串联隔震体系屈曲后屈曲及大变形力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在已有的建筑结构控制技术中,基础隔震技术在最近的几次地震中被证明是一种减轻地震灾害有效的方法。在实际工程中大多数隔震结构采取了由地下室悬臂柱和叠层橡胶隔震支座组成串联隔震体系的隔震方案,维持叠层橡胶支座的稳定性是确保隔震支座实现其隔震功能的重要环节。由于悬臂柱柱身变形及串联系统的二阶效应对隔震支座的承载力和复位性能会产生一定的不利影响,有关悬臂柱与橡胶隔震支座串联系统的安全性问题,成为工程设计和研究人员目前关注的焦点之一。本文针对这一问题,系统研究了串联隔震体系的屈曲、后屈曲和大变形等力学行为。主要内容包括以下几个方面:
     (1)针对串联隔震系统的稳定性问题,建立临界荷载的控制方程,探讨参数变化对临界荷载的影响。首先建立单个叠层橡胶支座稳定性分析的场矩阵;其次根据传递矩阵法建立了串联隔震系统稳定性分析的场矩阵,并根据所得的场矩阵建立了其临界荷载的控制方程,避免了繁琐的力学推导过程;最后计算了两种不同型号的串联隔震系统的稳定性,着重探讨了叠层橡胶支座和地下室柱参数变化对串联隔震系统临界荷载的影响。
     (2)针对串联隔震系统的水平刚度问题,建立水平刚度计算公式,探讨了压应力对水平刚度及结构地震响应的影响。首先建立了单个叠层橡胶支座的场矩阵;其次根据传递矩阵法建立了串联隔震系统的场矩阵,推导出串联隔震系统的水平刚度计算公式;最后探讨了压应力对水平刚度及结构地震响应的影响。
     (3)为了解决带连梁串联隔震系统的稳定性问题,建立了基于传递矩阵法的临界荷载求解公式。首先建立稳定性分析单个支座的场矩阵和连梁等效成抗弯弹簧的点矩阵;其次根据传递矩阵法建立串联隔震系统稳定性分析的特征矩阵,并根据所得特征矩阵建立其临界荷载的控制方程;最后通过计算两种不同型号的串联隔震系统的临界荷载和探讨连梁参数变化对串联隔震系统临界荷载的影响。
     (4)利用微分求积法计算分析了基于考虑剪切变形和不考虑剪切变形两种模型梁柱的大变形和后屈曲力学行为。首先以不考虑剪切变形及考虑轴线伸长的模型,建立了大挠度非线性几何方程,利用微分求积法求解了梁柱的后屈曲和大变形力学行为;其次以考虑剪切变形和轴线伸长的模型,建立了精确大挠度非线性几何方程,并利用微分求积法对比分析了基于两种不同模型梁柱的后屈曲和大变形行为。
     (5)探讨了叠层橡胶隔震支座和串联隔震体系的后屈曲和大变形力学行为。把叠层橡胶隔震等效成均质弹性体,考虑轴线伸长和剪切变形,建立了大挠度非线性几何控制方程,利用微分求积法求解叠层橡胶隔震支座的后屈曲和大变形力学行为;对串联隔震体系,建立考虑轴向伸长和剪切变形的大挠度非线性几何控制方程,因为串联隔震体系在连接位置材料和几何不连续,不能利用微分求积法求解,采用微分求积单元法把串联隔震体系分解为橡胶隔震支座和地下室悬臂柱两个单元,在连接位置考虑力的平衡和变形协调,把控制方程组装成整体微分求积格式,求解串联隔震体系后屈曲和大变形行为。所得结果与串联隔震体系拟静力试验进行比较,结果表明计算结果和试验结果规律吻合。
The base isolation technology among existing building structure control technology shows excellent performance in effectively reducing the damage resulted from the recent ground motion. In engineering practice, most isolated structures are taken up by serial seismic isolation system which is composed of multilayer electrometric bearings and cantilever column of basement. To ensure the stability of serial seismic isolation system becomes very important. The deformation of the basement cantilever column and second-order effect has negative effect on bearing capacity and reduction capacity of isolation components. The security problem of serial seismic isolation system has become focus of attention by engineers and researchers. To solve such the problem, in this paper the buckling, post buckling and large deformation of serial seismic isolation system have been studied systematically. The main work and conclusions gained are listed as follows:
     (1) According to the stability of laminated rubber bearing serially connected with column, which concerned engineering field, the critical load governing equation is established and investigated the influences on the stability. First, field matrix of stability of single laminated rubber bearing is established; Secondly, field matrix of the stability of laminated rubber bearing serially connected with column and the stability governing equation based on transfer matrix method are established , respectively, which avoids tedious mechanical derivation; Finally, calculated the stability of two kinds of series seismic isolation system using numerical calculation method, and investigate parameter variation of multilayer electrometric bearings influence on the stability of series seismic isolation system., some of the conclusions drawn useful for practical engineering applications.
