铜绿假单胞菌内在耐药性相关基因的筛选及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪五十年代后,由于持续不合理的使用抗生素,临床细菌的耐药性现在已经成为全球感染领域引人瞩目的问题之一。铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,主要在临床中引起一定程度的感染。由于铜绿假单胞菌自身的特点:如细胞本身对抗生素的通透性低,形成生物被膜等,赋予了铜绿假单胞菌特有的内在抗药性。正是由于铜绿假单胞菌抗药性的出现,使得对于铜绿假单胞菌感染的治疗变得非常的棘手。因此,对于铜绿假单胞菌内在抗药性的研究就变得至关重要。
     为了寻找铜绿假单胞菌中与抗生素抗性相关的基因,我们构建了含有17000多个克隆的随机转座突变体库,并用不同类型的七种抗生素对转座突变体库进行了筛选。首先,在含有最小抑制浓度(Minimal Inhibitors Concentration, MIC)的固体平板上生长的转座突变体,被认为是抗性转座突变体。在1/2最小抑制浓度(MIC)的固体平板上不能生长的转座突变体被认为是敏感转座突变体。然后对固体平板筛选出来的转座突变体在液体培养基中重新进行一次筛选,并且确定每个转座突变体各自的最小抑制浓度(MIC)。最终通过随机PCR、测序和比对,确定了转座突变体库中的43个转座突变体的突变位点(即43个基因)。这些转座突变体与野生型的铜绿假单胞菌相比较至少对一种抗生素的敏感程度发生了3倍或者3倍以上的变化。还有一些转座突变体对三种抗生素都有3倍以上的变化,比如:PA4024、PA4342和PA4456的转座突变体。有两个转座突变体对羧苄青霉素的抗性提高了128倍。在这43个基因当中,现已经报道的与抗生素有关的基因有三个,他们是PA0424(编码多重耐药操纵子的抑制蛋白MexR)、PA0426(编码与抗生素抗性相关的RND外排泵的蛋白MexB; Resistance-Nodulation-Cell Division)和PA4207(编码与抗生素抗性相关的RND外排泵的蛋白)。而其它基因并未见其与抗生素抗性有关的报道。
     铜绿假单胞菌中被预测为ABC转运器的蛋白很多。现在已经清楚的知道ATP依赖的ABC转运器在生物体中具有非常重要的作用。在我们筛选得到的结果中,PA4456被预测可能是ATP依赖的ABC转运器的组成部分,为了进一步确定其基因的功能,我们对其进行了深入的研究,如抗生素敏感性的测定,荧光分光光度法测定了细胞内四环素的积累等。结果表明:(1)PA4456基因在细胞对四环素和有机溶剂的转运过程具有重要的功能;(2)PA4456突变体对氯霉素(Chloramphenicol)、氨甲氧嘧啶(Trimethoprim)、环丙沙星(Ciprofloxacin)、二甲苯(Xylene)、二甲基甲酰胺(Dimethy- formamide)和甲苯(Toluene)的敏感性增加。
     为了了解其基因功能的调控机理,我们通过随机转座突变的方法从整个基因组水平筛选对PA4456具有调节作用的基因,最终我们发现PA 1180 (phoQ)对PA4456具有潜在的抑制调节作用,在phoQ突变体中,PA4456的表达增加了8倍之多。
     总而言之,细菌抗性的出现是细菌本身改变自身调控网络的结果。而我们筛选得到的数据表明,在铜绿假单胞菌基因组当中,许多未知功能的基因或者参与细菌代谢和调控网络中的基因对细菌的耐药性都有着非常重要的作用。
The issue of antibiotic resistance has received considerable attention due to the problem of the emergence and rapid expansion of antibiotic-resistant pathogenic bacteria. Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative opportunistic pathogen that continues to be a major cause of opportunistic nosocomial infections. It is also the important cause of chronic lung infections contributing to the death of patients with cystic fibrosis. One of the most important reasons for its prominence as a pathogen is that P. aeruginosa has high intrinsic resistance characteristics to many antibiotics. It is important to study insights into the mechanisms of resistance and develop new approaches to combat resistance of P. aeruginosa.
