生物预处理玉米秸秆厌氧干发酵特性及沼渣基质利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国农作物秸秆资源丰富,有效利用秸秆等生物质资源,将其转化为高附加值的沼气及有机副产物是秸秆能源化利用中的一项重要途径。采用厌氧干发酵技术进行秸秆沼气转化由于提高了容积产气能力已经成为秸秆沼气技术的研究热点。然而,农作物秸秆的特点是木质纤维素含量较高,而厌氧微生物的木质纤维素降解消化能力较弱,从而限制了秸秆生物气化的大规模应用。因此,针对原料特点开展秸秆厌氧发酵的预处理技术、干发酵产气工艺及机制、残留物利用等研究对推进秸秆生物气化的产业化进程具有重要意义。本论文以玉米秸秆为研究对象,生物预处理技术为切入点,开展厌氧干发酵产气特性及残留物沼渣基质利用的研究。主要研究内容如下:
     (1)采用稀释平板法在愈创木酚固体选择培养基、苯胺兰筛选培养基和α-萘酚筛选培养基上,利用定性筛选和定量木质磺酸钙降解试验相结合的方法从林区朽木中分离筛选出漆酶活力较高的木质素降解菌S4,对该菌株的生物学特性和液体发酵产木质素降解酶的条件进行了研究。结果显示菌株S4主要产生漆酶和木质素过氧化物酶,培养最佳碳氮源为葡萄糖和酒石酸铵,培养条件为28℃、pH值为5.0、接种量5%,影响Lac产量的主要因素为酒石酸铵、Tween80和葡萄糖,最优培养基组合为葡萄糖15g/L,酒石酸铵0.2g/L, MnSO40. 01g/L, Tween80 1g/L,优化后Lac产量为279.5U/L,是优化前的1.21倍;影响LiP产量的主要因素为葡萄糖和酒石酸铵,最优培养基组合为葡萄糖15g/L,酒石酸铵0.4g/L,Tween80 0.5g/L,MnS040.015g/L,优化后LiP产量为221.3U/L,是优化前的1.16倍。
     (2)综合酶产生能力和兼容性试验结果,利用产酶互补的原则将Phanerochaete chrysosporium, Trametes versicolor及与环境中筛选出的能协同降解木质素的菌株S4进行混合培养降解玉米秸秆,通过对温度、含水率、接种量和培养时间等降解条件进行研究,结果表明混合菌降解玉米秸秆较优的培养条件为28℃、含水量65%、接种量5%,此时7d-15d木质素降解速率较快,20d固态发酵的木质素降解率为35.75%。将混合菌用于玉米秸秆厌氧干发酵前的预处理,结合木质素的降解和厌氧干发酵启动及30d累积产沼气情况,确定预处理时间为11d,预处理后木质素、纤维素和半纤维素的降解率分别为28.74%、17.74%和28.35%,有效缩短后续发酵的启动时间。利用扫描式电子显微镜和红外光谱分析仪对降解前后的玉米秸秆对比分析,发现玉米秸秆表面形态结构发生明显的变化,红外光谱中的芳香环和醚键吸收减少,说明混合菌对木质素有较强降解作用。
     (3)在比较不同生物预处理产气效果的基础上,研究了玉米秸秆经混合菌生物预处理后,在温度、粒径、总固体浓度、接种物添加量、C/N不同的条件下,其厌氧干发酵沼气生产过程稳定性及沼气产量的变化。结果表明混合菌预处理玉米秸秆厌氧干发酵效果最好,累积产气量高于堆腐处理组21.2%,青贮后玉米秸秆用于发酵需定期监测并调节基质pH值,否则易引起消化障碍;高温发酵有优势,但能耗大,中温35℃较适合玉米秸秆厌氧干发酵;减小玉米秸秆粒径对厌氧消化具有促进作用,一定范围内粒径越小达到产气高峰的时间越短,但粒径过小影响底物疏松状态,试验条件下粒径为1-3mm的玉米秸秆干发酵效果及产气稳定性最好。总固体浓度对玉米秸秆的厌氧发酵也有显著影响,在保证较高的处理效率的情况下,选择较低的总固体浓度有利于后期产甲烷阶段的进行。在单因素试验基础上,选择混合菌预处理、中温(35℃),粒径1-3mm的条件下,利用响应面法进行进一步的工艺参数优化,确定出最优的工艺条件为原料TS浓度为21.4%,接种物添加量为25.5%,初始C/N为30.2:1,累积产气量相比优化前提高23.15%。最优工艺条件下,100d发酵周期的玉米秸秆干发酵试验,发酵原料TS产气率为0.476L/g,沼气中甲烷体积分数平均为50.13%。优化后工艺条件有效促进了玉米秸秆厌氧干发酵产沼气的进行,为玉米秸秆厌氧干发酵系统的合理设计与运行提供理论依据。
     (4)通过对玉米秸秆厌氧干发酵残留物的营养成分及污染性指标测试分析,结果表明:以玉米秸秆为原料的发酵残留物中含有丰富的营养性物质,其中沼渣中各种营养成分明显高于沼液,沼渣中全氮、全磷和全钾含量均较高,相对于畜禽粪便发酵后的沼渣相比处于较高水平。对照农用污泥污染物控制标准(GB4284-84),本试验条件下的沼渣中各重金属元素含量均在标准范围内。表明沼渣不仅含有丰富的营养元素,并且可作为一种高效无公害有机基质的原料长期使用。
     (5)不同配比的沼渣基质容重、含水量、pH值、EC值等指标均在适宜范围内,其中沼渣:蛭石为1:2-3的处理促进根系发育,干物质积累多,光系统(PSⅡ)有较大的光合电子受体库(Sm),可接受较多的电子,有利于在电子传递链中的传递,使光能的最大转化效率(Fv/Fm)及PSⅡ的潜在活性(Fv/Fo)提高。添加一定比例的沼渣后,改变了基质的微生物区系组成,明显提高草莓根际基质中放线菌和细菌的比例,其中沼渣:蛭石为1:2处理中细菌/真菌为对照的3.09倍,放线菌/真菌比例达76.23倍,基质中活性物质的提高改善了草莓根际环境,表现为草莓根系活力比对照提高了19.17%,根系总呼吸速率较对照显著提高47.67%,根系生化呼吸代谢途径向产能较高的TCA呼吸途径转化,为植株良好发育提供能量。
     (6)干旱逆境下,沼渣:蛭石为1:2基质的草莓植株净光合速率较对照显著提高44.39%,植株的水分利用效率提高,草莓叶片PSⅡ电子传递体未受到明显伤害;低温条件下沼渣:蛭石为1:3处理叶片Pn处于较高水平,但PSⅡ受体侧电子从QA-向QB-的传递受到一定的抑制;强光照条件下沼渣:蛭石为1:2处理光化学性能指数(PIABC)明显高于其他处理,光合电子传递效率高。研究表明沼渣:蛭石为1:2处理的草莓植株抗逆性强,是一种较为理想的栽培基质。
It's universally acknowleged that straw energy-oriented use can be achieved through the transformation of biomass energy crops such as straw into high value-added methane and organic fertilizer,especially in China with her abundant crops straw resources.Currently the dry anaerobic fermentation technology has become a research focus because it can improve the production volume.Howerever,because of the characteristic of high cellulose and the weak ability to digestion for anaerobic microbial,the application and production of straw biogas has been seriously limited.Therefore it's extremely significant to have a further reseach on pretreatment technology, efficient biogas production of dry fermentation and the depth utilization of the residue.My thesis revolve around corn stalk and bio-pretreatment to expound on the features and the factors of dry anaerobic fermentation.Based on the previous experiment,the conclusion has been reached that the process of mixed bacteria bio-pretreatment corn stalk and dry anaerobic fermentation biogas production.Through the analysis of the composition of fermentation residue, investigating feasibility of using residue as the matrix to cultivat strawberry. The main research contents are as follows:
