大亚湾惠阳海水网箱养殖生态系统的物质循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用野外调查及室内实验生态的方法研究了惠阳大亚湾海水网箱养殖区生态系统中碳、氮、硫、磷、钙、镁、铁、锌、铜、钼、硒、锶的分配与流动特征。分别测定饵料、养殖鱼类、网箱附着生物群落、海水、微生物、底栖生物、底泥中的元素分配及估算了流动速率,同时,在实验室测定了海水网箱养殖过程中自身污染物的形式与数量。
     不同种类的饵料、不同体重的饵料鱼中各组织的元素含量都会有差异。其中,各种饵料以及饵料鱼各组织的碳含量为215-483 mg/g,氮含量为52-133 mg/g,磷含量为8-80 mg/g,钙含量为2-154 mg/g。
     测定了卵形鲳鲹、不同性别的花尾胡椒鲷、不同体重的斜带石斑鱼以及这些鱼不同器官组织的碳、氮、硫、磷、钙、镁、铁、锌、铜、钼、硒、锶元素含量。这三种鱼所含的碳、氮、磷、钙平均为447.5mg/g、110.8mg/g、24.3 mg/g、38.7mg/g。种类、性别、体重影响了网箱养殖鱼类各器官组织的元素含量。
     在附着生物中,贻贝与牡蛎所占的生物量最大。经估算,养殖区附着生物群落所含的碳、氮、磷、钙分别为7.8×10~6g、9.0×10~5 g、6.8×10~4 g、1.3×10~7 g。测定了惠阳海水网箱养殖区及附近海域海水中氮、磷、钙、镁、铁、锌、锶等元素的时空变化。海水网箱养殖区海水中的氮、磷、钙含量分别为0.013-0.032mg/L、0.0048-0.0220 mg/L、64-180 mg/l。网箱养殖过程对养殖区海水元素含量产生显著影响,养殖区的氮、磷含量比非养殖区高(P<0.05),而钙、锶含量比非养殖区低(P<0.05)。
     设计了平板计数法与生物量一菌落标准曲线结合的实验方案,测定海水中细菌与真菌的生物量,分析菌体中碳、氮、硫、磷、钙、镁、铁、锌、铜、钼、硒、锶元素的含量。养殖区中细菌与真菌的生物量分别为5.4×10~(-4) mg/L、6.3×10~(-5)mg/L,细菌中所氮、磷、钙含量分别为78 mg/g、7.2 mg/g、41 mg/g。
     测定了惠阳海水网箱养殖区及附近海域底泥中碳、氮、硫、磷、钙、镁、铁、锌、铜、钼、硒、锶元素含量的时空变化,并分析了大型底栖生物的现存量与元素含量。养殖区底泥的碳、磷、钙、铜、锶含量高于非养殖区。养殖区底泥中的碳、钙含量分别14.8g/(L底泥)、30.6 g/(L底泥)。大型底栖生物中,贝类的生物量最高。养殖区大型底栖生物中的碳、钙分别为25.2 g/(L底泥)、43.7g/L底泥)。
     养殖过程中以饵料鱼投喂养殖动物产生的氮、磷、能量负荷以残饵、粪便、排尿、脱落物等形式存在,其中残饵分为骨、软组织、鳞,它们的元素含量有较大的差别。
     在不断接受投饵的海水网箱养殖生态系统中,各种元素在网箱、海水、底泥之间及养殖生态系统内外之间流动。惠阳大亚湾海水网箱养殖生态系统中的氮与磷不断向系统外输出。养殖区中存在象泵一样的机制,把钙从附近海区的海水中“泵”入养殖区,再“泵”入养殖区海底。
Distribution of carbon(C), nitrogen(N), sulfur(S), phosphorus(P), calcium(Ca), magnesium(Mg), iron(Fe), zinc(Zn), copper(Cu), molybdenum(Mo), selenium(Se), and strontium(Sr) in marine cage-culture ecosystem in Daya Bay was studied based on investigation in field and experiments in laboratory. Forage fish, cultural fish, epiorganisms on cages, seawater, microorganisms, benthos, and sediments in marine cage-culture areas were sampled in the field to measured element contents. Nitrogen and phosphorus waste outputs of four marine cage-cultured fish fed with trash fish were investigated under laboratory conditions.