     To find such genes, a P. aeruginosa transposon insertion library of c.a.17000 clones was constructed and screened for resistant and hyper-sensitive mutants using seven antibiotics. The screen was initially carried out on agar plates containing different concentrations of these antibiotics. Colonies grown at MIC were collected as the resistant mutants, and those unable to grow at 1/2 MIC were considered hyper-susceptible mutants. Further tests were done in liquid medium with series of antibiotic concentrations and the exact MICs of these mutants were defined. Transposon insertions in 43 genes were found to cause a 3-fold or higher hypersusceptibility to at least one antibiotic. Some of the mutants exhibited at least threefold change in susceptibility to three antibiotics; they are mutants in PA4024, PA4342, and PA4456. Two mutants increased the bacterial resistance to carbenicillin by 128-fold. Among the disrupted genes identified in the mutants, two genes PA0426, PA4207 which encodes a Resistance-Nodulation-Cell Division multidrug efflux transporter and another one PA0424 which encodes multidrug resistance operon repressor MexR have an apparent role in P. aeruginosa resistance. Others show less obvious involvement in antibiotic resistance. The results indicate many genes previously unknown to be involved in antibiotic resistance are important for the intrinsic antibiotic resistance in P. aeruginosa, suggesting mechanisms other than membrane permeability and efflux pump play important roles in bacterial resistance to antibiotics. These mechanisms may be exploited as new antibiotic targets.
     ABC transporters are widespread among P. aeruginosa and comprise one of the largest protein families. It is clear that ATP-binding cassette (ABC) transporters play an important role in bacteria and living organisms. In order to find new target to eliminate the antibiotic resistance, we identified and characterized a mutant PA4456 encoding a putative ATP-binding component of ABC transporter essential for the PAO intrinsic resistance. Furthermore, the mutant deficient in this putative ATP binding component was analyzed. Conclusions withdrawn from the results were:(1) higher sensitive to tetracycline and greater accumulation of tetracycline compared to the WT using the florescence technique. (2) also sensitive to chloramphenicol, trimethoprim, ciprofloxacin, xylene, dimethy-formamide, and toluene. Complementation analyses indicated that PA4456 is important for the putative operon to involve in antibiotics transporter. These results strongly suggested that the predicted ATP-binding component (PA4456) is involved in antibiotic and organic transporter.
     In order to find out the network of genes, a genome-wide search of regulators for the transporter operon identified PhoQ as a potential repressor. More than 8-fold increase of PA4456 expression was observed in a phoQ mutant. These results indicate that this putative ABC transporter is functionally active in P. aeruginosa and regulated by the two component system of PhoQ.
     It has already been show that antibiotic resistance can produce specific bacterial ways of life and changes in bacterial metabolism. It is thus conceivable that resistance has integrated into global regulatory networks and might be controlled by the metabolic condition of bacteria.
引文
[1]Anti-Tuberculosis drug resistance in the world [J]. The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance 1994-1997,2008.
    [2]Rice L. B. Do we really need new anti-infective drugs? [J]. Curr Opin Pharmacol,2003.3(5):459-63
    [3]Sheldon A. T., Jr. Antibiotic resistance:a survival strategy [J]. Clin Lab Sci,2005.18(3):170-80
    [4]Shen L., Shi Y, Zhang D., et al. Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa [J]. J Microbiol,2008.46(4):441-7
    [5]Fajardo A. and Martinez J. L. Antibiotics as signals that trigger specific bacterial responses [J]. Curr Opin Microbiol,2008. 11(2):161-7
