老油田复杂油藏剩余油分布的新领域研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以葡、敖油田葡I油组窄、薄砂岩油藏为例,综合运用油藏开发地质学理论和方法,利用地震、地质、测井、试油试采和开发动态等资料,通过深入研究具有不同开发特征的油藏类型、低级序断层、储层空间构型和窜流通道对剩余油的控制作用,从油藏、油层、单砂体、层内,分四个层次阐述剩余油的分布规律,揭示窄、薄砂岩油藏剩余油分布的新领域并提出相应的挖潜对策。
     论文所取得的主要成果有以下几方面:
     (1)根据窄、薄砂岩油藏的储层构型划分方案,开展了砂体空间构型研究。从垂向和平面两个方面逐步进行砂体解剖,垂向上利用泥质夹层、钙质夹层等六级结构面确定单期次的河道砂体;平面上则根据邻井砂体测井曲线形态及厚度的变化趋势等确定出单体河道边界,从而识别出复合河道砂体内的单河道砂体。葡、敖油田水下分流河道窄、薄砂岩油藏的单砂体的空间分布特征主要有4种,分别是:孤立式单成因砂体、对接式单成因砂体、切叠式单成因砂体和叠加式单成因砂体。对接式单成因砂体空间分布特征在窄、薄砂岩油藏中比较多见。
     (2)在储层构型研究的基础上,建立了基于单成因砂体的三维精细地质模型,通过对单成因砂体地质模型进行数值模拟,结合含油饱和度分布特征,从单成因砂体的结构尤其是夹层和单成因砂体拼合部位的渗流屏障等角度,探讨其对开发以及剩余油的形成与分布的影响,对接式单成因砂体的对接部位其剩余油较为富集。
     (3)遵循“关联度法定向,监测资料定层,动态分析定时”的原则可以在多油层合注合采条件下进行窜流通道的定量识别,关联度法可以在一个注采单元内圈定窜流通道的发育方向;根据高精度注入、产出剖面等测试资料识别窜流通道的发育层位;应用动态分析手段可以判断窜流通道的形成时间。取心井资料研究表明,窄薄砂岩油藏底部发育的窜流通道导致大量的无效水循环,顶部形成剩余油富集区。渗透率级差、注采强度、地下原油黏度越大,优势窜流通道越明显,受窜流通道屏蔽的剩余油富集程度越高。
     (4)通过高分辨率三维地震资料解释低级序断层,依据断点的平面分布情况,断层的性质、倾向、断距变化情况、断点位置及区域应力场的变化情况来进行断层组合。研究低级序断层特征、成因及对剩余油的控制作用。研究表明,低级序断层的侧向封闭能力较差,受其发育规模和封闭性的局限性,要与微构造和砂体共同作用才能对剩余油起到较好的遮挡作用。受断层分割形成的剩余油主要有5种类型,主要分布在断层的连接点附近,是断层控制的剩余油的主要富集区。
     (5)从开发角度对油藏类型进行定量划分的研究,建立了一套适应开发中后期油藏分类和储量动用状况的评价方法。运用油藏工程方法,结合油田的开发实际,以油藏类型为单位进行了储量动用状况的评价,发现剩余储量仍集中于构造油藏的一、二类油藏中,为井网的合理部署和剩余油的有效挖潜提供依据。
     (6)充分利用加密井取心资料、各种监测资料及数值模拟统计结果,从油藏、油层、单砂体、层内,四个层次阐述了窄、薄砂岩油藏剩余油的分布规律。研究表明:油藏规模的剩余储量仍集中于构造油藏的一、二类油藏中,对于不同圈闭成因的油藏来说,剩余油丰度的排列顺序为:构造油藏〉构造-岩性油藏〉岩性油藏;对于构造油藏的细分类别,剩余油丰度随着油藏所处构造位置的降低而降低。油层规模剩余油的形成主要受油层的平面和层间非均质影响,具体包括:沉积微相、储集层性质、砂体平面连通状况、微幅度构造、断层及层间干扰等开发条件的影响。
     (7)在储层精细结构解剖、优势窜流通道识别、数值模拟、低级序断层研究、油藏综合评价等动静态结合研究基础上,提出了葡、敖油田窄、薄砂岩油藏剩余油分布的新领域:①由于单砂体的空间分布结构与注采井网匹配性较差所导致的注入水无法驱到的剩余油;②受优势窜流通道屏蔽的剩余油;③低级序断层、微构造和砂体共同遮挡形成的剩余油。
     (8)基于葡、敖油田不同类型的剩余油形成方式及分布特点,提出了相应的挖潜对策。部分措施已经付诸实施,并取得了良好的挖潜效果,有效指导了油藏的高效开发。研究不仅对葡、敖油田具有重要意义,而且对其它类似油田也具有一定借鉴价值。
Taking the narrow and thin sandstone reservoir of pu I oil group in Putaohua and Aobaota oilfield as a case,with the data of seismic, geology, well logging, well test and early production test, the paper deeply studied the controlling function of the reservoir type, the low-grade fault, reservoir architecture and the channeling path on the remaining oil under the theory and method of reservoir geology, described the law of the distribution of remaining oil on four scales: reservoir, layer, single sand body, and internal layer, finally revealed new area of remaining oil in the narrow and thin sandstone reservoirs and proposed the corresponding potential exploitation measures.
     The paper achieved some innovational scientific payoffs. Main achievements of the study are summarized as following:
     (1) According to the classification scheme of the narrow and thin sandstone reservoir, the paper carried out the reservoir architecture study. The sand body was analyzed from both vertical and horizontal aspect to identify the channel boundary, with the six class structural surface,such as muddy intercalation, calcareous intercalation in the vertical; based on the form of logs and the changes of the thickness of sandbody in the adjacent wells in the horizontal, thus the single sand body was recognized in the composite channels. The architectures of the single channel of the Putaohua and Aobaota oilfield are mainly four kinds: isolated monogene sand body, butt jointed monogene sand body, cutting piled monogene sand body and superposed monogene sand body, among them, the butt jointed is common in the narrow and thin sand body reservoir.
