疏松砂岩油藏大孔道形成及其调堵的随机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏松砂岩油藏遍布于世界的各个油区。疏松砂岩油藏岩石胶结程度低、泥质含量高,在孔隙表面吸附着大量的粘土颗粒,在原油流动过程中极易被带走;油藏注水后,粘土遇水易发生膨胀、水化、分散、运移。因此,经过长期高速注水开发,油藏储层孔隙结构发生了较大变化,注入水对储层孔隙、骨架颗粒、胶结物和油藏流体的作用,以及油层温度和压力的变化,储层渗透率增大,孔喉半径增大,从而在储层中形成高渗带及特高渗透带,即大孔道。在大孔道发育的地层中,注入水沿大孔道无效循环,大孔道窜流严重,注入水效率低,水驱波及体积小,加剧了层内、层间矛盾,导致油井含水上升快,水驱动用程度低,影响油田采收率及开发效益的提高。而且,油田开发一旦进入中高含水期,大孔道的存在使其它增产措施实现起来也比较困难,比如调剖及注聚合物,高渗条带和大孔道同样会导致聚合物溶液窜流,不但造成聚合物浪费,而且难以形成高质量的聚合物段塞,严重影响了聚合物驱效果。
     因此,加强对储层大孔道的形成机理研究、大孔道识别与描述,进而预测长期注水开采后大孔道的尺寸分布和位置分布,并进一步对储层大孔道的调堵机理进行研究,用随机模拟方法描述调堵剂在大孔道中的运动,这对于三次采油和油田堵水调剖过程中,优化聚合物和调剖剂用量、强度、段塞结构等,具有很好的指导意义,对于提高油层波及体积及石油采收率具有重要的现实意义。加强对大孔道研究的重要意义不仅仅在于指导疏松砂岩油藏中高含水期的油田开发,对于常规砂岩油藏注水开发中后期的油田开发,对于未进入中高含水期的疏松砂岩油藏开发过程中的试井、测井等动态监测技术和油井防砂等措施都具有较好的指导作用。
     对疏松砂岩油藏大孔道的形成机理、识别及其调堵技术的研究,前人作了大量的研究工作,取得了一定的研究成果。但这些研究成果远未满足疏松砂岩油藏中高含水期注水开发的需要。
     随着注水开发的深入,由于流体动力地质作用,使得地层特性不断发生变化,大孔道的存在加剧了这种复杂性。如何更为有效地识别大孔道,确定大孔道的粒径分布,位置分布,如何充分认识大孔道调堵技术中调堵剂的运动规律和调堵剂对大孔道的调堵机理,这是中高含水期疏松砂岩油藏开发中急需解决的课题。
     本文广泛调研国内外文献,综合前人的研究成果,结合测井、地质、渗流、随机建模、计算机等多学科,取得的研究成果如下:
     (1)调研前人有关注水开发过程中储层物性变化的研究成果,特别是对油层大孔道的形成机理、识别技术的研究成果,对油层大孔道的形成机理加以系统化、理论化,阐明了大孔道的形成机理;
     (2)系统、全面地对目前现有的大孔道识别方法进行了研究,对这些方法技术进行了总结、比较,分析了各自的优缺点;
     (3)以达西定律、伯努里能量方程为基础,研究了单相流体在毛管中的流速公式,进
Unconsolidated sandstone reservoirs are all over international various oil region .Consolidation degree of rock is weak, the shale content is high, massive clay particle adsorbed in the pore surface is being extremely easily carried away during oil mobile process, the clay meeting water is easily inflated, hydrated, dispersed, and migrated after water flooding.
    Therefore, the formation structure of unconsolidated sandstone reservoirs has changed distinctly after the long-term high speed water-flooding, The effects of injected water to pore structure, rock skeleton granule, bond and reservoir fluids, and the changes of reservoir temperature and pressure, make formation permeability increase, pore throat radius increase, thus high permeability or terribly high permeability zones are come into being in reservoir, namely water channel.
    In reservoirs exists water channels, injected water cyclically produced inefficiently along water channels, so that the utilization efficiency of the injected water is lower, meanwhile the pore volume swept by water driving is reduced, and the improvement of oil recovery and development benefit is seriously affected. Moreover, development of the fields once enters high water cut stage, water channels make stimulation measures more difficultly. for instance it can cause the polymer solution cyclically produced inefficiently, and form the high grade polymer plug with difficulty in formation, seriously affected the polymer's effect.