    [6]Matar G. M. and Rahal E. Inhibition of the transcription of the Escherichia coli O157:H7 genes coding for shiga-like toxins and intimin, and its potential use in the treatment of human infection with the bacterium [J]. Ann Trop Med Parasitol,2003.97(3)281-7
    [7]Bader M. W., Navarre W. W., Shiau W., et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides [J]. Mol Microbiol,2003.50(1):219-30
    [8]Horii T., Morita M., Muramatsu H., et al. Effects of mupirocin at subinhibitory concentrations on flagella formation in Pseudomonas aeruginosa and Proteus mirabilis [J]. J Antimicrob Chemother,2003. 51(5):1175-9
    [9]Jones R. N. and Pfaller M. A. Bacterial resistance:a worldwide problem [J]. Diagn Microbiol Infect Dis, 1998.31(2):379-88
    [10]Antimicrobial resistance:the public health response [EB/OL]. Available from:http://www. hhs.gov/asl/testify/2010/04/t20100428b.html. April 28,2010/Sep 07,2010
    [11]Antimicrobial (drug) resistance[EB/OL]. Available from:http://www.niaid.nih.gov/topics/antimicro-bialresistance/understanding/pages/default.aspx. March 05,2008/Sep 07,2010
    [12]Bush K. Antibacterial drug discovery in the 21st century [J]. Clin Microbiol Infect,2004.10 Suppl 4:10-7
    [13]Klevens R. M., Edwards J R, Richards C. L, Jr.. et al. Estimating health care-associated infections and deaths in U S. hospitals,2002 [J].Public Health Rep,2007.122(2):160-6
    [14]Cancer facts and Figures[J] 2007. American cancer Society Atlanta GA USA P4
    [15]简翠,叶涛,张蓓,李丽,王斌,陈中举,田磊,孙自镛Mohnarin 2006-2007年度报告:中南 地区细菌耐药监测[J].中国抗生素杂志,2008.33(10):608-615
    [16]饶绍琴,周忠华,喻华,张本,颜英俊Mohnarin 2006-2007年度报告:西南地区细菌耐药监测[J].中国抗生素杂志,2008.33(10):622-628
    [17]孙怡群,徐修礼,杨佩红,樊新,刘家云,牟立东,赵志军,魏莲花,常威,孟灵,周海凤,黄文辉,韩艳,季平Mohnarin 2006-2007年度报告:西北地区细菌耐药监测[J].中国抗生素杂志,200833(10):629-634
    [18]孙景勇,倪语星Mohnarin 2006-2007年度报告:华东地区细菌耐药监测[J].中国抗生素杂志,2008.33(10):635-639
    [19]张秀珍,胡云建,艾小曼,许宏涛Mohnarin 2006-2007年度报告:华北地区细菌耐药监测[J].中国抗生素杂志,2008.33(10): 16-634
    [20]褚云卓,田素飞,张智杰,崔连东,陈淑兰,张和光,徐雪松,许建成,范艳萍,佟忠山Mohnarin2006-2007年度报告:东北地区细菌耐药监测[J].中国抗生素杂志,2008.33(10):640-646
    [21]Metz-Gercek S., Maieron A., Strauss R., et al. Ten years of antibiotic consumption in ambulatory care: trends in prescribing practice and antibiotic resistance in Austria [J]. BMC Infect Dis,2009.9:61
    [22]Pitout J. D. and Laupland K. B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern [J]. Lancet Infect Dis,2008.8(3):159-66
    [23]Agency H. P. Antimicrobial resistance and prescribing in England, Wales and Northern Ireland 2008 [J]. London:Health Protection Agency,2008. http://www.hpa.org.uk/web/HPAweb_C/1216798080469 [accessed 27 April 2009]
    [24]Bradford P. A. Extended-spectrum beta-lactamases in the 21st century:characterization, epidemiology, and detection of this important resistance threat [J]. Clin Microbiol Rev,2001.14(4):933-51, table of contents
    [25]Graffunder E. M., Preston K. E., Evans A. M., et al. Risk factors associated with extended-spectrum beta-lactamase-producing organisms at a tertiary care hospital [J]. J Antimicrob Chemother,2005.56(1):139-45
    [26]Wilcox M. H. The tide of antimicrobial resistance and selection [J]. Int J Antimicrob Agents,2009.34 Suppl 3:S6-10
    [27]黄薇.检测表明:我国细菌耐药严重[J].巾国乡村医药杂志,2008.15(4):7-7
    [28]Chambers H. F. and Deleo F. R Waves of resistance:Staphylncoccus aureus in the antibiotic era [J] Nat Rev Microbiol.2009.7(9)629-41
    [29]Kirby W. M. Extraction of a Highly Potent Penicillin Inaetivator from Penicillin Resistant Staphylococci [J]. Science,1944.99(2579)452-453
    [30]Barber M. and Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci [J]. Lancet, 1948.2(6530):641-4
    [31]Rountree P. M. and Freeman B. M. Infections caused by a particular phage type of Staphylococcus aureus [J]. Med J Aust,1955.42(5):157-61
    [32]Blair J. E. and Carr M. Distribution of Phage Groups of Staphylococcus aureus in the Years 1927 through 1947 [J]. Science,1960.132(3435):1247-1248