     (2) On the basis of the reservoir architecture study, a 3D geological model was set up. Through numerical simulation, combining with the oil saturation distribution, the paper discussed the influence of the architecture, especially the intercalated layer, and the flow barrier in the jointed place on the exploitation and the remaining oil distribution. The butt jointed monogene sand body has a rich remaining oil accumulation.
     (3) Following the rule "degree of association to decide direction, monitoring data to decide layer, dynamic analysis to decide time", the channeling paths can be identified under the condition of commingled water injection and oil extraction. Degree of association can block out the development direction of the channeling paths; based on the high accuracy injection and production data can identify the layer of the channeling paths; the dynamic data can be used to judge the time the channel paths formed. The study of the cored well shows that the development of channeling paths in the narrow and thin sandstone reservoir can hinder the formation of remaining oil.
     (4) With the low-grade faults interpreted by the high-resolution 3D seismic data, the faults were assemblaged based on the changes of the plane distribution of the breakpoints, the fault character, dip direction, fault displacement, breakpoint location and regional of stress. The paper studied how the characteristics of the low-grade fault, the genesis and the fault lateral sealing control the remaining oil distribution. The study shows that the low-grade fault, under the limitation of its scale and sealing property, can play better on barring oil migrating with the coordination of micro-relief structure and sand body. The remaining oil caused by the fault cut is mainly five kinds, and the enriched area distributed near the fault joint.
     (5) Through the quantitative research on the reservoir type from the development point of view, a set of evaluation system suiting for reservoir classification and producing reserves in middle and late development stage was established. Using the reservoir engineering method, combined with the development reality, the evaluation was carried out, which provided more effective evidence to dispose the well pattern arrangement and exploit the remaining oil.
     (6) Making full use of the data of cored well, monitoring data and numerical simulation results, the paper described the law of the distribution of remaining oil from four different levels: reservoir, layer, single sand body and internal layer. The study indicates that the remaining reserve of reservoir size is still concentrated in the first and second type reservoir, both structural reservoirs. To different trap genesis, the abundance of remaining oil is structural reservoir> structural - lithologic reservoir> lithologic reservoir. Also, the abundance reduces as the structural location becomes lower. The formation of remaining reserve of oil layer size is affected by the plane and interplayer heterogeneity, including sedimentary face, reservoir property, the plane connectivity of the sand body, micro-relief structure, fault and inter zone interferences, etc.