    Therefore, strengthens to research on formation mechanism, recognition and description of water channels, and forecast its size and distribution, and further mechanism research for profile control/water shutoff, description the migration of agent to profile control/water shutoff by stochastic simulation, it is guiding significance to optimize polymerized substance and profile control agent volume , intensity , slug arrangement grade , and it has the important practical significance toward water shutoff/profile modification , sublimation reservoir swept volume and/or oil recovery factor.
    the vital significance of strengthens to study on water channels lies in not only the instruction development for unconsolidated sandstone reservoirs at high water cut stage, but also the good instruction function for the conventional sandstone reservoirs water-flooding development at mid and late part stage, and the dynamic monitor technology such as well test, well logging and so on for sandstone reservoirs at low water cut stage, and sand control.
    On formation mechanism, the recognition and plugging up technical for water channel of unconsolidated sandstone reservoirs, the predecessor has done the massive research work, and obtained the certain research results. But these research results are far not satisfied to water-flooding development need in unconsolidated sandstone reservoirs at mid and high water cut stage.
    Along with water-flooding development thorough, as a result of the hydrodynamics geology function, make the formation characteristic change unceasingly, and the water channels intensified the changes more complexity. How effectively distinguishes water channels, determined water channels size, position distribution, how well did know mechanism of water channel, it is a urgently topic needing to solve.
引文
[1] 宁廷伟,王成龙.封堵大孔道技术的发展[J].钻采工艺.1993,16(4).
    [2] 曾流芳.疏松砂岩油藏大孔道形成机理及渗流规律研究[M].石油大学出版社.2002.
    [3] Maghsood Abbaszadeh-Dehghani, W.E. Brigham. Analysis of well-to-well tracer flow to determine reservoir. JPT, 1984.
    [4] 陈月明,姜汉桥,李淑霞.井间示踪剂监测技术在油藏非均质性描述中的应用[J].石油大学学报(自然科学版),1994,18(S).
    [5] 葛家理.油气层渗流力学[M].北京:石油工业出版社,1986.
    [6] 章媛君,胜利油田“粘土调剖研究”通过总公司鉴定.石油钻采工艺,1992,14(5).
    [7] 解通成,王承均,梁开芳,等.立式电泵配注堵剂工艺设备[J].石油钻采工艺,1993,15(3).
    [8] 姜汉桥,陈月明.分析注水井调剖的新方法[J].石油大学学报(自然科学版).1994,18(Suppl).
    [9] 刘顺生,胡复唐,洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,14(4).
    [10] 刘顺生,杨玉珍.储层中高渗透层段剖面连通概率计算方法[J].新疆石油地质.1991,12(1).
    [11] 陈永生.油田非均质对策论[M].北京:石油工业出版社,1993.
    [12] 赵福麟,张贵才,孙铭勤,等.粘土双液法调剖剂封堵地层大孔道的研究[J].石油学报,1994,15(1).
    [13] 田根林,郑德温,于大森.阴、阳离子聚合物地层内凝胶化改善水驱效果的研究[J].油田化学,1994,11(1).
    [14] 赵秀兰.大港油田港东开发区调剖堵水区块治理[J].油气采收率技术,1995,2(3).
    [15] 唐长久,张志远,黄志华,等粉煤灰调剖剂的室内研究与现场应用[J].油气采收率技术,1995,2(2).
    [16] 赵普春,田丰怀,杨顺贵,等.纸浆废液调剖剂在文明寨油田的应用[J].江汉石油学院学报,1996,18(3).
    [17] 姜汉桥,姚军,陈月明.胜二区沙二3封堵大孔道方案优化设计[J].石油大学学报(自然科学版),1994,18(Suppl).
    [18] 梁开方,张勇,田玉珠,等.粘土颗粒堵剂封堵大孔道配套技术[J].石油钻采工艺,1994,16(6).
    [19] 宁廷伟,胜利油田开发和应用的粘土类堵水/调剖剂[J].油田化学,1994,11(2).
    [20] 林伟民,胡状集油田胡十二块以调剖堵水为中心的综合治理研究[J].断块油气田,1994,1(2).