    [33]Bynoe E. T., Elder R. H., and Comtois R. D. Phage-typing and antibiotic-resistance of staphylococci isolated in a general hospital [J]. Can J Microbiol,1956.2(3):346-58
    [34]Jevons M. P. and Parker M. T. The Evolution of New Hospital Strains of Staphylococcus Aureus [J]. J Clin Pathol,1964.17:243-50
    [35]Barber M. Methicillin-resistant staphylococci [J]. J Clin Pathol,1961.14:385-93
    [36]Crisostomo M. I., Westh H., Tomasz A., et al. The evolution of methicillin resistance in Staphylococcus aureus. similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones [J]. Proc Natl Acad Sci U S A,2001.98(17):9865-70
    [37]Bran J. L., Levison M. E., and Kaye D. Survey for methicillin-resistant staphylococci [J]. Antimicrob Agents Chemother,1972. 1(3):235-6
    [38]Barrett F. F., McGehee R. F., Jr., and Finland M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations [J]. N Engl J Med,1968.279(9):441-8
    [39]Peacock J. E., Jr., Marsik F. J., and Wenzel R. P. Methicillin-resistant Staphylococcus aureus. introduction and spread within a hospital [J]. Ann Intern Med,1980.93(4):526-32
    [40]Crossley K., Landesman B., and Zaske D. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. II. Epidemiologic studies [J]. J Infect Dis, 1979.139(3):280-7
    [41]Hiramatsu K., Aritaka N., Hanaki H., et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin [J]. Lancet,1997.350(9092):1670-3
    [42]Weigel L M., Clewell D. B., Gill S R. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus [J] Science,2003.302(5650):1569-71
    [43]O'Brien F G, Lim T. T., Chong F N., et al. Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia[J] J Clin Microbiol.2004.42(7):3185-90
    [44]Coombs G W, Nimmo G. R., Bell J M. el al. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia [J]. J Clin Microbiol, 2004.42(10):4735-43
    [45]Udo E. E., Pearman J. W., and Grubb W. B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia [J]. J Hosp Infect,1993.25(2):97-108
    [46]Park S. H., Park C., Yoo J. H., et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated bloodstream infections in Korea [J]. Infect Control Hosp Epidemiol,2009.30(2):146-55
    [47]Liu C., Graber C. J., Karr M., et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco,2004-2005 [J]. Clin Infect Dis,2008.46(11):1637-46
    [48]Laupland K. B., Ross T., and Gregson D. B. Staphylococcus aureus bloodstream infections:risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada,2000-2006 [J]. J Infect Dis,2008. 198(3):336-43
    [49]Klevens R. M., Morrison M. A., Nadle J., et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States [J]. Jama,2007.298(15):1763-71
    [50]Seybold U., Kourbatova E. V, Johnson J. G, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections [J]. Clin Infect Dis,2006.42(5):647-56
    [51]Bilthoven E. a. r. the Netherlands: European Antimicrobial Resistance Surveillance System [J].2008. http://www.rivin.nl/earss/images/WARSS%202007_FINAL_tcm61-55933.pdf [accessed 27 April 2009]
    [52]Schwaber M. J. and Carmeli Y. Carbapenem-resistant Enterobacteriaceae:a potential threat [J]. Jama, 2008.300(24):2911-3
    [53]Clatworthy A. E., Pierson E., and Hung D. T. Targeting virulence:a new paradigm for antimicrobial therapy [J]. Nat Chem Biol,2007.3(9):541-8
    [54]Amabile-Cuevase C. New antibiotics and New resistance [J]. Am Sci,2003.91:138-139
    [55]WHO global strategy for containment of antimicrobial resistance [M] World Health Organization Department of Communicable Disease Surveillance and Response. Geneva Switzerland,2001.p11-39
    [56]Bonomo R. A. and Szabo D Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa [J]. Clin Infect Dis,2006.43 Suppl 2:S49-56
    [57]Fajardo A. Martinez-Martin N. Mcrcadillo M. et al. The neglected intrinsic resistome of bacterial pathogens [J]. PLoS One,2008.3(2):e1619