     (7) Based on the research of the reservoir architecture analysis, the identification of channeling paths, numerical simulation, study of the low-grade fault and comprehensive evaluation of the reservoir, a frontier of remaining oil distribution is proposed: firstly, the remaining oil caused by the sand body architecture with improper injection patterns; secondly, the remaining oil hindered by the channeling paths; thirdly, the remaining oil controlled intergratedly by the low-grade fault, micro-relief structure and sand body.
     (8)The strategies of potential tapping have been proposed according to the formation and distribution characteristics of remaining oil, and some of which succeeded with better effects. This research is of great significance not only in the peripheral oilfields in Daqing but also in other similar oilfields.
引文
[1]韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.
    [2]林承焰.剩余油形成与分布[M].山东东营:石油大学出版社, 2000:39-44,57-76.
    [3]郭平,冉新权,徐艳梅,等.剩余油分布研究方法[M].北京:石油工业出版社,2004:1-2.
    [4]刘合,闫建文,薛凤云,等.大庆油田特高含水期采油工程研究现状及发展方向[J].大庆石油地质与开发,2004,23(6):65-67.
    [5]刘中春.提高采收率技术应用现状及其在中石化的发展方向[J].中国石化,2008,(4): 5-8.
    [6]周总瑛,张抗.中国油田开发现状与前景分析[J].石油勘探与开发, 2004,31(2):84-87.
    [7]王友净,林承焰,董春梅,等.长堤断裂带北部地区剩余油控制因素与挖潜对策[J].中国石油大学学报(自然科学版),2006,30(4):12-16.
    [8]胡文瑞.论老油田实施二次开发工程的必要性与可行性[J].石油勘探与开发,2008, 35(1):1-4.
    [9]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-55.
    [10]房宝财,张玉广,许洪东,等.窄薄砂岩油藏开发调整技术[M].北京:石油工业出版社, 2004:1-8.
    [11]刘洪涛.窄薄砂岩油藏剩余油分布预测[D].山东东营:中国石油大学(华东),2006: 1-2.
    [12]中国石油地质志编辑委员会.中国石油地质志(大庆油田卷)[M].北京:石油工业出版社,1993:454-501.
    [13] Paul F. Worthington, Gaffney. Maximizing the Effectiveness of Integrated Reservoir Studies - Practical Approaches to Improving the Process and Results[C].SPE,2004(1):57-62.
    [14]鲁卡.考森蒂诺[法].油藏评价一体化研究[M].北京:石油工业出版社,2003:77-92.
    [15]王志章.现代油藏描述新技术.中国油藏地质(含油藏描述)学术研讨会论文集[C].中国油藏地质(含油藏描述)学术研讨会,北京,2006: 117-125.
    [16]贾爱林,肖敬修.油藏评价阶段建立地质模型的技术与方法[M].北京:石油工业出版社,2002: 67-84.
    [17]崔勇,马晓昌,赵澄林.碎屑岩储层结构非均质性及其对油藏开发的影响[J].江汉石油学院学报,2001,9(23):1-3.
    [18]尹太举,张昌民,张同国,等.储层结构控制下的开发响应特征初探—以双河油田为例[J].石油学报,2007,28(4):81-85.
    [19]赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16-20.
    [20] Miall A.D. Architectural Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits [J].Earth Science Reviews, 1985, 22:261-308.
    [21] Miall A.D. Architectural Elements and Bounding Surfaces in Fluvial Deposits: Anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado[J]. Sedimentary Geology,1988,155:233-262.
    [22] Neton M.J., Joachim D., Christopher D.O., et al. Young Architecture and Directional Scales of Heterogeneity in Alluvial-Fan Aquifers[J]. Journal of Sedimentary Research, 1994,64(5):245-257.