    [21] 李宇乡,刘玉章,白宝君,等.体膨型颗粒类堵水调剖技术的研究[J].石油钻采工艺,1999,21(3).
    [22] 何长,李平,汪正勇,等.大孔道的表现特征及调剖对策[J].石油钻采工艺,2000年,22(5).
    [23] 李永太,刘文华,谭中良,等.大孔道深度调剖的研究与应用[J].油气采收率技术,1999,6(3).
    [24] 南国立,杨永超,王渝东,等.中原油田封堵大孔道技术研究[J].钻采工艺,1999,22(6).
    [25] 韩炜,李光,张子玉,等.HD-Ⅲ堵水剂封堵大孔道矿场试验[J].油气采收率技术,2000,7(4).
    [26] 黄春,张春光,孤东油田大孔道封堵技术与应用[J].油气田地面工程,2003,22(3).
    [27] 张学锋,祝明华,杨顺贵,等.砂岩油藏高含水期封堵大孔道工艺技术研究及应用[J].石油钻采工艺,1999,21(5).
    [28] 罗跃,王正良,南国立.高渗透大孔道地层封堵技术研究[J].大庆石油地质与开发,1999,18(5).
    [29] 张小平,罗跃,王正良,等.高渗透、大孔道、裂缝性地层堵水剂的研制与应用[J].断块油气田,2001,8(4).
    [30] 肖翠玲,丁伟,张荣明,等.油基超细水泥浆选择性堵剂研究[J].油田化学,2000,17(1).
    [31] 黄志华,吴信荣,魏明军,等.可凝固高炉矿渣颗粒型堵水调剖剂研究[J].油田化学,2000,17(2).
    [32] 姜汉桥,刘奋,洪光明,等.用概率模型方法确定卞东油田高渗通道地质参数的研究[J].石油勘探与开发,1997,24(1).
    [33] 陈永生.油藏流场[M].北京:石油工业出版社,1998.
    [34] 赵国瑜,井间示踪剂技术在油田生产中的应用[J].石油勘探与开发,1999,26(4).
    [35] 毛广洲,吴丽文,路秀广,等.孤岛油田西区和中—区单井注入化学示踪剂试验研究[J].胜利油田职工大学学报,1999,13(4).
    [36] 孙庶华,示踪剂在封堵大孔道中的应用[J].胜利油田职工大学学报,2000,14(2).
    [37] 尹庆文,潘淑琴,董福印.大孔道地层注水剖面测井技术[J].测井技术,1999,23(2):146-149.
    [38] 郑延成,周爱莲,高吸水性树脂及其在石油工业的应用[J].钻采工艺,2001年,24(1).
    [39] 马守玉,李乃沛,常方瑞,等.地下固化的生物钙/矿物纤维粉浆液深部调剖剂研制[J].油田化学,20(3).
    [40] 吴柏志,李宣强,张琪,等.PBS菌的趋化性与提高原油采收率机理[J].油田化学,2004,21(4).
    [41] 黄绍东,吕振山,张艳红,等.生物聚合物深部调剖技术室内研究及矿场应用试验[J].断块油气田,2005,12(6).
    [42] 吕振山,王岚岚,魏兆胜,等.生物聚合物深部调剖技术室内研究及矿场试验[J].石油天然气学报,2005,27(1).
    [43] 黄延章,于大森.微观渗流实验力学及其应用[M].石油工业出版社,2001.
    [44] 白宝君,预交联凝胶颗粒深部调驱应用基础研究,中国地质大学博士学位论文,2002年.
    [45] 王中国,预交联凝胶颗粒调驱技术研究,浙江大学硕士学位论文,2002年.
    [46] 李克华,王春雨,赵福麟.颗粒堵剂粒径与地层孔径的匹配关系研究[J].断块油气田,2000,7(5).
    [47] 徐婷,赵福麟,李秀生,等.注水开发油田二次孔道的形成机理[J].石油大学学报(自然科学版),2001,25(5):57-59.
    [48] 曾流芳,赵国景,张子海,等.疏松砂岩油藏大孔道形成机理及判别方法[J].应用基础与工程科学学报,2002,10(3):268-266.