    [58]Lederberg J T. E. Gene recombination in Escherichia coli [J]. Nature,1946.158:558
    [59]Rashid M. H. and Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa [J]. Proc Natl Acad Sci U S A,2000.97(9):4885-90
    [60]Alekshun M. N. and Levy S. B. Molecular mechanisms of antibacterial multidrug resistance [J]. Cell, 2007.128(6):1037-50
    [61]de la Cruz F. and Davies J. Horizontal gene transfer and the origin of species:lessons from bacteria [J]. Trends Microbiol,2000.8(3):128-33
    [62]Mazel D. and Davies J. Antibiotic resistance in microbes [J]. Cell Mol Life Sci,1999.56(9-10):742-54
    [63]Lanka E. and Wilkins B. M. DNA processing reactions in bacterial conjugation [J]. Annu Rev Biochem, 1995.64:141-69
    [64]Staphylococcus aureus resistant to vancomycin-United States,2002 [J]. MMWR Morb Mortal Wkly Rep,2002.51(26):565-7
    [65]Hamilton-Miller J. M. Antibiotic resistance from two perspectives:man and microbe [J]. Int J Antimicrob Agents,2004.23(3):209-12
    [66]Martinez J. L., Baquero F., and Andersson D. I. Predicting antibiotic resistance [J]. Nat Rev Microbiol, 2007.5(12):958-65
    [67]Courvalin P. Predictable and unpredictable evolution of antibiotic resistance [J]. J Intern Med,2008. 264(1):4-16
    [68]Quinn J. P. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens [J]. Clin Infect Dis,1998.27 Suppl 1:S117-24
    [69]Gaynes R. and Edwards J. R. Overview of nosocomial infections caused by gram-negative bacilli [J]. Clin Infect Dis,2005.41(6):848-54
    [70]Cohen M. L. Epidemiology of drug resistance:implications for a post-antimicrobial era [J]. Science, 1992.257(5073):1050-5
    [71]Levy S. B. Multidrug resistance--a sign of the times [J] N Engl J Med,1998.338(19):1376-8
    [72]Levy S. B. and Marshall B. Antibacterial resistance worldwide:causes, challenges and responses [J]. Nat Med,2004.10(12 Suppl):S 122-9
    [73]Paterson D. L "Collateral damage" from cephalosponn on quinolone antibiotic therapy[J]. Clin Infect Dis.2004.38 Suppl 4:S341-5
    [74]Stover C. K., Pham X. Q., Erwin A. L., et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen [J]. Nature,2000.406(6799):959-64
    [75]Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms [J]. J Mol Microbiol Biotechnol,2001.3(2):255-64
    [76]Hancock R. E. The bacterial outer membrane as a drug barrier [J]. Trends Microbiol,1997.5(1):37-42
    [77]Podlesek Z., Comino A., Herzog-Velikonja B., et al. Bacillus licheniformis bacitracin-resistance ABC transporter:relationship to mammalian multidrug resistance [J]. Mol Microbiol,1995.16(5):969-76
    [78]Walters M. C.,3rd, Roe F., Bugnicourt A., et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin [J]. Antimicrob Agents Chemother,2003.47(1):317-23
    [79]Middlemiss J. K. and Poole K. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa [J]. J Bacteriol,2004.186(5):1258-69
    [80]Zhao Q., Li X. Z., Srikumar R., et al. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB [J]. Antimicrob Agents Chemother, 1998.42(7):1682-8
    [81]Poole K., Gotoh N., Tsujimoto H., et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa [J]. Mol Microbiol,1996.21(4):713-24
    [82]Martinez J. L., Fajardo A., Garmendia L., et al. A global view of antibiotic resistance [J]. FEMS Microbiol Rev,2009.33(1):44-65
    [83]Kohler T., Epp S. F., Curty L. K., et al. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa [J]. J Bacteriol,1999.181(20):6300-5
    [84]Kohler T., Michea-Hamzehpour M., Henze U., et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa [J]. Mol Microbiol,1997. 23(2):345-54
    [85]Kohler T., van Delden C., Curty L. K.. et al. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa [J]. J Bacteriol,2001.183(18):5213-22
    [86]Maseda H., Saito K., Nakajima A., et al. Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa[J]. FEMS Microbiol Lett,2000. 192(1):107-12
    [87]Maseda H., Yoneyama H., and Nakae T. Assignment of the substrate-selective subunrts of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,2000. 44(3):658-64