     (2) According to horizontal stiffness of laminated rubber bearing serially connected with column, which concerned engineering field, the horizontal stiffness formula was established and compressive stress influence on horizontal stiffness and dynamic response of isolated structure were investigated. First, field matrix of single laminated rubber bearing was established. Secondly, field matrix of the laminated rubber bearing serially connected with column, the relation between internal force and displacement at arbitrary cross sections and state variable at end of laminated rubber bearing serially connected with column, the horizontal stiffness formula based on transfer matrix method were derived, avoiding tedious mechanical derivation. Finally, compressive stress influence on horizontal stiffness and seismic response of isolated structure were investigated. The results shows that the horizontal stiffness decrease with the rise of the compressive stress, laminated rubber bearings fixed in foundation should be adopted in near fault area.
     (3) To solve the stability of series seismic isolation system connected with column and coupling beam, which concerned engineering field, the critical load governing equation based on transfer matrix method was established. First, field matrix of stability on single laminated rubber bearing and point matrix of stability on coupling beam were established; Secondly, characteristic matrix of the stability on series seismic isolation system and the stability governing equation based on the characteristic matrix were established , which avoided tedious mechanical derivation; Finally, calculated the stability of two kinds of series seismic isolation system using semi-analytic method, and investigated parameters variation influence on the stability of series seismic isolation system, some of the conclusions drawn useful for practical engineering applications.
     (4) By using differential quadrature method, the post-buckling and large deformation of beam-column based on two different models, which one is considering trans-verse shear deformation and another without considering, is comparative analyzed. First, by accurately considering the axial extension and without considering trans-verse shear deformation in the sense of theory of Timoshenko beam, geometrically nonlinear governing equation for beam-column subjected to loads is formulated, by using differential quadrature method the post-buckling and large deformation of beam-column is analyzed. Then by accurately considering the axial extension and considering trans-verse shear deformation in the sense of theory of Timoshenko beam, geometrically nonlinear governing equation for f beam-column subjected to loads is formulated. Finally, by using differential quadrature method, the post-buckling and large deformation of beam-column is comparative analyzed.
     (5) The post-buckling and large deformation of laminated rubber bearings and series seismic isolation system is investigated. Taking laminated rubber bearings as an equivalent homogeneous elastomer and accurately considering the axial extension and considering trans-verse shear deformation, geometrically nonlinear governing equation for bearings subjected to loads is formulated, by using differential quadrature method, the post-buckling and large deformation of laminated rubber bearings is analyzed. For series seismic isolation system, geometrically nonlinear governing equation accurately considering the axial extension and considering trans-verse shear deformation is formulated. Because series seismic isolation system in connection position material and geometrical discontinuous, differential quadrature method can not be used. So by using differential quadrature element method, the post-buckling and large deformation of series seismic isolation system is analyzed. Through analysis on comparing with the result of pseudo-static test, it is shown that the calculated and experimental results consistent with law.