    [49] 窦之林,曾流芳,张志海,等,大孔道诊断和描述技术研究[J].石油勘探与开发,2001,28(1).
    [50] 刘月田,孙保利,于永生,等.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5).
    [51] 王祥,夏竹君,张宏伟等.利用注水剖面测井资料识别大孔道的方法研究[J].测井技术,2002,26(2).
    [52] 赵永强,王秀鹏,史田,等.放射性同位素示踪剂技术研究油水井间高渗透层[J].断块油气田,2002,9(2).
    [53] 徐保庆,伍泰荣,田树全.自然伽马测井在油田开发中的应用[J].断块油气田,2002,9(5).
    [54] 雷有为,刘寿平,姚京坤,等.五参数注入剖面组合测井资料解释[J].江汉石油学院学报,2003,25(1).
    [55] 艾长虹,高维衣,吸水剖面曲线与大孔道定量分析技术的应用[J].油气田地面工程,2003,22(4).
    [56] 商志英,万新德,何长虹,等.应用水力探测方法确定储层大孔道及剩余油分布状况的研究—北2-20-P60井组典型实例解剖[J].大庆石油地质与开发,2004,23(2):30-32.
    [57] 尹文军,陈永生,王华,等.水力探测大孔道及剩余油饱和度解释模型的建立[J].油气地质与采收率,2005,12(1).
    [58] 郭莉.高孔高渗砂岩油藏注水后储集层结构变化规律研究——以大港油田港东开发区为例,大港油藏开发后期挖潜技术研究——大港油田开发优秀论文选编[A].石油工业出版社,2000.
    [59] 宋万超,孙焕泉,孙国,等.油藏开发流体动力地质作用——以胜坨油田二区为例[J].石油学报,2002,23(3):52-55.
    [60] 徐守余,李红南.储集层孔喉网络场演化规律和剩余油分布[J].石油学报,24(4),2003:48-53.
    [61] 郭尚平,黄延章,周娟,等.物理化学渗流微观机理[M].科学出版社,1990.
    [62] Paola Albonico, Martin Bartosek, and T.P. Lockhart, et al. New Polymer Gels for Reducing Water Production in High-Temperature Reservoirs.SPE/DOE:27609,1994.
    [63] Clampitt, R.L., Al-Rikabi, H.M., Dabbous, M.K. A Hostile Environment Gelled Polymer System for Well Treatment and Profile Control, SPE25629,1993.
    [64] Dalrymple, Dwyann, Tarkington,etc. A Gelation System for Conformance Technology.Spe28503,1994.
    [65] Waylan C. Martin, Robert M. Orr, Controlling water channeling with low-cost plugging option, 1999,world oil.
    [66] R.S. Seright, R.L. Lee, Gel Treatments for Reducing Channeling in Naturally Fractured Reservoirs. SPE59095,1999.
    [67] D.Broseta D. Broseta, SPE, O. Marqucr, N. Blin, and A. Zaitoun, Rheological Screening of Low-Molecular-Weight Polyacrylamide/Chromium(Ⅲ) Acetate Water Shutoff Gels. SPE59319,2000.
    [68] Woods, P., Schramko, K., Turner, D., Dalrymple, D., Vinson, E., In-Situ Polymerization Controls CO2/Water Channeling at Lick Creek. Spe 14958,1986.
    [69] Seright,R.S., Placement of gels to modify injection profiles,SPE 17332, 1988.
    [70] Beier, R.A., Sheely, C.Q. Tracer Surveys To Identify Channels for Remedial Work Prior to CO2 Injection at MCA Unit, Spe17371,1988.
    [71] Eson, R.L., Cooke, R.W, A Successful High-Temperature Gel System To Reduce Steam Channeling, Spe24665,1992.
    [72] Midha V. Modeling the Effect of Filtration of Per-Gel Aggregates on Gel Placement in Layered Reservoirs With Cross-flow. SPE/DOE 35450. 1996.
    [73] Sydansk, Robert D., and Moore, Phillip E., Gel conformance treatments increase oil production in Wyoming, Oil &Gas Journal,January 20,1992.
    [74] Gel Treatment Technology Extends High-Water Well Life, Reprinted from the "PTTC Network News," 3rd Quarter 1996.
    [75] D.D.Whimey,聚合物凝胶体系的堵水试验,SPE Production&Facilities,1996.