    [88]Sekiya H., Mima T., Morita Y., et al. Functional cloning and characterization of a multidrug efflux pump, mexHl-opmD, from a Pseudomonas aeruginosa mutant [J]. Antimicrob Agents Chemother,2003. 47(9):2990-2
    [89]Aendekerk S., Diggle S. P., Song Z., et al. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication [J]. Microbiology,2005.151(Pt 4):1113-25
    [90]Aendekerk S., Ghysels B., Cornelis P., et al. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium [J]. Microbiology,2002.148(Pt 8):2371-81
    [91]Chuanchuen R., Gaynor J. B., Karkhoff-Schweizer R., et al. Molecular characterization of MexL, the transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,2005.49(5):1844-51
    [92]Chuanchuen R., Narasaki C. T., and Schweizer H. P. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan [J]. J Bacteriol,2002. 184(18):5036-44
    [93]Mima T., Sekiya H., Mizushima T., et al. Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa [J]. Microbiol Immunol,2005. 49(11):999-1002
    [94]Masuda N., Gotoh N., Ishii C, et al. Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,1999.43(2):400-2
    [95]Mine T., Morita Y., Kataoka A., et al. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,1999.43(2)415-7
    [96]E1'Garch F., Jeannot K., Hocquet D., et al. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides [J]. Antimicrob Agents Chemother,2007 51(3):1016-21
    [97]Aires J R., Kohler T., Nikaido H.et al. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides [J]. Antimicrob Agents Chemother,1999 43(11):2624-8
    [98]Livermore D. M. and Chen H. Y. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases [J]. J Antimicrob Chemother,1997. 40(3):335-43
    [99]Westbrock-Wadman S., Sherman D. R., Hickey M. J., et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability [J]. Antimicrob Agents Chemother,1999. 43(12):2975-83
    [100]Bayer A. S., Speert D. P., Park S., et al. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa [J]. Infect Immun,1991.59(1):302-8
    [101]Nagino K. and Kobayashi H. Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa [J]. Clin Microbiol Infect,1997.3(4):432-439
    [102]Govan J. R. and Nelson J. W. Microbiology of lung infection in cystic fibrosis [J]. Br Med Bull,1992. 48(4):912-30
    [103]Kumon H., Tomochika K., Matunaga T, et al. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides [J]. Microbiol Immunol,1994.38(8):615-9
    [104]Costerton J. W., Stewart P. S., and Greenberg E. P. Bacterial biofilms:a common cause of persistent infections [J]. Science,1999.284(5418):1318-22
    [105]Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms [J]. Microbes Infect,2003. 5(13):1213-9
    [106]Gilbert P., Collier P. J., and Brown M. R. Influence of growth rate on susceptibility to antimicrobial agents:biofilms, cell cycle, dormancy, and stringent response [J]. Antimicrob Agents Chemother,1990. 34(10):1865-8
    [107]Nikaido H. Prevention of drug access to bacterial targets:permeability barriers and active efflux [J] Science,1994.264(5157):382-8
    [108]Jacobs M A., Alwood A., Thaipisuttikul I., et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa [J]. Proc Natl Acad Sci U S A,2003.100(24):14339-44
    [109]Struble.J M. and Gill R. T Genome-scale identification method applied to find cryptic aminoglycoside resistance genes in Pseudomonas aeruginosa [J]. PLoS One,2009.4(11):e6576
    [110]Dotsch A. Becker T., Pommerenke C. et al. (ienomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother.20O9. 53(6):2522-31
    [111]Wiegand I., Marr A. K., Breidenstein E. B., et al. Mutator genes giving rise to decreased antibiotic susceptibility in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,2008.52(10):3810-3
    [112]Schurek K. N., Marr A. K., Taylor P. K., et al. Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,2008.52(12):4213-9
