基于数字示波器的环境电磁波测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国防高功率微波武器研究中,所产生的高能微波脉冲具有功率高,脉宽窄,占空比低等特点,由于其脉冲峰值很高,因此会对人体和设备造成严重危害。目前,场强测量主要集中在频域范围内,没有时域场强标准,而现有的频域方法无法完成对该类脉冲信号的测量,超低占空比的瞬态窄脉冲电磁波测量是我国环境电磁波测量研究和评价中的一个空白。
     本论文从超低占空比的窄脉冲环境电磁波测量和环境评价的需求出发,分析了现有标准对这类信号测量和评价时存在的不足,设计并实现了一套基于数字示波器的时域场强测量系统,主要用于测量环境中距离辐射源在不同距离上瞬态脉冲信号的电场强度,并利用现行有效的标准作为判定依据,做出是否对人体造成危害的判断。在对该系统进行理论分析和实验验证中,以连续波为激励信号,与现行标准规定的非选频式宽带辐射测量仪器(PMM8053B电磁辐射分析仪)和选频式辐射测量仪器(ESI40测量接收机)测量结果比较,证明基于数字示波器的测量系统测量结果与这两套系统有很好的一致性。完成了窗函数对傅里叶变换的影响分析,并对宽带信号的复合场强利用不同算法完成数值模拟,研究出了一种适合计算调制脉冲信号复合场强的计算方法:峰值算术和法。
     在分析宽带信号中各分频信号功率与总信号功率的关系时,得出宽带信号总电压为各分频信号电压线性和,与仿真结果一致;并且数字示波器测量系统不受占空比的影响,其实验结果与仿真结果取得了较好的一致性,比现行标准规定的两套测量系统更加适用于调制脉冲信号复合场强测量。
     另外,本文还对该系统测量电场强度结果的不确定度进行了评定,其扩展不确定度为2.8 dB。
     在实验过程中用到了一些环境电磁波测量和电磁辐射防护的相关标准,随着实验的深入发现了这些国标中在一些关键内容上含义模糊,而且不同标准之间存在内容不统一的现象,对这些问题提出一些改进的观点和建议,对复合场强的计算、脉冲场强限值、远近场等内容进行了较为详细的讨论。希望能为以后的标准修订工作提供帮助。
In the defense industry, high power microwave weapons (HPW) can emit high-energy pulse, which has the characteristic of high power, narrow pulse and low duty cycle, by the antennas. Its high peaks will harm human and damage equipment seriously. At present, the measurements of electromagnetic field strength are mainly concentrated in frequency domain range, without time domain standards. The frequency domain method of standard cannot measure this kind of pulse signal. It is a blind spot to measure and evaluate ultra-low duty cycle transient pulse in our country.
     This paper is for the environment electromagnetic measurement and evaluation demands of the narrow and ultra-low duty cycle pulses and the limitation of this kind of signal measurement and evaluation through present standards is discussed. A set requirement of time domain environment electromagnetic test system is designed based on digital oscilloscope to the need of test narrow width and low duty cycle pulse. This system is mainly used for test different distance environment electric intensity of pulse signal and use the prevailing standards to judge whether it will harm to human. The continuous wave is excitation signal in the system theoretical analysis and experimental verification, by the current standards of the frequency selective type broadband radiation test instruments (PMM8053B electromagnetic radiation analyzer) and frequency selective radiometric (ESI40 EMI Test Receiver), proofing the measurement system based on digital oscilloscopes measurement results and other two systems'good uniformity. The impact analysis is completed from window function to FFT. Peak plus method is developed to suit for calculating modulation pulse signal by numerical simulation of the calculation method of comprehensive intensity of field.
     When analyes the relationship between total power and each frequency power, the line relationship between broadband signals and each frequency of voltage is discovered, and the duty cycle has no influence on the digital oscilloscopes measurement system,which are consisted with simulation results.so the digital oscilloscope measurement system is more suitable to modulate pulse signal comprehensive intensity of field measurements than other two systems.
     Furthermore, this paper introduces the expanded uncertainty of the system in measuring electromagnetic intensity of field is 2.8 dB.
     When use the related standards about environmental electromagnetic wave measurement and radiation protection, there are some fuzzy key contents and incoherency between those standards. Comprehensive intensity of field calculation, pulse intensity of field and near and far field are also discussed in detail. Some suggestions were put forward to expecting to provide help in future standards recession.
引文
[1]王聚杰,焦培南,凡俊梅,耿友林.城市居民电磁环境测量分析与评价[J].电波科学学报,2000,15(3):260-262.
    [2]赵素林.电磁环境辐射的监测管理自动化[D].硕士论文.西安:西安电子科技大,2006.
    [3]张林昌.电磁环境与生态[A].中国科学基金.1994,169-170.
    [4]王亚楠.电磁生物效应与电磁环境监测系统[D].硕士论文.北京:北京邮电大学,2007.