    [76] Nasr-El-Din, H.A., Bitar, G.E., Bou-Khamsin, ete, Field Application of Gelling Polymers in Saudi Arabia[C], SPE39615,1998.
    [77] David F. Bishop, Julie Smith, Improving sweep with injection well polymer gel treatment. world oil, 1999,220(6).
    [78] Smith,J.E., Practical issues with field injection well gel treatments[C], SPE 55631,1999.
    [79] Improving sweep with injection well gel polymer treatments in Breed Greek Tyler Sand Unit. World Oil,Summer 1999.
    [80] Ricks, G.V.,and Portwood, J.T., Injection-side application of MARCIT polymer gel improves waterflood sweep efficiency,decreases water oil ratio and enhances oil recovery in the McElroy Field, Upton County, Texas[C],SPE59528,2000.
    [81] Seright,R.S.,Lane,R.H. and Sydansk, R.D., A strategy for attacking excess water produetion[C],SPE 70067,2001. Wouterlood,C.J.,Falcigno,E.D.,Gazzerra C.E.and Norman,C.A., Conformance improvement with low concentration polymer gels in a heterogeneous, multilayer reservoir[C], SPE 75161,2002.
    [82] C. Romero, A.B. Marin, L.E. Candiales,etc, Non-Selective Placement of a Polymer Gel Treatment to Improve Water Injection Profile and Sweep Efficiency in the Lagomar Field, Venezuela[C], SPE 80201,2003.
    [83] G.P. Willhite, R.E. Pancake, Controlling Water Production Using Gelled Polymer Systems[C], SPE89464,2004.
    [84] Hong W.Gao Thomas E. Burchfield 水驱、聚合物驱过程中油层非均质性对凝胶调剖效果的影响,SPE reservoirs,1995.
    [85] M. Prado, J. Palencia, M. Reyna, et al, Two Different Water Shutoff Applications in a Poorly Consolidated Sandstone Reservoir with Strong Water-drive[C], 93060-MS,2005.
    [86] J. Der Sarkissian, Venline, and M. Prado and O. Rauseo, Lessons Learned from Four Selective Water Shutoff Treatments in Mature Reservoirs in Maracaibo Lake[C], Spe96528-MS,2005.
    [87] 孙卫.膨胀颗粒与甲叉基聚丙烯酰胺复合堵剂堵水研究[J].西北大学学报(自然科学版),1998,28(1).
    [88] 何湘清.弱胶结砂岩油藏出砂机理研究.2002年6月.西南石油学院博士论文.
    [89] 刘翔鹗,徐文芹,王亚华,波及技术手册[M].石油工业出版社,1996.
    [90] 史有刚.曾庆辉,周晓俊,大孔道试井理论解释模型[J].石油钻采工艺,2003,25(3).
    [91] 曾流芳,卢云之,李林祥.孤东油田特高含水期剩余油分布规律研究[J].油气地质与采收率,2003,10(5).
    [92] 曾流芳,陈柏平,王学忠.疏松砂岩油藏大孔道定量描述初步研究[J].油气地质与采收率,2002,9(4).
    [93] 李允,姚横申著.特殊渗流过程理论及应用[M].北京:石油工业出版社,2000.
    [94] 王健,利用聚合物驱产出液浓度剖面模型确定不可入孔隙体积和滞留孔隙体积[J].油气地质与采收率.2003,10(6).
    [95] 李宜强.纵向非均质大型平面模型聚合物驱油波及系数室内研究[J].石油学报,2005,26(2).
    [96] 何生厚,张琪著,油气井防砂理论及其应用[M].中国石化出版社,2003.
    [97] 王行信,周书欣,砂岩储层粘土矿物与油层保护[M].地质出版社,1992.
    [98] 宋社民,李允,黄震,等.二连低渗透油藏不同沉积相带注水井配注原则[J].西南石油学院学报,2001,23(6).
    [99] 施必华,辛爱渊,田冰,等.胜坨油田凝胶类堵剂综合性能评价[J].油气地质与采收率,2005,12(3).
    [100] 苗和平,李淑妍,刘淑芳.YH965高强度堵水剂的研制与应用[J].石油钻采工艺,1998,20(4).