    [23] Willis B.J., Behrensmeyer A.K. Architecture of Miocene Overbank Deposits in Orthern Pakistan[J]. Journal of Sedimentary Research,1994,64(2):60-67.
    [24]张昌民,徐龙,林克湘,等.青海油砂山油田第68层分流河道砂体解剖学[J].沉积学报,1996,14(4):70-75.
    [25] Clark J.D., Kevin T. Pickering Architectural Elements and Growth Patterns of Submarine Channels: Application to Hydrocarbon Exploration[J].AAPG Bulletin,1996, 80(2):194-221.
    [26] Pranter M.J., Ellison A.I., Cole R.D., et al. Analysis and Modeling of Intermediate-Scale Reservoir Heterogeneity Based on A Fluvial Point-Bar Outcrop Analog, Williams Fork Formation, Piceance Basin, Colorado[J].AAPG Bulletin,2007,91(7):1025-1051.
    [27] JiaoYangquan, Yan Jiaxin, Li Sitian, et al. Architectural Units and Heterogeneity of Channel Reservoirs in the Karamay Formation, Outcrop Area of Karamay Oil Field, Junggar Basin, Northwest China[J]. AAPG Bulletin, 2005, 89(4):529-545.
    [28] Lynds R., Hajek E. Conceptual Model for Predicting Mudstone Dimensions in Sandy Braided-River Reservoirs[J].AAPG Bulletin, 2006, 90(8):1273-1288.
    [29] Sixsmith P.J., Hampson G.J., Gupta S. Facies Architecture of A Net Transgressive Sandstone Reservoir Analog: the Cretaceous Hosta Tongue, New Mexico[J].AAPG Bulletin, 2008, 92(4):513-547.
    [30]王俊玲,任纪舜.嫩江现代河流沉积体岩相及内部构形要素分析[J].地质科学,2001,36(4):385-394.
    [31]何文祥,吴胜和,唐义疆,等.河口坝砂体构型精细解剖[J].石油勘探与开发,2005, 32(5):42-45.
    [32]尹太举,张昌民,樊中海,等.地下储层建筑结构预测模型的建立[J].西安石油学院学报(自然科学版),2002,17(3):7-14.
    [33]张昌民,何贞铭,王振奇,等.不平坦的三角洲前缘席状砂—来自露头和地下的证据[J].江汉石油学院学报,2003,25(3):1-4.
    [34]何文祥,吴胜和,唐义疆,等.河口坝砂体构型精细解剖[J].石油勘探与开发,2005,32(5):42-45.
    [35]马世忠,王一博,崔义,等.油气区水下分流河道内部建筑结构模式的建立[J].大庆石油学院学报,2006,30(5):1-3.
    [36]尹太举,张昌民,汤军,等.马厂油田储层层次结构分析[J].江汉石油学院学报,2001,23(4):19-21.
    [37]尹太举,张昌民.地下储层建筑结构预测模型的建立[J].西安石油学院学报(自然科学版),2002,17(3):7-14.
    [38] Miall A.D. The Geology of Fluvial Deposits: Sedimentary Facies,Basin Analysis and Petroleum Geology[M].Berlin,Heidelberg. New York:Springer-Verlag.1996:57-98.
    [39]冯国庆,陈军,李允,等.利用相控参数场方法模拟储层参数场分布[J].石油学报, 2002,23(4):61-64.
    [40]计秉玉,赵国忠,王曙光.沉积相控制油藏地质建模技术[J].石油学报,2006,27(增刊):111-114.
    [41]徐守余,刘太勋.胜坨油田三角洲相储集层流动单元研究[J].石油大学学报:自然科学版,2004,28(1):22-25.
    [42]冯建伟,戴俊生,冀国胜,等.测井资料定量识别河流储层建筑结构要素[J].石油大学学报:自然科学版,2007,31(5):21-24.
    [43]刘冬之,乔彦君,马刚.划分砂体内部建筑结构的建模方法[J].大庆石油地质与开发,2003,22(1):1-4.
    [44]尹太举,张昌民,樊中海.双河油田井下地质知识库的建立[J].石油勘探与开发,1997,24(6):95-98.