引文
[1]胡聿贤.地震工程学[M].第二版.北京:地震出版社, 2006
    [2]周福霖.工程结构减震控制[M].北京:地震出版社, 1997
    [3]日本建筑学会,刘文光(译) ,隔震结构设计[M].北京:地震出版社,2006
    [4]洗巧铃,周福霖,王伟.橡胶垫框架结构试验研究[J].世界地震工程, 1996, 17(2):23-28
    [5]唐家祥,李黎,李英杰等.叠层橡胶基础房屋结构设计与研究[J].建筑结构学报. 1996,17(2):37-47
    [6]周锡元,阎维明,杨润林.建筑结构的减震、减震和振动控制[J].建筑结构学报, 2002,23(2):2-12
    [7]杜永峰,李慧.关于四川汶川5.12大地震时甘肃省陇南市武都区—隔震建筑宏观性能的调研报告[R].兰州:兰州理工大学, 2008
    [8] GB50011-2010建筑抗震设计规范.北京:中国建筑工业出版社,2010
    [9]张令心,张继文.近远场地震动及其地震影响分析[J].土木建筑与环境工程, 2012,32(2):84-86
    [10] Timoshenko, S. P., and Gere, J. M. Theory of elastic stability [M]. 2nd Ed.McGraw-Hill Book Co., New York, N.Y, 1961
    [11] Roeder, C.W., Stanton, J.F. and Taylor, A.W. Performance of elastomeric bearings. Report No. 298, Nat. Cooperative Highway Res.Program, 1987: Washington, D.C.
    [12] Gent, A. N. Elastic stability of rubber compression springs [J]. Mech. Engrg. Sci., 1964:6(4), 318-326.
    [13] Scroggins, G.C. Stability of elastomeric bearings,1986:Thesis presented to the University of Washington, in Seattle, Wash., in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering.
    [14] Simo, J.C., and Kelly, J.M. Finite element analysis of the stability of multilayer elastomeric bearings [J]. Engrg. Struct, 1984, 6, 162-174
    [15] Koh, C.G, and Kelly, J.M. A simple mechanical model for elastomeric isolation bearings [J]. Int. J. Mech., Sci., 1988, 30(12), 933-943
    [16] Koh, C.G, and Kelly, J.M. Viscoelastic stability model for elastomeric isolation bearings. [J]. J. Struct. Engrg. , ASCE, 1989, 115(2), 285-302
    [17] Staton, J, F., Scroggins, G., Taylor, A.W. and Roeder, C.W. Stability of laminated elastomeric bearings. [J]. J. Engrg. Mech., 1990, 116(6), 1352-1371
    [18] Kelly, J. M. Earthquake resistant design with rubber, 2nd Ed., Springer, 1997, London.
    [19] Herrmann, L.R., et al.1988: "Nonlinear behavior of elastomeric bearings: PartI—Theory.
    [20] Herrmann, L. R., et al. 1988b: "Nonlinear behavior of elastomeric bridge bearings."Final Report to the State of California, Dept. of Transp., Div. of Transp. Planning, Res. Tech. Agreement 13945-53B273.
    [21] Herrmann, L. R., et al. Analytical parameter study for class of elastomeric [J]. Journal of Structural Engineering, 1989, 115(10): 2415-2434
    [22] Nagarajaiah, S. and Ferrell. K. Stability of elastomeric isolation bearings [J]. J. Stuct. Engrg, ASCE, 1999, 125(9): 946-954
    [23] Buckle I.G., Nagarajsiah, S., Farrell, K.Stability of Elastomeric Bearings: Experimental study [J]. Journal of Structural Engineering, 2002, 128(1):3-11
    [24] Buckle, I.G., and Liu, H.”Experiment determination of critical loads of elastomeric isolators at high shear strain.”NCEER Bull., 1994, 8(3): 1-5
    [25] Iizuka, M.A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings [J]. Engineering Structures, 2000, 22: 323-334
    [26] Lanzo, A. On elastic beam models for stability analysis of multilayered rubber bearings. [J] International Journal of Solids and Structures. 2004, 41: 5733-5757
    [27] Schapery, R. A., and Skala, D. P. Elastic stability of laminated elastomeric columns [J]. Int.J.of Solids and Struts. 1976:12(6), 401-417.