     The elements were analyzed in forage fish, compound feed, some tissues of forage fish. The results showed that the concentrations of C, N, S, and Ca in feed were 215-483 mg/g, 52-133 mg/g, 8-80 mg/g, and 2-154 mg/go respectively. Concentration of elements in different species of forage fish and tissues in trash fish with different body weights varied. On average the levels of C, N, S, and Ca in cultural fish were 447.5mg/g, 10.8mg/g, 24.3 mg/g, and 38 .7mg/go respectively. There were sex, species, and body weight differences in element contents in tissues of cultural fish. Mussels and oysters predominated the periphyton communities on cages, and the epiorganisms in the cultural areas contained 7.8×10~6 g, 9.0×10~5 go 6.8×10~4 g, and 1.3×10~7 g of C, N, P, and Ca, respectively. Concentrations of N, P, and Ca of Seawater in cultural areas were 0.013-0.032 mg/L, 0.0048-0.0220 mg/L, and 64-180 mg/L, respectively. Induced by marine cage-culture, the N and P levels in cultural seawater were higher than those of seawater in control plots, but contents of Ca and Sr in seawater in cultural areas were higher than those of control plots. In the present study, a new method based on biomass-colony standard curve was established to measure biomass of bacteria and fungi. The biomasses of bacteria and fungi in cage-cultural seawater were 5.4×10~(-4) mg/L and 6.3×10~(-5) mg/L, respectively, and contents of N, P, and Ca in bacteria were 78 mg/g, 7.2 mg/g, and 41 mg/g, respectively. Contents of C, P, Ca, Cu, and Sr in sediments of cage-cultural areas were significantly higher than those of control plots. C and Ca levels in sediments in cage-cultural areas were 14.8 g·L fresh sediment~(-1) and 30.6 g·L fresh sediment~(-1), respectively. Mussels and oysters dominated the benthic communities in cage-cultural areas. C and Ca stored in bottom fauna of cage-cultural areas were 25.2 g·L fresh sediment~(-1) and 43.7 g·L fresh sediment~(-1), respectively.
     The results of laboratory experiments showed that waste outputs of cultured fish fed with trash fish were divided into soft tissues in uneaten feed, bones in uneaten feed, scales in uneaten feed, faeces, urine, caducous scales, and other parts. Element differences of these wastes were examined.
     In marine cage-culture ecosystem which always received feeds, elements were distributed in cages, seawater, and sediment, and some of elements were transported in or out the ecosystem. Some N and P transported by seawater moved out the ecosystem. There was a pump-like mechanism that Ca was pumped from seawater nearby to the cage-culture ecosystem, and then been sunk to the sediment.
引文
[1] 蔡树群,韦桂峰,王肇鼎.外源输入对大亚湾大鹏澳浮游生物影响的模拟研究[J].生态科学.2004.23(2):101-105.
    [2] 蔡泽平,陈浩如.大亚湾两种重要经济虾类热效应[J].生态学报.2005.25(5):1115-1122.
    [3] 陈菊芳,齐雨藻,徐宁,江天久,吕颂辉.大亚湾拟菱形藻水华及其在生物群落中的生态地位[J].海洋学报.2005.27(1):114-119.
    [4] 陈菊芳,齐雨藻,徐宁,王朝晖.大亚湾澳头水域浮游植物群落结构及周年数量动态[J].水生生物学报.2006.30(3):311-317.
    [5] 陈丽凤,马春,李沅.Zeeman石墨炉原子吸收法测定鱼肉中的硒[J].大连轻工业学院学报,2000,19(1):54-55
    [6] 陈琴,黄飞鹤.三种野生江河鱼类肌肉中矿物元素的组成分析[J].水产养殖.2001.(1):22-24.
    [7] 陈涛,林金錶,郭金富,陈琳.大亚湾真鲷资源状况研究[J].热带海洋学报.2003.22(3):30-35.
    [8] 陈学梅,缪绅裕,王厚麟,徐映梅.大亚湾红树植物群落生态学[J].广州师院学报(自然科学版).1999.20(2):90-94.
    [9] 陈炽新,邓韫,郑卓,张华.香港——大亚湾近岸海域表层沉积物的孢粉分布规律[J].热带海洋学报.2004.23(2):75-81.
    [10] 程舸,程惠贞,王厚麟,缪绅裕.大亚湾红树林研究Ⅲ.白骨壤和秋茄叶片2种酶活性及过氧化物酶同工酶谱[J].植物研究.2001.21(2):258-261.
    [11] 池继松,颜文,张干,郭玲利,刘国卿,刘向,邹世春.大亚湾海域多环芳烃和有机氯农药的高分辨率沉积记录[J].热带海洋学报.2005.24(6):44-52.
    [12] 崔淑芬,李文权,陈清花,郑爱榕,廖启斌.大亚湾颗粒有机物的来源[J].海洋通报.1999.18(2):44-51.
    [13] 邓永强,黄小丽.硒的生物学作用及其在水产上的研究[J].中国饲料.2005.16:22—24.
    [14] 杜飞雁,李纯厚,廖秀丽,贾晓平,王雪辉.大亚湾海域浮游动物生物量变化特征[J].海洋环境科学.2006.25(增刊1):37-39,43.
    [15] 广东省地图出版社编.广东省地图册[M].广州:广东省地图出版社,1997.4-141.
    [16] 国家海洋局发布.海洋监测规范[M].北京:海洋出版社,1991.634.
    [17] 韩志坚,宋益澄,张杰,张春遴.大亚湾海域流场数据同化的数值试验[J].暨南大学学报(自然科学版).2004.25(5):574-579.
    [18] 何悦强,郑庆华,温伟英,张银英.大亚湾海水网箱养殖与海洋环境相互影响研究[J].热带海洋.1996.15(2):22-27.