    [5]王善雨,高春玉,谢宁.军事作业环境的电磁辐射及防护[J].解放军预防医学杂志,2009,27(3):230-231.
    [6]高攸纲,张苏慧.电磁环境对人体健康的危害效应和剂量学中存在的若干问题[J].安全与电磁兼容,2004,(6):36-37.
    [7]赖祖武.高功率微波及核电磁脉冲的防护问题[J].微波学报,1995,11(1):5-6.
    [8]倪国旗,高本庆.高功率微波武器系统综述[J].火力与指挥控制,2007,32(8):8-9.
    [9]高攸纲,张苏慧.电磁辐射的生物效应[J].安全与电磁兼容,2002,(6):49-51.
    [10]张丽,李莹,刘学成.射频电磁辐射计量学的新进展[J].职业卫生与应急救援,2009,27(2):99.
    [11]IEEE C95.1—2005, IEEE Standard for Safety levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields,,3kHz to 300GHz[S].
    [12]刘宝华,孔令丰,郭兴明.国内外现行电磁辐射防护标准介绍与比较[J].辐射防护,2008,28(1):51-52.
    [13]ICNIRP Guidelines:Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (up to 300GHz) [S].
    [14]GB8702—88,电磁辐射防护规定[S].
    [15]介晓坤.关于我国环境辐射防护标准的几点思考[J].中国环境管理干部学院学报,2009,19(1):42.
    [16]王善雨,高春玉,谢宁.军事作业环境的电磁辐射及防护[J].解放军预防医学杂志,2009,27(3):230-231.
    [17]王长清,祝西里.脉冲电磁波对人体作用的研究[J].电子学报,1994,22(6):86-87.
    [18]谢处方,饶克谨.电磁场与电磁波[M].第四版,北京:高等教育出版社,2007,192-196.
    [19]黄春锋,吴建平.环境电磁辐射的监测方法[J].环境研究与监测,2009,22(4):42-43.
    [20]李丽智.便携式环境电场测试仪的设计[D].硕士论文.西安:西安电子科技大学,2008,
    [21]HJ/T10.2—1996,辐射环境保护管理导则—电磁辐射监测仪器和方法[S].
    [22]GB 9175—88,环境电磁波卫生标准[S].
    [23]朱艺婷.环境电磁功能区划研究[D].硕士论文,杭州:浙江大学,2008.
    [24]占天祥,王厚军,习友宝,詹惠琴等.电子测量原理[M].第一版,北京:机械工业出版社,2006,247-249,309-311.
    [25]"The Fundamentals of Signal Analysis". Agilent Technologies. Application Note 243.
    [26]郑君里,应启珩,杨为理.信号与系统[M].第二版,北京:高等教育出版社,1999:113-119.
    [27]国防科工委科技与计量司组织编写.无线电电子学计量下册[M].第一版,北京:原子能出版社,2002:757-758.
    [28]刘顺畅,聂鑫,陈向跃.电磁脉冲辐射场实验技术[J].强激光与粒子束,2009,21(6):940-941.
    [29]如何对低占空比脉冲信号进行测量盒分析(上)[J].实践心得,2008,27(7):71-73.
    [30]李廷.计量检测中测量不确定度及计算方法举例[A].第十二届(天津)2006IT、网络、信息技术、电子、仪器仪表创新学术会议[A],天津,2006:169-170.
    [31]国防科工委科技与质量司组织编写.计量基础知识[M].第一版,北京:原子能出版社,2002:240-244.
    [32]JJF1059—1999,测量不确定度评定与表示[S].
    [33]李群岭,王拓,王建忠.电磁辐射测量仪对测量结果的影响分析.四川环境,2011,30(3)
    [34]电场、磁场、电磁场防护规定(征求意见稿)[S].
    [35]IEEE STD 1309—2005 IEEESTANDARD FOR CALIBRATION OF EM FIELD SENSORS AND PROBES[S].
    [36]介晓坤.关于我国环境辐射防护标准的几点思考[J].中国环境管理干部学院学报,2009,19(1):43.
    [37]许正平,姜槐.对中国电磁场曝露限值依据的探讨[J].中华预防医学杂志,2004,38(1):58.
    [38]SANDWEISS I.On the cyclotron resonance model of ion transport [J]. Bioelectromagnetic,1990, 11(2):203-205.
    [39]孔令丰,刘宝华.电磁辐射防护标准研究及探讨[J].中国职业医学,2007,34(3):232-233.
    [40]黄裕年.高功率微波武器技术的发展评述[J].微波学报,1999,15(4):354.
    [41]田小凌,汪卫华,宣源.高功率微波脉冲与目标耦合效应研究现状及发展趋势[J].飞航导弹,2009,4:38.
    [42]牛忠霞.高功率微波与空间电磁环境[J].现代雷达,2009,31(6):2-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700