    [28] Kelly.J.M.Tension buckling in multilayer elastomeric bearings. [J]. Journal of Engineering Mechanics,2003,129(12)):1363-1368
    [29] Koh, C.-G., and Kelly, J.M.“Effects of axial load on elastomeric isolation bearings.”Rep. No.UCB/EERC-86/12, Earthquake Engineering Research Center, 1987: Univ. of California, Berkeley, Calif.
    [30] Griffith, M. C., Kelly, J.M, Coveney, V.A., and Koh,C.-G.“Experimental evaluation of medium-rise structures subject to uplift.”Rep. No.UCB/EERC-88/02, Earthquake Engineering Research Center, 1988:Univ. of California, Berkeley, Calif.
    [31] Aiken, I. D., Kelly, J. M., and Tajirian, F. F.“Mechanics of low shape factor elastomeric seismic isolation bearings.”Rep. No. UCB/EERC-89 /13, Earthquake Engineering Research Center, 1989_Univ. of California, Berkeley, Calif.
    [32] Ryan, K. L., Kelly, J. M., and Chopra, A. K. Nonlinear Model for lead-rubber bearings including axial-load effects.Journal of Engineering Mechanics. 2005.131(12):1270-1278
    [33] Aristizabal-Ochoa, J. Dario“Column stability and minimum lateral bracing: Effects of shear deformations.”J. Eng. Mech, 2004, 130(10): 1223–1232.
    [34] Aristizabal-Ochoa, J. Dario“Discussion of‘Tension buckling in multilayer elastomeric bearings.”J. Eng. Mech., 2005:131(1), 106–108.
    [35] Aristizabal-Ochoa, J. Dario ,Tension and compression stability and second order analyses of three-dimensional multicolumn systems: effects of shear deformations, J. Eng. Mech.,2007,133(1):106-116
    [36] Warm.G.P Whittaker.A and Constantinou.M. Vertical stiffness of electrometric and lead-rubber seismic isolation bearings [J]. Journal of Strutural Engineering., 2007.133(9): 1227-1236
    [37] Ryan, K.L., and Chopra, A.K.“Estimating seismic demands for isolation bearings with building overturning effects.”J. of Structural Engineering, 2006, 132(7):1118-1128
    [38] Tsai, H.-C.“Compression analysis of rectangular elastic layers bonded between rigid plates International Journal of Solids and Structures, 2005, 42: 3395-3410
    [39] Tsai, H.-C.“Compression stiffness of circular bearings of laminated elastic material interleaving with flexible reinforcements”. International Journal of Solids and Structures, 2006, 43: 3484-3497
    [40] Tsai, H.-C., and Kelly, J.M.“Buckling load of seismic isolators affected by flexibility of reinforcement”. International Journal of Solids and Structures, 2005, 42: 255-269
    [41] Chang, C.-H.“Modeling of laminated rubber bearings using an analytical stiffness matrix”. International Journal of Solids and Structures, 2002, 39: 6055-6078
    [42] Abe, M., Yoshida, J, Fujino, Y. Multiaxial. Behaviors of laminated rubber bearings and their modeling.I: Experimental study. Journal of Structural Engineering.2004.130(8):1119-1132
    [43] Abe, M., Yoshida, J, Fujino, Y. Multiaxial. Behaviors of laminated rubber bearings and their modeling. II: Modeling. Journal of Structural Engineering.2004.130(8):1133-1144
    [44] MS Chalhoub, JMKelly·Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings [J]·International Journal of Solids and Structures,1990,26:734-760·
    [45] M C Constantinou,AKartoum,J MKelly·Analysis of compress of hollow circular elastomeric bearings[J]·Engineering Structures, 1992,(14): 103-111
    [46] GHKoo,JHLee,B Yoo,YOhtori·Evaluation of laminated rubber bearings for seismic isolation using modified macro-model with parameter equations of instantaneous apparent shear modulus[J]·Engineering Structures, 1999, 21: 594-602·
    [47] AMori, A J Carr,NCooke, P JMoss·Compression behavior of bridge bearings used for seismic isolation[J]·Engineering Structures, 1996, 18(5):351-36
    [48] J S Hwang,J M Chiou·An equivalent linear model of lead-rubberseismic isolation bearings[J]·Engineering Structures,1996,18(7):528-536·
    [49] Y Ohtori·Experimental study on mechanical characteristics of highdamping rubber bearings of various shapes (Transactions of Architec-tural Institute of Japan) [J]·1997, 43B:125-133·
    [50]张雄,刘浩吾.隔震支座的稳定性[J].地震工程与工程振动. 1994. 14(3): 114-119
    [51]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社,1993.