    [19] 何雪琴,温伟英,张观希,郑庆华,杜完成.大亚湾底栖生物重金属现状与评价[J].河海大学学报.2001.29(3):103-106.
    [20] 何玉新,黄小平,黄良民,许战州,岳维忠,张建林.大亚湾养殖海域营养盐的周年变化及其来源分析[J].海洋环境科学.2005.24(4):20-23.
    [21] 黄洪辉,林钦,甘居利,李纯厚.大鹏澳海水鱼类网箱养殖对沉积环境的影响[J].农业环境科学学报.2007.21(1):75-80.
    [22] 黄洪辉,林钦,林燕棠,贾晓平,李纯厚,王文质.大亚湾网箱养殖海域大型底栖动物的时空变化[J].中国环境科学.2005.25(4):412-416.
    [23] 黄乃明,林清,陈志东.西大亚湾海水中~3H浓度与大亚湾核电站液态~3H排放的相关性分析[J].辐射防护.2001.21(6):321-329.
    [24] 贾晓平,林钦,蔡文贵.大亚湾马鞭洲大型爆破对周围水域环境与海洋生物影响的评估[J].水产学报.2002.26(4):313-320.
    [25] 金宏,杨良玖,谭超.矿物质的营养作用及其在鱼饲料中的添加量[J].内陆水产.1993.(3):10-11.
    [26] 莱莉 C M,帕森斯 T R.(张志南,周红,等,译).生物海洋学导论[M].青岛:青岛海洋大学出版社.2000.
    [27] 李纯厚,林钦,张汉华,蔡文贵,黄洪辉,戴明.大亚湾大鹏澳网箱养殖水域的浮游植物生态特征研究[J].农业环境科学学报.2005.24(4):784-789.
    [28] 黎辉,何慧,金启增.大亚湾三种经济贝类的营养生态位及潜在产量评估[J].热带海洋.1999.18(4):53-60.
    [29] 李丽,张正斌,王肇鼎.纳米粒子在大亚湾痕量金属迁移和转换过程中的重要作用[J].青岛海洋大学学报.2001.31(2):269-274.
    [30] 李勤生,王业勤.水产养殖与微生物[M].武汉:武汉出版社,2000.53-133
    [31] 李勇,万熙卿.饲料添加剂使用与鉴别技术[M].北京:中国农业大学出版社.1998.
    [32] 李占东,林钦,黄洪辉.大鹏澳网箱养殖海域磷酸盐在沉积物——海水界面交换速率的研究[J].南方水产.2006.2(6):25-30.
    [33] 李植庭,钟广见,黄家坚.大亚湾北部地区工程地质特征[J].南海地质研究.2003.(00):108-114.
    [34] 李宗付,陈代文,余冰.镁的抗氧化功能及其作用机制[J].饲料工业,27(6):42-46
    [35] 梁超愉,张汉华,吴进锋.大亚湾潮间带生物种类组成、数量分布及生物多样性研究[J].南方水产.2005.1(3):42-48.
    [36] 廖秀丽,李纯厚,杜飞雁,林钦,贾晓平.大亚湾桡足类的生态学研究[J].南方水产.2006.2(4):46-53.
    [37] 林德芳,黄文强,关长涛.我国海水网箱养殖的现状、存在的问题及今后课题[J].齐鲁渔业.2002.19(1):21-23.
    [38] 林金錶,陈涛,陈琳,郭金富.大亚湾黑鲷标志放流技术[J].水产学报.2001.25(1):79-83.
    [39] 林炜,唐以杰,钟莲华.大亚湾潮间带软体动物分布和区系分类研究[J].广东教育学院学报.2002.22(2):63-72.
    [40] 林永成,周世宁.海洋微生物及其代谢产物[M].北京:化学工业出版社.2003.
    [41] 刘春颖,张正斌,刘莲生.大亚湾珊瑚礁痕量金属的研究[J].青岛海洋大学学报.2001.31(4):559-565.
    [42] 刘凌云,郑光美.普通动物学[M].北京:高等教育出版社.2004.
    [43] 刘胜,黄晖,黄良民,练健生,龙爱民,李涛.大亚湾核电站对海湾浮游植物群落的生态效应[J].海洋环境科学.2006.25(2):9-12,25.
    [44] 刘云旭,温伟英,王文介.大亚湾海域物理自净能力的时空差异性研究[J].热带海洋.1999.18(4):61-68.
    [45] 刘志皋.食品营养学[M].北京:中国轻工业出版社,1991.216-228
    [46] 卢博,张福生,黄韶健,李赶先.大亚湾表层沉积物性质及其对海水养殖的影响[J].台湾海峡.2002.21(4):489-496.
    [47] 陆奎贤,陈敬平.海淡水鱼类网箱养殖技术[M].广州:广东科技出版社.1997.1.
    [48] 卢玲,唐预顺.战培荣.鲤鱼、虹鳟卵中微量元素分析初报[J].水产学杂志.2001.14(1):58—60.