    [45]贾爱林,何东博,何文祥,等.应用露头知识库进行油田井间储层预测[J].石油学报,2003,24(6):51-53.
    [46]熊琦华,纪发华.地质统计学在油藏描述中的应用[J].石油大学学报(自然科学版),1995,19(1):115-120.
    [47]胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报(自然科学版), 2001,25(1):107-112.
    [48]印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展[J].石油地球物理勘探,2002,37(4):423-430.
    [49]岳大力,林承焰,吴胜和,等.储层非均质定量表征方法在礁灰岩油田开发中的应用[J].石油学报,2004,25(5):75-79.
    [50]杨耀忠,曲寿利,隋淑玲,等.地震约束建模技术在油藏模拟中的应用[J].石油地球物理勘探,2003,38(5):536-539.
    [51]周丽清,赵丽敏,赵国梁,等.高分辨率地震约束相建模[J].石油勘探与开发,2002,29(3):56-58.
    [52] Strebelle S. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics[J]. Mathematical Geology,2002,34(1):1-21.
    [53] Tuanfeng Zhang. Incorporating Geological Conceptual Models and Interpretations into Reservoir Modeling Using Multi-Point Geostatistics[J]. Earth Science Frontiers,2008, 15(1):26-35.
    [54]张伟,林承焰,董春梅.多点地质统计学在秘鲁D油田地质建模中的应用[J].中国石油大学学报(自然科学版),2008,32(4):24-28.
    [55]冯国庆,陈浩,张烈辉,等.利用多点地质统计学方法模拟岩相分布[J].西安石油大学学报(自然科学版),2005,20(5):9-11.
    [56]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1991:293.
    [57]盖英杰,吕德灵,郭元灵.高含水期油藏分阶段数值模拟[J].油气采收率技术, 2000,7(1):54-56.
    [58]梅海燕,张茂林,李闽,等.气驱过程中考虑弥散的渗流方程[J].天然气工业,2004,24(3):98-99.
    [59]李孟涛,张英芝,刘先贵,等.大庆榆树林油田天然气驱油研究[J].天然气工业,2006,26(5):84-86.
    [60]靳彦欣,林承焰,贺晓燕,等.油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报(自然科学版),2004,28(3):22-24.
    [61]高树新,杨少春,胡洪波,等.胜坨油田21断块沙二段储层非均质性定量表征[J].油气地质与采收率,2004,11(5):10-13.
    [62]杨少春,杨兆林,胡红波.熵权非均质综合指数算法及其应用[J].石油大学学报(自然科学版),2004,28(1):18-21.
    [63]熊琦华,纪发华.地质统计学在油藏描述中的应用[J].石油大学学报(自然科学版),1995,19(1):115-120.
    [64]贾承造,赵文智,邹才能,等.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,2004,31(3):3-9.
    [65]宋维琪,赵万金,冯磊,等.地震高分辨率反演和地质模拟联合预测薄储层[J].石油学报,2005,26(1):50-54.
    [66]冉建斌,李建雄,刘亚村.基于三维地震资料的油藏描述技术和方法[J].石油地球物理勘探,2004,39(1):102-112.
    [67]李阳.胜利油田油藏综合地球物理研究现状及展望[J].石油勘探与开发,2004,31(3):0-13.
    [68]姚逢昌,甘利.地震反演的应用与限制[J].石油勘探与开发,2000,27(2):53-56.
    [69]慎国强,孟宪军,王玉梅,等.随机地震反演方法及其在埕北35井区的应用[J].石油地球物理勘探,2004,39(1):75-81.
    [70]史文东,张立昌,尹克敏,等.地质统计地震反演方法及其在民丰断裂带封堵中的应用研究[J].石油地球物理勘探,2002,37(41):407-411.
    [71]赵培华.我国油田开发测井新技术应用情况综述[J].测井技术,2002,26(1):10-13
    [72]王立新,张兰江,白云台,等.利用生产资料确定剩余油饱和度技术[J].断块油气田,2002,9(4):86-88.