    [52]周锡元,韩淼,马东辉,曾德民.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].建筑科学, 1997, (6): 13-19
    [53]刘文光,周福霖,庄学真等.柱端隔震夹层橡胶垫力学性能试验研究.地震工程与工程振动[J]. 1999, 19(3): 121~126
    [54]张敏政;孟庆利.叠层橡胶隔震支座的动态稳定性和力学特性研究.地震工程与工程振动[J]. 2002, 22(5): 85~91
    [55] W.G.Liu, W.F.He, D.M.Feng and Q.R.Yang., Vertical stiffness and deformation analysis models of rubber isolators in compression andcompression-shear states [J]. Journal of Engineering Mechanics. 2009. 135(9): 945-952
    [56] Q.R.Yang., W.G.Liu, W.F.He and D.M.Feng. Tensile stiffness and deformation model of rubber isolators in tension and tension-shear states [J]. Journal of Engineering Mechanics, 2010, 136(4): 429-437
    [57]李黎,叶昆,江宜城.橡胶铅芯隔震支座力学性能的温度效应研究[J].华中科技大学学报(城市科学版),2009,26(3):1-3
    [58]袁涌,朱昆,熊世树,资道铭.高阻尼橡胶隔震支座的力学性能及隔震效果研究[J].工程抗震与加固改造,2008,30(3):15-19
    [59]朱玉华,庄文娟,黄海荣.铅芯橡胶隔震支座水平刚度影响因素数值分析[J].结构工程师.2009,25(6):66-71
    [60]薛素铎,李雄彦,潘克君.大跨空间结构隔震支座的应用研究[J].建筑结构学报,2009(S2):56-61
    [61]薛素铎,李雄彦,蔡炎城.摩擦滑移水平隔震支座的性能试验[J].北京工业大学学报,2009,35(2):168-173
    [62]李黎,聂肃非,孔德怡.桥梁隔震支座静力性能试验分析[J].工程抗震与加固改造.2009,31(3):21-25
    [63]张季超,李霆,李宏胜等.新型大直径隔震支座性能检测试验研究[J].建筑结构.2010, 40(8):31-33
    [64] Zhou, F.L., et al. Mechanic Characteristics of Rubber Bearings in Column Top Isolation System. In: Zhou, F.L., and Spencer Jr., B.F. Proc. Int. Workshop on Seismic Isolation, Energy Dissipation and Control of Structures. Guangzhou, May 6-8, Beijing: Seismological Press, 1999: 44-50
    [65]周锡元,马东辉,曾德民,韩淼.用刚性板联结的组合橡胶支座水平刚度计算方法[J].土木工程学报, 2000, 33(6): 38-44
    [66]周锡元,韩淼,曾德民等.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报.1999.12(2):157-165
    [67]周坚.也论橡胶支座与R/C柱串联隔震系统水平刚度系数[J].工程力学,2000,3( 3):45-49
    [68]马长飞,谭平,张亚辉等.考虑p ??效应的柱顶隔震结构的动力响应分析[J].土木工程学报.2010.43( S1):230-234.