    [49] 茅力,陈逸君,朱育平.鲨鱼软骨粉中无机成分与形态分析[J].现代仪器,1998,(4):20-21,32
    [50] 牟德海,黄长江,张春遴,闫世平,舒永红,辜英杰,旬合,周凯.大亚湾沉积物中氨基 酸的垂直分布——沉积物柱样W0中的游离氨基酸[J].分析测试学报.2002.21(2):4-7.
    [51] 牟德海,宋海青,闫世平,舒永红,辜英杰,蔡大川.110Agm在大亚湾表层沉积物上的吸附和解吸[J].核化学与放射化学.2005.27(3):158-163.
    [52] 牛文涛,蔡泽平.大亚湾紫红笛鲷野生群体遗传多样性的RAPD分析[J].海洋通报.2006.25(2):87-92.
    [53] 潘萌,张春遴,张杰.大亚湾核电站周围大气流场监测数据同化分析[J].计算物理.2007.24(1):65-70.
    [54] 彭安国,黄奕普,刘广山,郑天凌,陈敏,王肇鼎,练健生,郑爱榕.大亚湾细菌生产力研究[J].海洋学报.2003.25(4):83-90.
    [55] 彭云飞,陈浩如,潘明祥,黄红辉,高红莲.大亚湾核电站运转前后邻近海域初级生产力及潜在渔获量初步研究[J].水产学报.2001.25(2):161-165.
    [56] 彭云飞,王肇鼎,孙丽华,韦桂峰,朱卓洪.大亚湾微表层和次表层海水营养盐的研究[J].台湾海峡.2002.21(3):310-316.
    [57] 丘耀文,王肇鼎,高红莲.大亚湾养殖海区沉积物中营养盐的解吸——吸附[J].热带海洋.2000.19(1):76-80.
    [58] 丘耀文,王肇鼎,高红莲,彭云辉.大亚湾养殖水域沉积物——海水界面营养盐扩散通量[J].热带海洋.1999.18(3):83-90.
    [59] 丘耀文,周俊良,Maskaoui K,颜文,洪华生,王肇鼎.大亚湾海域多氯联苯及有机氯农药研究[J].海洋环境科学.2002.21(1):46-51.
    [60] 沈承德,余克服,孙彦敏,易惟熙,杨英,周斌.南海大亚湾珊瑚1977-1998年核试验14C年际变化[J].中国科学(D辑).2003.33(6):529-534.
    [61] 石文雷,陆茂英.鱼虾蟹高效益饲料配方[M].北京:中国农业出版社.1998.
    [62] 舒迁飞,温琰茂,陆雍森,韦献革,周劲风,贾后磊.网箱养殖N、P物质平衡研究——以广东省哑铃湾网箱养殖研究为例[J].环境科学学报.2004.24(6):1046-1052.
    [63] 宋春梅,贾镭,杨中万,等.鱼鳔中无机盐含量测定分析[J].第四军医大学吉林医学院学报.2001.23(3):158-159.
    [64] 孙翠慈,王友绍,孙松,张凤琴.大亚湾浮游植物群落特征[J].生态学报.2006.26(12):3948-3958.
    [65] 孙未未,李华,肖璋.分裂步数拟谱法模拟两大亚湾海域的流场[J].安徽师范大学学报.2006.29(1):40-44.
    [66] 王爱民,丁小雷,邓凤姣,叶力,阎冰.马氏珠母贝大亚湾和三亚野生种群内自繁及种群间杂交一代的RAPD分析[J].海洋水产研究.2003.24(4):19-25.
    [67] 王道尊.鱼用配合饲料[M].北京:中国农业出版社.1995.114-129.
    [68] 王文强,韦献革,温琰茂.哑铃湾网箱养殖对表层沉积物的污染[J].热带海洋学报.2006.25(1):56-60.
    [69] 王学峰,李纯厚,贾晓平,赵汉取.海上施工对大亚湾海域水质的影响评价[J].湛江海洋大学学报.2006.26(1):80-83.
    [70] 王学锋,李纯厚,贾晓平,赵汉取,戴明.大亚湾冬春季微型浮游动物摄食研究[J].海洋环境科学.2006.25(增刊1):44-47.
    [71] 王雪辉,杜飞雁,邱永松,李纯厚,黄洪辉,孙典荣,贾晓平.大亚湾海域生态系统模型研究Ⅰ:能量流动模型初探[J].南方水产.2005.1(3):1-8.
    [72] 王冀平,寿红霞,李玉葵.浙江省12种常见鱼鱼卵中矿物元素的分析[J].现代科学仪器.2000.2:25—26
    [73] 王友慧,叶元土,林仕梅等.嘉陵江8种鱼类不同组织微量元素含量分析[J].动物学杂志.2005.40(5):99-103.
    [74] 王朝晖,陈菊芳,徐宁,齐雨藻.大亚湾澳头海域硅藻、甲藻的数量变动及其与环境因子的关系[J].海洋与湖沼.2005.36(2):186-192.