    [73]黄磊,沈平平,宋新民.低渗透油田油水层识别及油藏类型评价[J].石油勘探与开发,2003,30(2):49-50.
    [74]丁次乾.矿场地球物理[M].山东东营:石油大学出版社,1992:18-19.
    [75]慈建发,何世明,李振英,等.水淹层测井发展现状与未来[J]天然气工业,2005,25(7):44-46.
    [76]张审琴.水淹层测井解释技术状况与发展趋势[J].青海石油,2000,18(2):29-33.
    [77]潘兴国.中国水驱油田开发测井[C].水驱油田开发测井96国际学术讨论会论文集[M].北京:石油工业出版社,1996:153-163.
    [78]陈铁龙,蒲万芬主编.油田控水稳油论文集[C].北京:石油工业出版社,2001:8-10
    [79]赵永胜.剩余油分布研究中的几个问题[J].大庆石油地质与开发,1996,15(4):72-74
    [80]周琦,高宏印,袁淑芬,等.萨尔图油田河流相储集层高含水后期剩余油分布规律研究[J].石油勘探与开发,1997,24(4):46-57.
    [81]董冬,陈洁,邱明文.河流相储集层中剩余油类型和分布规律[J].油气采收率技术,1999,6(3):39-46.
    [82]俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,21(2):45-50.
    [83]裘怿楠,薛叔浩.油气储集层评价技术[M].北京:石油工业出版社,1994.251-257.
    [84]邹才能,池英柳,李明,等.陆相层序地层学分析技术-油气勘探工业化应用指南[M].北京:石油工业出版社,2004):35-42.
    [85]邓宏文.高分辨率层序地层学-原理及应用[M].北京:地质出版社,2002):48-55.
    [86]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272.
    [87]李宏伟,范军侠,袁士义,等.苏里格气田下石盒子组层序地层学与天然气高产富集区分布规律[J].石油勘探与开发,2006,33(3):340-344.
    [88]徐安娜,郑红菊,董月霞,等.南堡凹陷东营组层序地层格架及沉积相预测[J].石油勘探与开发,2006,33(4):437-443.
    [89]郭少斌.陆相断陷盆地层序地层模式[J].石油勘探与开发,2006,33(5):548-552.
    [90]唐民安,孙宝玲.鄂尔多斯盆地大牛地气田下石盒子组高分辨率层序地层分析[J].石油勘探与开发,2007,34(1):48-54.
    [91]李德江,朱筱敏,董艳蕾,等.辽东湾坳陷古近系沙河街组层序地层分析[J].石油勘探与开发,2007,34(6):669-676.
    [92] Miall A.D. Architectural-Element Analysis: A New Method Offacies Analysis Applied to Fluvial Deposits[J]. Earth-ScienceReviews,1985,22:261-308.
    [93] Miall A.D. Rservoir Heterogeneities in Fluvial Sandstone: Lessons from Outcrop Studies[J]. AAPG,1988,72(6):682-697.
    [94]赵翰卿,付志国,吕晓光.大型河流-三角洲沉积储集层精细描述方法[J].沉积学报,2000,21(4):109-113.
    [95]赵翰卿.储集层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16-18.
    [96]赵翰卿,付志国,吕晓光.储集层层次分析和模式预测描述法[J].大庆石油地质与开发,2004,23(5):74-77.
    [97]李兴国.应用微型构造和储层沉积微相研究油层剩余油分布[J].油气地质与采收率,1994,1(1):68-80.
    [98]单敬福,路杨,纪友亮.厚层河道砂体储层非均质性研究-以葡萄花油层组PI1-PI4小层为例[J].地质找矿论丛,2007,22(2):125-130.
    [99]隋军,吕晓光,赵翰卿,等.大庆油田河流—三角洲相储层研究[M].北京:石油工业出版社,2000:36-46.
    [100]陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社,2005:76-87.
    [101] Caers J, Journel A G.. Stochastic Reservoir Simulation Using Neural Network Strained on Outcrop Data[J],SPE49026,1998:56-60.
    [102]吴胜和,金振奎,黄沧钿,等.储层建模[M].北京:石油工业出版社,1999:76-85.