    [69]吴香香,孙丽,李宏男.竖向地震动对隔震建筑高宽比限值的影响分析[J].沈阳建筑工程学院学报(自然科学版).2002,18(2):31-35.
    [70]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究[J].建筑结构学报.2003,24(2):14-19.
    [71]吴香香,李宏男.竖向地震动对基础隔震建筑高宽比限值的影响[J].同济大学学报(自然科学版).2004,32(1):10-14
    [72]吴任鹏,王曙光,刘伟庆等.考虑橡胶支座拉压刚度不同取值对隔震效果的影响研究[J].工程抗震与加固改造.2008,30(5):24-28
    [73]米晓玲,谭平,沈朝勇等.高层建筑结构隔震设计方法研究[J].土木建筑与环境工程,2010,32(S2):439-441
    [74]杨彦飞,何文福.橡胶隔震支座基本力学性能试验研究[J].建筑科学2010,26(5):6-9
    [75]赵亚敏,苏经宇,周锡元等.组合式碟形弹簧竖向隔震支座的设计与性能试验研究[J].北京工业大学学报,2009,35(7):892-898
    [76]刘海卿,王锦力,牛健.SMA三维隔震支座的双层柱面网壳结构地震响应分析[J].武汉理工大学学报,2010,32(9):106-110
    [77]王锦力,刘海卿.基于SMA隔震支座的双层柱面网壳结构地震响应分析[J].防灾减灾工程学报[J].2010.30(S1):258-261
    [78]徐赵东,曾晓,巫可益等.多维隔减震结构水平向振动台试验及隔减震性能分析[J].中国科学(E辑:技术科学),2009,39(7):1312-1318
    [79]徐赵东,时本强,巫可益等.粘弹性多维隔减震结构竖向振动台试验与研究[J].中国科学(E辑:技术科学),2009,39(10):1709-1715
    [80]徐赵东,史春芳.黏弹性阻尼器的试验研究与减震工程实例[J].土木工程学报,2009,42(6):55-60
    [81]徐赵东,曾晓,巫可益等.黏弹性多维隔减震结构水平向振动台试验研究[J].土木工程学报,2009,42(10):8-14
    [82]沈朝勇,周敏辉,庄学真等.低硬度大直径橡胶隔震支座竖向荷载作用下钢板应力研究[J].防灾减灾工程学报,2011,31(1):30-37
    [83]颜学渊,张永山,王焕定等.三类三维隔震抗倾覆支座力学性能试验研究[J].振动与冲击,2009,28(10):49-53
    [84]韩强,刘文光,杜修力等,橡胶隔震支座竖向性能研究[J].辽宁工程技术大学学报(自然科学版),2006,25(2):217-219
    [85]江宜城,聂苏菲,叶志雄等,多铅芯橡胶隔震支座非线性力学性能试验研究及其显示有限元分析[J].工程力学,2008,25(7):11-17
    [86]袁涌,朱宏平,资道铭,高阻尼橡胶支座的力学性能及隔震效果分析研究[J].预应力技术,2011,1:20-23
    [87]龚键,邓雪松,周云.摩擦摆隔震支座理论分析与数值模拟研究[J].防灾减灾工程学报, 2011,31( 1):56-62
    [88]黄襄云,周福霖,曹京源等,纤维橡胶隔震结构模拟地震振动台试验研究及仿真分析[J],广州大学学报(自然科学版),2010,9( 5) :21-26
    [89]吴波,韩力维,周福霖等,隔震橡胶支座防火保护试验研究[J].建筑结构学报, 2011,32(2):107-112
    [90]李慧,姚云龙,杜永峰等.叠层橡胶支座与柱串联体系动力失稳特性探讨[J].世界地震工程. 2005, 3(1): 18-23
    [91]李慧,杜永峰,狄勇奎,等.叠层橡胶隔震支座的低温往复试验及等效阻尼比推算[J].兰州理工大学学报, 2006, 32(5): 116-119
    [92]杜永峰,李慧.橡胶支座与柱串联系统的动力稳定性分析的半解析解法[J].四川建筑科学研究.2007(S1):126-129.