    [113]Breidenstein E. B., Khaira B. K., Wiegand I., et al. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility [J]. Antimicrob Agents Chemother, 2008.52(12):4486-91
    [114]Ausubel F. M., Brent R., Kingston R. E., et al.精编分子生物学实验指南[M].马学军,舒跃龙等.北京:科学出版社,2005
    [115]Sambrook J., E. G. Fritsch, and T. Maniatis., Molecular cloning:a laboratory manual,2nd ed [M]. Cold spring harbor laboratory, cold spring harbor.,1998
    [116]Liang H., Li L., Dong Z., et al. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production [J]. J Bacteriol,2008. 190(18):6217-27
    [117]Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences:application for isolation of unmarked Pseudomonas aeruginosa mutants [J]. Gene,1998.212(1):77-86
    [118]Ditta G., Stanfield S., Corbin D, et al. Broad host range DNA cloning system for gram-negative bacteria:construction of a gene bank of Rhizobium meliloti [J]. Proc Natl Acad Sci U S A,1980.77(12):7347-51
    [119]Kulasekara H. D., Ventre I., Kulasekara B. R., et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes [J]. Mol Microbiol,2005.55(2):368-80
    [120]Schweizer H. P. Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker [J]. Mol Microbiol,1992.6(9):1195-204
    [121]Hoang T. T., Kutchma A. J., Becher A., et al. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains [J]. Plasmid,2000. 43(1):59-72
    [122]孔丽萍.梁海华,董兆麟,段康民.沈立新.铜绿假单胞菌中一个新的吩嗪合成调节基因[J].徵生物学报,2008 48(9):1154-1159
    [123]Hidalgo A. A., Trombert A. N., Castro-Alonso J. C., et al. Insertions of mini-Tn10 transposon T-POP in Salmonella enterica sv. typhi [J]. Genetics,2004.167(3):1069-77
    [124]Das S., Noe J. C., Paik S., et al. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites [J]. J Microbiol Methods,2005.63(1):89-94
    [125]Kurachi and Mamoru. Studies on the Biosynthesis of Pyocyanine. (II):Isolation and Determination of Pyocyanine [J]. Bulletin of the Institute for Chemical Research, Kyoto University,1958.36(6):174-187
    [126]Dockter M. E. and Magnuson J. A. Characterization of the active transport of chlorotetracycline in staphylococcus aureus by a fluorescence technique [J]. J Supramol Struct,1974.2(1):32-44
    [127]Poole K., Tetro K., Zhao Q., et al. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa:mexR encodes a regulator of operon expression [J]. Antimicrob Agents Chemother, 1996.40(9):2021-8
    [128]Li X. Z., Nikaido H., and Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa [J].Antimicrob Agents Chemother,1995.39(9):1948-53
    [129]Poole K., Heinrichs D. E., and Neshat S. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa:regulation by iron and possible involvement in the secretion of the siderophore pyoverdine [J]. Mol Microbiol,1993.10(3):529-44
    [130]Pierson L. S.,3rd, Gaffney T., Lam S., et al. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84 [J]. FEMS Microbiol Lett, 1995.134(2-3):299-307
    [131]Mavrodi D. V, Ksenzenko V. N., Bonsall R. R, et al. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79 [J]. J Bacteriol,1998.180(9):2541-8
    [132]Mahajan-Miklos S., Tan M. W., Rahme L. G, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model [J]. cell,1999. 96(1):47-56
    [133]Mavrodi D. V., Bonsall R. F., Delaney S. M., et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1 [J]. J Bacteriol.2001. 183(21):6454-65
    [134]Mali T F. Pitts B., Pellock B et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature,2003.426(6964):306-10
    [135]Hancock R E and Spccrt D P Antibiotic resistance in Pscudomonus aeruginosa mechanisms and impact on treatment [J]. Drug Resist Updat,2000.3(4):247-255
    [136]孔维娜.铜绿假单胞菌中Ⅲ型分泌系统受Rhl和PQS群体感应系统调节[D].西安:西北大学,2009
    [137]Le O., Shen B., Iismaa S. E., et al. Azotobacter vinelandii mutS:nucleotide sequence and mutant analysis [J]. J Bacteriol,1993.175(23):7707-10
    [138]Lewenza S., Gardy J. L., Brinkman F. S., et al. Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen [J]. Genome Res,2005.15(2):321-9