    [103]王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社,2001:54-63.
    [104] Haldorsen H and Damsleth E. Stochastic Modeling[J],Journal of Petroleum Technology,1990,42(4):404-412.
    [105] Holden L, Hauge R,et al. Modeling of Fluvial Reservoirs with Object Models[J].Mathematical Geology,1998,30(5):473-495.
    [106] Deutsch C V. Annealing Techniques Applied to Reservoir Modeling and Theintegration of Geological and Engineering(Well Test)Data[D].Stanford University,1992:306.
    [107] Srivastava R M. Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies[C].AAPG Computer Application in Geology,1994,3:3-20.
    [108] Strebelle S, Journel A G.. Reservoir Modeling Using Multiple-Point Statistics[J]. SPE71324,2001:1-11.
    [109] Strebelle S. Conditional Simulation of Complex Geological Structures Using multiple-Point Statistics[J].Mathematical Geology,2002,34(1):1-21.
    [110] Journel A G.. Combining Knowledge from Diverse Sources: An Alternative Traditional Data Independence Hypotheses[J].Mathematical Geology,2002,34(5):573-596.
    [111]吴胜和,李文克.多点地质统计学—理论、应用与展望[J].古地理学报,2005,7(1):137-144.
    [112]李阳,王端平,刘建民.陆相水驱油藏剩余油富集区研究[J].石油勘探与开发2005,32(3):91-96.
    [113]李阳,郭长春.地下侧积砂坝建筑结构研究及储层评价[J].沉积学报,2007,25(6):942-945.
    [114]黄文科,戴俊生,窦之林,等.胜坨油田储层砂体建筑结构分析[J].西南石油大学学报,2007,29(3):32-35.
    [115]邵先杰,钟思瑛,廖光明,等.海安凹陷安丰退积型辫状三角洲沉积模式及建筑结构分析[J].大庆石油地质与开发,2005,24(2):5-8.
    [116]曾流芳.疏松砂岩油藏大孔道形成机理及渗流规律研究[M],东营:石油大学出版社,2002:33-39.
    [117] Maghsood, Abbaszadeh, Dehghani, et al.Analysis of Well-to-Well Tracer Flow to Determine Reservoir [J].JPT,19841. 2001:11-15.
    [118]陈月明,姜汉桥,李淑霞.井间示踪剂监测技术在油藏非均质性描述中的应用[J].石油大学学报(自然科学版),1994,18(S):70-71.
    [119]赵国瑜.井间示踪剂技术在油田生产中的应用[J].石油勘探与开发, 1999,26(4):92-95
    [120]徐婷,赵福麟,李秀生,等.注水开发油田二次孔道的形成机理[J].石油大学学报(自然科学版),2001,25(5):57-59.
    [121]曾流芳,赵国景,张子海,等.疏松砂岩油藏大孔道形成机理及判别方法[J].应用基础与工程科学学报,2002,10(3):266-268.
    [122]窦之林,曾流芳,张志海,等.大孔道诊断和描述技术研究[J].石油勘探与开发,2001,28(1):75-77.
    [123]刘月田,孙保利,于永生,等.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54-59.
    [124]王祥,夏竹君,张宏伟,等.利用注水剖面测井资料识别大孔道的方法研究[J].测井技术,2002,26 (2):162-164.
    [125]张士奇,卢炳俊,张美玲,等.水淹储层大孔道存在的分析与识别[J].大庆石油地质与开发,2008,27(6):76-79.
    [126]李科星,蒲万芬,赵军,等.疏松砂岩油藏大孔道识别综述[J].西南石油大学学报,2007,29(5):42-45.
    [127]史丽华.微量物质井间示踪技术在识别油层大孔道中的应用[J].大庆石油地质与开发,2007,26(4):130-132.
    [128]高慧梅,姜汉桥,陈民锋.疏松砂岩油藏大孔道识别的典型曲线方法[J].石油天然气学报,2000,31(5):108-112.
    [129]商志英,万新德,何长虹,等.应用水力探测方法确定储层大孔道及剩余油分布状况的研究-北2-20-P60井组典型实例解剖[J].大庆石油地质与开发,2004,23(2):30-32.