    [93]李慧,寇巍巍,杜永峰.天然橡胶隔震支座温度相关性有限元模拟[J].低温建筑技术.2009,6,46-48
    [94]杜永峰,韩登.不同类型串联隔震体系竖向承载力对比分析[J].土木工程学报,2010.43( S1):249-254.
    [95]杜永峰,韩登.地下室连梁对串联隔震系统稳定性的影响[J].低温建筑技术. 2010, 10.14-16.
    [96] Du Y F, Li H, Zhu Q k. A stability study on laminated rubber bearing serially connected with column[C].//Proceedings of 11th World Conf. Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures. Guangzhou:[s.n.],2009
    [97]杜永峰,杨静成,林治丹等.串联隔震体系静力有限元分析[J].工程抗震与加固改造.2010, 32(4):26-31
    [98]杜永峰,李慧.叠层橡胶垫与RC柱串联隔震体系的随机屈曲分析[J].防灾减灾工程学报[J].,2010.30(S1): 16-21
    [99] Du Y F, Zhu Q k. A study on static stability of series seismic isolation system based on shooting method.[C].Proceedings of 2010 3rd IEEE International Conference on Computer Science and Information Technology. July9-11 , 2010, Cheng du, China, Vol(6): 155-158
    [100]杜永峰,朱前坤,李慧.微分求积法在隔震支座非线性分析中的应用[J].土木建筑与环境工程. 2010,32( S2) :424-426
    [101] Du Y F, Lin Z D, Li H. Analysis of buckling failure of rubber isolators serially connected with cantilever column subject to major earthquakes .[C].// Proceedings of 13th International Conference on Computing in Civil and Building Engineering. Nottingham,Uk: [s.n.],
    [102] Lee, K.“Post-buckling of uniform cantilever column under a combined load.”International Journal of Non-Linear Mechanics, 2001, 36(5): 813-816.
    [103] Wu, Y., Li, S. R., and Teng, Z. C.“Post-buckling of a cantilever rod with variable cross-section under combined load.”Applied Mathematics and Mechanics, 2003, 24(9):1111-1118.
    [104] Vaz, M. A. and Mascaro, G. H. W.“Post-buckling analysis of slender elastic vertical rods subjected to terminal forces and selfweight.”International Journal of Non-Linear Mechanics, 2005, 40(7): 1049-1056.
    [105] Lacarbonara, W.“Buckling and post-buckling of non-uniform non-linearly elastic rods.”International Journal of Mechanical Sciences, 2008, 50(8):1316-1325.
    [106] Mazzilli, C. E. N.“Buckling and post-buckling of extensible rods revisited: A multiple-scale solution.”International Journal of Non-Linear Mechanics, 2009, 44(2):200-208.
    [107] Shvartsman, B. S.“Direct method for analysis of flexible cantilever beam subjected to two follower forces.”International Journal of Non-Linear Mechanics, 2009, 44(2):249-252.
    [108] Li, S. R., Z. Y. H, and Zheng, X.J“Thermal post-buckling of a heated elastic rod with pinned-fixed ends.”Journal of Thermal Stress, 2002.25(1):45-56.