    [75] 王朝晖,齐雨藻,陈菊芳,徐宁.大亚湾角毛藻细胞数量波动及其与环境因子关系的多元分析[J].生态学报.2006.26(4):1096-1102.
    [76] 王朝晖,齐雨藻,李锦蓉,徐宁,陈菊芳.大亚湾养殖区营养盐状况分析与评价[J].海洋环境科学.2004.23(2):25-28.
    [77] 王朝晖,齐雨藻,江天久,许忠能.大亚湾近代沉积物中甲藻孢囊的垂直分布[J].水生生物学报.2004.28(5):504-510.
    [78] 韦桂峰.广东大亚湾西南部海域营养盐结构的长期变化[J].生态科学.2005.24(1):1-5.
    [79] 韦桂峰,王肇鼎,练健生.大亚湾大鹏澳水域春季浮游植物优势种的演替[J].生态学报.2003.23(11):2285-2292.
    [80] 韦献革,温琰茂,王文强,徐昕荣.哑铃湾网箱养殖区底层水中各种形态P的含量和季节变化[J].海洋环境科学.2005.24(4):28-32.
    [81] 吴传庆,王桥,王文杰,王昌佐.利用TM影像监测和评价大亚湾温排水热污染[J].中国环境监测.2006.22(3):80-84.
    [82] 吴建平,蔡创华,周毅频,吴灶和.大亚湾网箱养殖区异养细菌和弧菌的数量动态[J].湛江海洋大学学报.2006.26(3):21-25.
    [83] 吴京洪,杨秀环,唐宝英,张展霞,李锦蓉,梁舜华.大亚湾澳头增养殖区赤潮与环境的关系研究.Ⅱ.环境因子与微量元素主导型赤潮的关系研究[J].热带海洋学报.2002.21(3):23-30.
    [84] 吴瑞贞,高会旺,林端,蔡伟叙.大亚湾倾倒区海洋动力对疏浚物扩散的影响分析[J].台湾海峡.2006.25(1):89-95.
    [85] 夏真,陈太浩,赵庆献.多时相卫星遥感海岸线变迁研究[J].南海地质研究.2000.(00):102-108.
    [86] 肖岷,孙吉良,张世顺,阎术,安军靖,卢向晖.大亚湾核电站严重事故管理导则的审查和验证[J].核动力工程.2005.26(6):33-34,51.
    [87] 肖咏之,王朝晖,陈菊芳,吕颂辉,齐雨藻.广东大亚湾甲藻孢囊及其与锥状斯氏藻赤潮的关系[J].水生生物学报.2003.27(4):372-377.
    [88] 徐恭昭.大亚湾环境与资源[M].合肥:安徽科学技术出版社.1989.
    [89] 徐继荣,王友绍,张凤琴,孙翠慈,殷建平,王清吉,何磊.大亚湾海水中N_2O的分布特征与通量的初步研究[J].热带海洋学报.2006.25(3):63-68.
    [90] 徐昕荣,温琰茂,舒廷飞.哑铃湾网箱养殖海域磷的分布及其影响因素[J].海洋环境科学.2006.25(1):34-37.
    [91] 杨克敌.微量元素与健康[M.北京:科学出版社,2003.45-65,79-276
    [92] 杨俊诚,朱永懿,陈景坚,潘家荣,余柳青.137Cs不同污染水平在大亚湾、秦山、北京土壤-植物系统的转移[J].核农学报.2002.16(2):93-97.
    [93] 杨自军,龙塔,冉林武等.钼的生物学功能及其在动物生产中的作用[J].河南科技大学学报(农学版),2004,24(2):40-43
    [94] 殷建平,王友绍,徐继荣,孙翠慈,张凤琴.大亚湾温跃层形成及其对有关环境要素的影响[J].海洋通报.2006.25(4):1-8.
    [95] 余萍,刘艳如,林曦.河豚鱼内脏提取物的微量元素分析[J].微量元素与健康研究.1998.15(4):43—71.
    [96] 袁军亭,周应祺.深水网箱的分类及性能[J].上海水产大学学报.2006.15(3):350-358.
    [97] 张春遴,郑冬琴,胡国辉,周治发,金问龙,李源新.大亚湾核电站与燃煤电站放射性排出物对环境的影响[J].暨南大学学报(自然科学版).2000.21(5):31-36.
    [98] 张杰,张春遴,潘萌.潮汐对大亚湾核电站液态排出物~3H扩散的影响[J].辐射防护.2006.26(4):215-219.
    [99] 张锦炜,刘广虎,王功祥,马胜中.广东大亚湾海域潜在的地质灾害类型及其分布规律[J].海洋地质动态.2004.20(4):1-4.
    [100] 张录强.铜对人体及动物的生物学效应[J].生物学通报,1999,34(8):23
    [101] 中国科学院南海海洋研究所.南海海区综合调查研究报告[M].北京:科学出版社.1985.13~230.
