.
    [66]代新,林福昌,李劲,姚宗干.高场强下金属化膜脉冲电容器失效的原因[J].高电压技术, 2000, 26(5): 27-29.
    [67]孔中华,林福昌,戴玲,马亮,李化.混合电极与全膜电容器的金属化膜自愈特性[J].高电压技术, 2008, 34(2): 385-388.
    [68]郭大德.金属化膜脉冲电容器的损耗分析与损坏机理[J].电力电容器, 1995, 1(2): 12-15.
    [69] Sarjeant W J, Zirnheld J, MacDougall F W. Capacitors [J]. IEEE Transactions on Plasma Science, 1998, 26(5): 1368-1392.
    [70] Sarjeant W J, MacDougall F W, Larson D W, Kohlberg I. Energy storage capacitors: aging and diagnostic approaches for life validation [J]. IEEE Transactions on Magnetics, 1997, 33(1): 501-506.
    [71] Ennis J B, MacDougall F W, Cooper R A, Bates J. Repetitive pulse application of self-healing high voltage capacitors [C]. The Proceedings of 25th International Power Modulator Symposium, 2002: 634-638.
    [72] Borghetti A, Nucci C A, Pasini G, Pirani S, Rinaldi M. Tests on self-healing metallized polypropylene capacitors for power applications [J]. IEEE Transactions on Power Delivery, 1995, 1(3): 556-561.
    [73] Ennis J B, MacDougall F W, Cooper R A, Bates J. Self-healing pulse capacitors for the National Ignition Facility (NIF) [C]. The Proceedings of 12th IEEE International Pulsed Power Conference, 1999: 118-121.
    [74] Ross S. A First Course in Probability. 8th Edition [M]. New Jersey: Pearson Prentice Hall, 2010.
    [75]孙权.神光III惯性约束聚变激光装置可靠性研究[D].长沙:国防科学技术大学, 2005.
    [76]赵建印,孙权.基于加速退化数据的BS分布的统计推断[J].可靠性与环境适应性理论研究, 2006, 24(1):11-14.
    [77] Sun Q, Zhou J L, Zhong Z, Zhao J Y, Duan X L. Gauss-Poisson joint distribution model for degradation failure [J]. IEEE Transactions on Plasma Science, 2004, 32(5): 1864-1868.
    [78]黎明.带随机拐点的退化失效建模与分析方法研究[D].长沙:国防科学技术大学, 2009.
    [79]代新,林福昌.高场强下金属化膜脉冲电容器特性的试验研究[J].高电压技术, 2000, 26(2): 17-19.
    [80]胡仲霞,母发清.金属化有机薄膜电容器的自愈机理及可靠性设计[J].电子元件与材料, 1998, 17(4): 17-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700