    [109] Sepahi, O. Forouzan, M.R. and Malekzadeh, P. Differential quadrature application in post-bucking analysis of hinged-fixed elastic under terminal forces and self-weight [J]. Journal of Mechanical Science and Technology,2010(24):331-336
    [110] Sepahi, O. Forouzan, M.R. and Malekzadeh, P. Post-bucking analysis of variable cross-section cantilever beams under combined load via differential quadrature method [J]. Journal of Civil Engineering, 2010, 14(2): 207-214
    [111]胡育佳,朱媛媛,程昌钧.求解几何非线性桩-土耦合系统的微分求积单元法[J].固体力学学报, 2008, 25(3),29(2):141-148
    [112]李世荣,张靖华,赵永刚.功能梯度材料Timoshenko梁的热过屈曲分析. [J].应用数学和力学, 2006, 27( 6) : 709-715
    [113] Bellman R E, Kashef B G, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial equations. J Comput Phys, 1972, 10:40-52
    [114]王鑫伟.微分求积法在结构力学中的应用[J].力学进展.1995, 25(2): 232-240
    [115]王永亮.微分求积法和微分求积单元法-原理与应用[D].南京:南京航空航天大学,2001
    [116]聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J] .工程力学.2005, 22 (1): 59-62
    [117]唐玉花,王鑫伟.受边缘非线性分布荷载作用矩形薄板的面内应力分析[J] .工程力学.2010, 28(1):37-42
    [118]聂国隽,徐敏,仲政.轴向变刚度矩形截面梁的弹性及弹塑性弯曲[J] .中国科学(物理学力学天文学) .2011,41(1):86-93
    [119]范晨光,杨翊仁,鲁丽.截锥壳颤振分析的微分求积法[J] .振动与冲击. 2010, 29(12):200-205
    [120]王永亮,王鑫伟.高精度微分求积曲梁单元的建立与应用[J].南京航空航天大学学报, 2001, 33(6):516-520
    [121]马瑞成,赵凤群,王小侠.微分求积法分析弹性地基上输流管道的稳定性[J].纺织高校基础科学学报, 2005, 18(l):74一77.
    [122] Wang Lin, Ni Qiao, Huang Yuying. Hopf bifurcation of a nonlinear restrained curved fluid conveying pipe by differential quadrature method. Acta MechanicaSolida Sinica, 2003, 16(4):345-352.
    [123]倪樵,张惠兰,黄玉盈等.DQ法用于具有弹性支承半圆形输液曲管的稳定性分析[J].工程力学,2000, 7(6):59-64
    [124]戴承伟,王永亮.加筋板稳定性微分求积单元法分析[J].南京航空航天大学学报, 2007, 39(5): 642-645.
    [125] C.-N. Chen. The Timoshenko beam model of the differential quadrature element method [J]. Computational Mechanics 24 (1999) 65-69
    [126] P. Malekzadeh, G. Karami, M. Farid. DQEM for free vibration analysis of Timoshenko beams on elastic foundations [J]. Computational Mechanics 31 (2003) 219–228
    [127]聂国隽,仲政.微分求积单元法在结构工程中的应用[J].力学季刊.2005,26(3):423-427
    [128]胡育佳,朱媛媛,程昌钧.求解几何非线性桩-土耦合系统的微分求积单元法[J].固体力学学报, 2008,29(2):141-148
    [129]刘庆潭,倪国荣.弹性地基梁的传递矩阵法求解[J].长沙铁道学院学报,1992,10(2):92-101
    [130]刘庆潭,含楔形变截面梁静力分析的传递矩阵法[J].力学与实践,1993,15(1):64-66
    [131]郑学军.具有分支结构的平面刚架静力及自由振动分析的传递矩阵法[J].铁道师院学报, 1996,13(4):10-16
    [132]刘庆潭,陈志良,刘长文.刚架结构静力分析的传递矩阵法[J].长沙铁道学院学报, 1997,15(2):27-32
    [133]李雅萍,刘庆潭.多跨弹性支座圆弧梁计算传递矩阵法[J].中国铁道科学, 2005,26(3):48-52
    [134]冷伍明,杨奇,刘庆潭等.软基高桥台桩-土相互作用计算新方法研究[J].岩石力学,2009,30(10):3079-3108
    [135]党育,杜永峰,李慧.基础隔震设计及施工指南[M].北京:中国水利水电出版社:2007:84-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700