    [102] 朱本华,肖璋,孔令丰.居民食用大亚湾海洋生物所致内照射剂量研究[J].生态科学.2005.24(2):124-126.
    [103] 瞿敏,邢前国,潘伟斌.大亚湾水质遥感监测指标分析[J].生态科学.2006.25(3):262-265.
    [104] Azevedo, P.A., Cho, C.Y., Leeson, S., and Bureau, D.P. Effects of feeding level and water temperature on growth, nutrient and energy utilization and waste outputs of rainbow trout (Oncorhynchus mykiss)[J]. Aquat. Living Resour. 1998. 11(4): 227-238.
    [105] Beaulieu S E. Resuspension of phytodetritus from the sea floor: A laboratory flume study[J]. Limnology and Oceanography. 2003. 48(3): 1235-1244.
    [106] Brinker, A., Koppe, W., Rosch, R. Optimised effluent treatment by stabilised trout faeces[J]. Aquaculture. 2005. 249:125-144.
    [107] Cancemi, G.., Falco, G. D., and Pergent, G. Effects of organic matter input from a fish farming facility on a Posidonia oceanica meadow[J]. Estuarine Coastal and Shelf Science. 2003.56: 961-968.
    [108] Cao J Z, Yeung M R, Wong S K, Ehrhardt J, and Yu K N. Adaptation of COSYMA and assessment of accident consequences for Daya Bay nuclear power plant in China[J]. Journal of Environmental Radioactivity. 2000. (48): 265-227.
    [109] Carriker M R., Swarm C P., Ewart J., and Counts Ⅲ C L. Ontogenetic trends of elements (Na to Sr) in prismatic shell of living Crassostrea virginica (Gmelin) grown in three ecologically dissimilar habitats for 28 weeks: a proton probe study[J]. Journal of Experimental Marine Biology and Ecology. 1996. 201: 87-135.
    [110] Carter, C.G., Houlihan, D.F., Owen, S.F. Protein synthesis, nitrogen excretion and long-term growth of juvenile Pleuronectes flesus[J]. Journal of Fish Biology. 1998. 53: 272-284.
    [111] Cho, C.Y. and Bureau, D.P. Development of bioenergetic models and the Fish-PrFEO software to estimate production, feeding ration and waste output in aquaculture[J]. Aquat. Living Resour. 1998. 11(4):199-210.
    [112] Cottrell, M. T. and Kirchman, D. L. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary[J]. Limnology and Oceanography. 2003.48(1):168-178.
    [113] Davies, I.M. and Slaski, R.J. Waste production by farmed Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Aquaculture. 2003. 219: 495-502.
    [114] Decho A W and Lnoma S N. Flexible digestion strategies and trace metal assimilation in marine bivalves[J]. Limnology and Oceanography. 1996. 41(3): 568-572.
    [115] Deigado, O., Ruiz, J., Pérez, M., Romero, J., and Ballesteros, E. Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation[J]. Oceanologica Acta. 1999. 22(1): 109-117.
    [116] Deutsch C, Sarmiento J L, Sigman D M, Gruber N, and Dunne J P. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature. 2007. 445: 163-167.
    [117] Dosdat, A., Servais, F., Métailler, R., Huelvan, C., and Desbruyères, E. Comparison of nitrogenous losses in five teleost fish species[J]. Aquaculture. 1996. 141: 107-127.
    [118] Erickson Ⅲ, D. J., Zepp, R. G, and Atlas, E. Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases[J]. Chemosphere-Global Change Science. 2000. 2: 137-149.
    [119] Gage, D. A., Rhodes, D., Nolte, K. D., Hicks, W. A., Leustek, T., Cooper, A. J. L., and Hanson, A. D. A new route for synthesis of dimethylsulphoniopropionate in marine algae[J]. Nature. 1997. 387: 891-894.
    [120] Garcia-Ruiz, R. and Hall, G.H. Phosphorus fractionation and mobility in the food and faeces of hatchery reared rainbow trout (Onchorhynchus mykiss)[J]. Aquaculture. 1996. 145: 183-193.
    [121] Grisdale-Helland, B., Helland, S.J. Macronutrient utilization by Atlantic halibut (Hippoglossus hippoglossus): diet digestibility and growth of 1 kg fish[J]. Aquaculture. 1998. 166: 57-65.
    [122] Hahn R L. Two proposals to measure antineutrinos: At the Braidwood(USA) and the Daya Bay(PRC) reactors[J]. Progress in Particle and Nuclear Physics. 2006. (57): 134-143.
    [123] Hansen P. J. and Bjornsen P. K. Zooplankton grazing and growth: Scaling within the 2-2,000-μ m body size range[J]. Limnology and Oceanography. 1997. 42(4): 687-704.
    [124] He X H, Tong J J, and Chen J F. Maintenance risk management in Daya Bay nuclear power plant: PSA model, tools and applications[J]. Progress in Nuclear Energy. 2007. (49): 103-112.
    [125] Heldal, M., D. J. Scardan, S. Norland, F. Thingstad, and N. H. Mann, Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis[J]. Linmology and Oceanography. 2003. 48(5):1732-1743.