    [139]Sobel M. L., Neshat S., and Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa [J]. J Bacteriol, 2005.187(4):1246-53
    [140]Henrichsen J. Bacterial surface translocation:a survey and a classification [J]. Bacteriol Rev,1972. 36(4):478-503
    [141]Allison C. and Hughes C. Bacterial swarming:an example of prokaryotic differentiation and multicellular behaviour [J]. Sci Prog,1991.75(298 Pt 3-4):403-22
    [142]Harshey R. M. Bees aren't the only ones:swarming in gram-negative bacteria [J]. Mol Microbiol, 1994.13(3):389-94
    [143]Qiu D., Eisinger V. M., Rowen D. W., et al. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa [J]. Proc Natl Acad Sci U S A,2007.104(19):8107-12
    [144]Xie Y, Jia W. X., Zeng W., et al. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance [J]. Chin Med J (Engl),2005.118(19):1615-22
    [145]Fath M. J. and Kolter R. ABC transporters:bacterial exporters [J]. Microbiol Rev,1993. 57(4):995-1017
    [146]Linton K. J., Cooper H. N., Hunter I. S., et al. An ABC-transporter from Streptomyces longisporoflavus confers resistance to the polyether-ionophore antibiotic tetronasin [J]. Mol Microbiol,1994. 11(4):777-85
    [147]Ehrmann M., Ehrle R., Hofmann E., et al. The ABC maltose transporter [J] Mol Microbiol,1998. 29(3):685-94
    [148]Holland I B and Blight M A ABC-ATI'ases. adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans [J]. J Mol Bid,1999.293(2) 381-99
    [149]Hosie A. H. and Poole P. S. Bacterial ABC transporters of amino acids [J]. Res Microbiol,2001. 152(3-4):259-70
    [150]Koster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12 [J]. Res Microbiol,2001.152(3-4):291-301
    [151]Mendez C. and Salas J. A. The role of ABC transporters in antibiotic-producing organisms:drug secretion and resistance mechanisms [J]. Res Microbiol,2001.152(3-4):341-50
    [152]Schneider E. ABC transporters catalyzing carbohydrate uptake [J]. Res Microbiol,2001. 152(3-4):303-10
    [153]Locher K. P., Lee A. T., and Rees D. C. The E. coli BtuCD structure:a framework for ABC transporter architecture and mechanism [J]. Science,2002.296(5570):1091-8
    [154]Higgins C. F. ABC transporters:physiology, structure and mechanism--an overview [J]. Res Microbiol,2001.152(3-4):205-10
    [155]Schmitt L. and Tampe R. Structure and mechanism of ABC transporters [J]. Curr Opin Struct Biol, 2002.12(6):754-60
    [156]Jones P. M. and George A. M. Mechanism of ABC transporters:a molecular dynamics simulation of a well characterized nucleotide-binding subunit [J]. Proc Natl Acad Sci U S A,2002.99(20):12639-44
    [157]Macfarlane E. L., Kwasnicka A., Ochs M. M., et al. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance [J]. Mol Microbiol,1999.34(2):305-16
    [158]Gooderham W.J., Gellatly S. L., Sanschagrin F., et al. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa [J]. Microbiology,2009.155(Pt 3):699-711
    [159]Gooderham W. J. and Hancock R. E. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa [J]. FEMS Microbiol Rev,2009 33(2):279-94
    [160]Mazzola M., Cook R. J., Thomashow L. S., et al. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats [J]. Appl Environ Microbiol,1992. 58(8)2616-24
    [161]Anjaiah V., Koedam N., Nowak-Thompson B., et al. Involvement of Phenazines and Anthranilate in the Antagonism of Pseudomonas aeruginosa PNA1 and Tn5 Derivatives Toward Fusarium spp and Pythium spp [J]. Molecular Plant-Microbe Interactions, 1998 11(9):847-854
    [162]Chin-A-Woeng T. F C. Bloemberg G V. van der Bij A. J., et al Biocontrol by Phenazine-l-carboxamide-Producing Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f. sp. radicis-lycopersici [J]. Molecular Plant-Microbe Interactions,1998. 11(11):1069-1077
    [163]Maddula V. S., Zhang Z., Pierson E. A., et al. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84 [J]. Microb Ecol,2006.52(2):289-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700