    [130]尹文军,陈永生,王华,等.水力探测大孔道及剩余油饱和度解释模型的建立[J].油气地质与采收率,2005,12(1):63-65.
    [131]宋万超,孙焕泉,孙国,等.油藏开发流体动力地质作用[J].石油学报,2002 ,23(3):52-55.
    [132]徐守余,李红南储集层孔喉网络场演化规律和剩余油分布[J].石油学报,2003,24(4),48-53.
    [133]钟大康,朱筱敏,吴胜和,等.注水开发油藏高含水期大孔道发育特征及控制因素-以胡状集油田胡12断块油藏为例[J].石油勘探与开发,2007,34(2):207-211.
    [134]彭仕宓,史彦尧,韩涛,等.油田高含水期窜流通道定量描述方法[J].石油学报, 2007,18(5):79-84.
    [135]刘淑芬,梁继德.试井技术识别无效注采水循环通道方法探讨[J].油气井测试, 2004,13(1):27-30.
    [136]史有刚,曾庆辉,周晓俊.大孔道试井理论解释模型[J].石油钻采工艺,2003, 25(3):48-50.
    [137]刘月田,孙保利,于永生.大孔道模糊识别与定量计算方法[J].石油钻采工艺, 2003,25(5):54-59.
    [138]孟凡顺,黄伏生,宋德才,等.费歇判别法识别大孔道[J].中国海洋大学学报,2007, 37(1):121-124.
    [139]孟凡顺,孙铁军,朱炎,等.利用常规测井资料识别砂岩储层大孔道方法研究[J].中国海洋大学学报,2007,37(3):463-468.
    [140]余成林,林承焰,尹艳树.合注合采油藏窜流通道发育区定量判识方法[J].中国石油大学学报(自然科学版),2009,33(2):23-28.
    [141]李阳,王端平,刘建民.陆相水驱油藏剩余油富集区研究[J].石油勘探与开发,2005,32(3):92-93.
    [142]邓维森.大庆葡萄花油田构造精细解释研究[D].山东东营:中国石油大学(华东,2009:21-24.
    [143]房宝财.应用高分辨率三维地震技术对已开发老油藏精细描述-以大庆葡南油田为例[D] .四川成都:成都理工大学,2004:11-14.
    [144]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发[M].北京:石油工业出版社,1996:87-91.
    [145]房宝财,张玉广,许洪东,等.窄薄砂体油藏开发调整技术[M].北京:石油工业出版社,2004:67-81.
    [146]艾尚军,王岩楼,于俊波,等.大庆西部薄互层砂岩油藏精细描述[M].北京:石油工业出版社,2006:47-56.
    [147]吕晓光,田东辉,李伯虎.厚油层平面宏观非均质性及挖潜方法的探讨[J].石油勘探与开发,1993,20(4),58-71.
    [148]黄石岩.河流和三角洲储层剩余油分布模式-以渤海湾盆地胜坨油田为例[J].石油实验地质,2007,29(2):167-171.
    [149]王延章,林承焰,董春梅,等.夹层及物性遮挡带的成因及其对油藏的控制作用-以准噶尔盆地莫西庄地区三工河组为例[J].石油勘探与开发,2006,33(3):319-321.
    [150]张淑娟,刘大听,罗永胜.潜山油藏内幕隔层及断层控制的剩余油分布模式[J].石油学报,2001,22(6):50-54.
    [151]尹志军,鲁国永,邹翔,等.陆相储层非均质性及其对油藏采收率的影响[J].石油与天然气地质,2006,27(1):106-110.
    [152]马洪涛.泥质粉砂岩对改善窄薄砂体油田开发作用研究[D].黑龙江大庆:大庆石油学院,2009:40-44.
    [153]余成林.葡萄花油田剩余油形成与分布研究[D].山东东营:中国石油大学(华东,2009:61-72.
    [154]邱雪,向传刚,张会,等.葡北油田断层分布特征与剩余油分布关系研究[R].大庆:大庆油田采油七厂,2009:120-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700