    [126] Holmer, M., Marbá, N., Terrados, J., Duarte, C.M., and Fortes M.D. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines[J]. Marine Pollution Bulletin. 2002. 44: 685-696.
    [127] Horn, M.H., Mailhiot, K.E, Fris, M.B., and McClanahan, LL. Growth, consumption, assimilation and excretion in the marine herbivorous fish Cebidichthys violaceus (Girard) fed natural and high protein diets[J]. Journal of Experimental Marine Biology and Ecology. 1995. 190: 97-108.
    [128] Huguenin J. E. The design, operations and economics of cage culture systems[J]. Aquacultural engineering. 1997. 16: 167-203.
    [129] Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., and Mann, S. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major[J]. Journal of Structural Biology. 2003. 142: 327-333.
    [130] Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development[J]. Marine Pollution Bulletin. 2005.50: 48-61.
    [131] Islam, M.S., Sarker, M.J., Yamamoto, T., Wahab, M.A., and Tanaka, M. Water and sediment quality, partial mass budget and effluent N loading in coastal brackish water shrimp farms in Bangladesh[J]. Marine Pollution Bulletin. 2004. 48: 471-485.
    [132] Janis, C.M. Proposed habitats of early tetrapods: gills, kidneys, and the water-land transition[J]. Zoological Journal of the Linnean Society. 1999. 126: 117-126.
    [133] Johnson, D., Campbell, C. D., Lee, J. A., Callaghan, T. V., & Dylan, G. Arctic microorganisms respond more to elevated UV-B radiation than CO_2[J]. Nature. 2002. 416: 82-83.
    [134] Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K-N., and Plaiti, W. Impact of cage fanning of fish on the seabed in three Mediterranean coastal areas[J]. ICES Journal of Marine Science. 2000. 57: 1462-1471.
    [135] Kaushik, SJ. Nutritional bioenergetics and estimation of waste production in non-salmonids[J]. Aquat. Living Resour. 1998. 11(4): 211-217.
    [136] Kaushik, SJ., Coves, D., Dutto, G, and Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax[J]. Aquaculture. 2004. 230: 391-404.
    [137] Kogure, K. and Koike, I. Particle Counter Determination of Bacterial Biomass in Seawater[J]. Applied and environmental microbiology. 1987. 53(2): 274-277.
    [138] Kolsater, L. Feed management and reduction of aquaculture wastes[J]. War. Sci. Tech. 1995.31(10): 213-218.
    [139] Lopez-Garcia, Purificacion, Francisco Rodriguez-Valera, et al. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton[J]. Nature. 2001. 409: 603-607.
    [140] McGoogan, B.B. and Gatlin Ⅲ, D.M. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus: Ⅰ. Effects of dietary protein and energy levels[J]. Aquaculture. 1999. 178: 333-348.
    [141] Nagata T., Meon B., and Kirchman D. L. Microbial degradation of peptidoglycan in seawater[J]. Limnology and Oceanography, 2003. 48(2): 745-754.
    [142] Owen, S.F. Meeting energy budgets by modulation of behaviour and physiology in the eel (Anguilla anguilla L.)[J]. Comparative Biochemistry and Physiology Part A. 2001. 128: 631-644.
    [143] Paspatis, M., Boujard, T., Maragoudaki, D., and Kentouri, M. European sea bass growth and N and P loss under different feeding practices[J]. Aquaculture. 2000. 184: 77-88.
    [144] Pathgeber C., Yurkova N., Stackebrandt E., Schumann P., Humphrey E., Beatty J. T., and Yurkov V.. Metalloid Reducing Bacteria Isolated from Deep Ocean Hydrothermal Vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov[J]. Current Microbiology. 2006. 53: 449-456.
    [145] Pérez O. M., Ross L. G., Teller T. C., del Campo Barquin L. M. Water quality requirements for marine fish cage site selection in Tenerife ( Canary Islands): predictive modeling and analysis using GIS[J]. Aquaculture. 2003a. 224: 51-68.
    [146] Pérez O. M., Teller T. C., and Ross L. G. On the calculation of wave climate for offshore cage culture site selection: a case study in Tenerife(Canary Islands)[J]. Aquacultural Engineering. 2003b. 29: 1-21.
    [147] Petrell R. J., Shi X., Ward R. K., Naiberg A., and Savage C. R. Determing fish size and swimming speed in cages and tanks using simple video techniques[J]. Aquacultural Engineering. 1997. 16: 63-84.
    [148] Piedrahita, R. H. Calculation of pH in fresh and sea water aquaculture systems[J]. Aquacultural engineering. 1995.14(4): 331-346.
    [149] Porrello, S. Tomassetti, P., Manzneto, L., Finoia, M.G., Persia, E., Mercatali, I., and Stipa, P. The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea[J]. Aquaculture. 2005. 249: 145-158.