    [101] 殷艳玲,张贵才.化学堵水调剖剂综述[J].油气地质与采收率,2003,10(6).
    [102] 李仙根,解通成,安炳生,等.油溶性酚醛树脂堵水剂的选堵性能的实验研究[J].石油大学学报(自然科学版),1992,12(4).
    [103] 李克华,戴彩丽,焦翠,赵福麟.油田堵剂的智能作用.石油大学学报(自然科学版)[J].1998,18(1).
    [104] 侯天江,孙江成,赵金献.断块油田注水井调剖工艺技术的发展与建议[J].断块油气田,1997,4(4).
    [105] 程木林,王泽云,李清中.双液速凝高强度堵剂的研究[J].大庆石油地质与开发,1998,17(5).
    [106] 罗明高.定量储层地质学[M].北京:地质出版社,1998.
    [107] 李宾元,税其达等.水平井完井和防砂[M].成都:成都科技大学出版社,1994.
    [108] 毛旭熙,渗流计算分析与控制[M].水利电力出版社,1990.
    [109] Tsang, Y. W.. The effect of tortuosity on fluid flow through a single fracture, Water R. R., 1984, 20 (9).
    [110] 杨春梅,油田开发中后期测井响应变化机理及储层性质研究,石油大学(北京) 2005年博士论文.
    [111] 杨家福.胜坨油田砂体沉积类型与储层特征[J].石油学报,1988,9(2).
    [112] 中原油田复杂断块油藏提高采收率技术研究,中国石化中原油田分公司,2005.
    [113] 邓玉珍,吴素英,张广振,等.注水开发过程中储层物理特征变化规律研究[J].油气采收率技术,1996,3(4).
    [114] 蒋官澄,孤东油田出砂状况模拟及治理对策研究,中国海洋大学博士学位论文,2005年.
    [115] 胡书勇,陈军,任德雄,等.注水过程中储层深部污染的试井诊断及应用[J].西南石油学院学报.2002,24(1).
    [116] 胡书勇,张烈辉,刘成林,等.研究注水开发油藏储层动态变化特征的新方法[J].西南石油学院学报.2004,26(4).
    [117] 陈亮,吴胜和,刘宇红.胡状集油田胡十二块注水开发过程中储层动态变化研究[J].石油实验地质[J].1999,21(2).
    [118] 王传禹,杨普华,马永海等.大庆油田注水开发过程中油层岩石的湿润性与孔隙结构的变化[J].石油勘探与开发,1981,7(1).
    [119] 贾忠伟,杨清彦,兰玉波等.水驱油微观物理模拟实验研究[J].大庆石油地质与开发,2002,21(1).
    [120] 沈平平.油水在多孔介质中的运动理论和实践.北京:石油工业出版社,1998.
    [121] Archie,GE.用电阻率测井曲线确定若干储层特征参数.李宁译.地球物理测并,1991,15(5):15.
    [122] K.W. Weissenburger. The Engineering Approach to Sand Production Prediction[C]. SPE 16892,1987.
    [123] Kooijman, A.P. et al. Large-Scale Laboratory Sand Production Test[C]. SPE24798 1992.
    [124] Veeken, C.A.M. et al, Sand Production Prediction Review: Developing an Integrated Approach[C]. SPE 22792,1991.
    [125] Morita, N., Whitfill, D.L.. Parametric Study of Sand-Production Prediction: Analytical Approach[C]. SPE 16990, 1989.
    [126] J.M. Cook et al. A Study of the Physical Mechanisms of Sanding and Application to Sand Production Prediction[C]. SPE 28852, 1994.
    [127] Gillies R.G et al. Oil, water and sand flow experiments in a model horizontal well[J]. J. Can. Pet. Tech.,1995,34(9), 56-63.
    [128] Brigham W. E. Abbaszadeh—Dehghani M. Tracer Testing for Reservoir Description. JPT. May. 1987
    [129] Selby R J, Farouq Ali S M. Mechanics of sand production and the flow of fines in porous media[J]. JCPT, 1988, 27:55
    [130] Gabriel G A., Inamdar G R.. An experimental investigation of fines migration in porous media[C]. SPE 12168,1983.
    [131] 汪伟英,王尤富,王孝忠,等.流体性质对出砂的影响及控制[J].特种油气藏,2003,10(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700