    [150] Qian, P.Y., Wu, M.C.S., and Ni, I.H. Comparison of nutrients release among some maricultured animals[J]. Aquaculture. 2001.200: 305-316.
    [151] Roy, P, K. and Lall, S.E Urinary phosphorus excretion in haddock, Melanogrammus aeglefinus (L.) and Atlantic salmon, Salmo salar (L.)[J]. Aquaculture. 2004. 233: 369-382.
    [152] Simo, R. and Pedres-Alie, C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide[J]. Nature. 1999. 402: 396-399.
    [153] Smolyar, I.V. and Bromage, T.G Discrete model of fish scale incremental pattern: a formalization of the 2D anisotropic structure[J]. ICES Journal of Marine Science. 2004. 61: 992-1003.
    [154] Song, X.Y., Huang, L.M., Zhang, J.L., Huang, X.P., Zhang, J.B., Yin, J.Q., Tan, Y.H., and Liu, S. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer[J]. Marine Pollution Bulletin. 2004. 49: 1036-1044.
    [155] Struck, U., Altenbach, A.V., Emeis, K.C., Alheit, J., Eichner, C., and Schneider, R. Changes of the upwelling rates of nitrate preserved in the δ ~(15)N-signature of sediments and fish scales from the diatomaceous mud belt of Namibia[J]. Geobios. 2002. 35: 3-11.
    [156] Sunda, W., Kleber, D. J., Klene, R. P., & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae[J], Nature. 2002. 418: 317-320.
    [157] Tacon, A.G.J. and Forster, I.P. Aquafeeds and the environment: policy implications[J]. Aquaculture. 2003. 226: 181-189.
    [158] Tang D L, Kester D R, Wang Z D, Lian J S, and Kawamura H. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China[J]. Remote Sensing of Environment. 2003. (84): 506-515.
    [159] Terjesen, B.E, Finn, R.N., Norberg, B., and Ronnestad, I. Kinetics and fates of ammonia, urea, and uric acid during oocyte maturation and ontogeny of the Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Comparative Biochemistry and Physiology Part A. 2002. 131: 443-455.
    [160] Thoman, E.S., Ingall, E.D., Davis, D.A., and Arnold, C.R. A nitrogen budget for a closed, recirculating mariculture system[J]. Aquaculturai Engineering. 2001.24: 195-211.
    [161] Vielma, J., Lall, S.P., Koskela, J., and Mattila, P. Influence of low dietary cholecalciferol intake on phosphorus and trace element metabolism by rainbow trout (Oncorhynchus mykiss, Walbaum)[J]. Comparative Biochemistry and Physiology Part A. 1999. 122: 117-125.
    [162] Vuorio, K., Lagus, A. Lehtimaki, J.M., Suomela, J., and Helminen, H. Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios in the northern Baltic Sea[J]. Journal of Experimental Marine Biology and Ecology. 2005. 322: 39-52.
    [163] Wang, Z. H., Qi, Y. Z., Chen, J. F., Xu, N., and Yang, Y. F. Phytoplankton abundance, community structure and nutrients in cultural areas of Daya Bay, South China Sea[J]. Journal of Marine Systems. 2006. (62): 85-94.
    [164] Watson, S. W., Novitsky, T. J., Quinby, H L and Valois, F W. Determination of bacterial number and biomass in the marine environment[J]. Applied and environmental microbiology. 1977. 33(4): 940-946.
    [165] Webb Jr., K.A. and Gatlin Ⅲ, D.M. Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum Sciaenops ocellatus[J]. Aquaculture. 2003. 225: 17-26.
    [166] Wilkie, M.P. Mechanisms of ammonia excretion across fish gills[J]. Comp. Biochem. Physiol. 1997. 118A(1): 39-50.
    [167] Wolfe, G. V., Steinke, M., & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga[J]. Nature. 1997. 387: 894-897.
    [168] Wu, R.S.S., Shin, P.K.S., MacKay, D.W., Mollowney, M., and Johnson, D. Management of marine fish farming in the sub-tropical environment: a modelling approach[J]. Aquaculture. 1999. 174: 279-298.
    [169] Xie, S.Q., Cui, Y.B., Yang, Y.X., and Liu, J.K. Effect of body size on growth and energy budget of Nile tilapia, Oreochromis niloticus[J]. Aquaculture. 1997. 157: 25-34.
    [170] Yi, Y., Lin, C.K., and Diana, J.S. Hybrid catfish (Clarias macrocephalus×C. gariepinus) and Nile tilapia (Oreochromis niloticus) culture in an integrated pen-cum-pond system: growth performance and nutrient budgets[J]. Aquaculture. 2003. 217: 395-408.
    [171] Yokoyama H., Abo K., and lshihi Y. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios[J].Aquaculture. 2006. 254: 411-425.
    [172] Zhou J L and Maskaoui K. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China[J]. Environmental Pollution. 2003. (121): 269-281.
    [173] Zhou J L, Maskaoui K, Qiu Y W, Hong H S, and Wang Z D. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China[J]. Environmental Pollution. 2001. (113): 373-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700