     (1) Dilution-plate method is used on the guaiacol solid selective medium、aniline blue screening medium and a-naphthol screening medium,made use of the method that combine the qualitative screening with quantitative calcium lignin sulfonate degradation experiment to separate the lignin-degrading bacteria S4 which laccase activity is higher from rotten wood in the forest, the biological characteristics of this strains and the conditions of liquid fermentation produce lignin degradation enzyme were studied. Through the conditions for enzyme production of carbon source、nitrogen source、mentalion、surfactant、temperature、PH、inoculation amount and incubation time to research, the results show that the best carbon and nitrogen source of strains S4 is glucose and ammonium tartrate, temperature is 28℃、PH is 5.0、inoculation amount is 5% that is the best culture conditions, orthogonal design ascertain three main factors for influence Lac production is ammonium tartrate、Tween80 and glucose, the optimal combination of culture medium is that the glucose is 15g/L, ammonium tartrate is 0.2g/L, MnSO40.01g/L,Tween is 801/L; the main factors to affect Lip production is glucose and ammonium tartrate, the optimal combination of culture medium is that the glucose is 15g/L, ammonium tartrate is 0.4g/L, Tween is 800.5/L,MnSO40.015g/L.
     (2) Comprehensive the ability of produce enzyme and the results of compatibility experiment,using the principle of enzyme production complementary to make Phanerochaete chrysosporium,Trametes versicolor and strains S4 which could cooperate with degrade lignin screening from environment to mixed cultivation degradation corn stalks, through the degradation conditions of temperature、moisture、inoculation amount and incubation time to studied, the results showed that the culture conditions of mixed bacteria degradation corn stalks is 28℃、water content is 65%、inoculation amount is 5%,this moment, the degradation rate of lignin is faster after 7-15d disposed, the lignin degradation rate of solid state fermentation is 35.75% after disposed 20 days.The mixed bacteria will be used for the Bio-pretreatment before corn stalks dry anaerobic fermentation, combined the situation with the degradation of lignin、start-up dry anaerobic fermentation and produced biogas accumulated in 30d, determined that the time of mixed bacteria Bio-pretreatment corn stalks is 11d, after pretreatment the degradation rate of lignin is 28.74%,the degradation rate of cellulose is 17.74%,the degradation rate of hemicellulose is 28.35%. Using scanning electron microscope and infrared spectrometric analyzer to comparative analysis corn stalks degradation from beginning to end.From scanning electron microscopy we found that the surface morphology structure of corn stalks have change obviously, the aromatic rings and the ether bonds in the FTIR absorbed reduce, which speak volumes for that the mixed bacteria has strong degradation function to lignin.
     (3) On the basis of comparing gas production effect of different Bio-pretreatment, researched that the corn stalks after Bio-pretreatment with the mixed bacteria, in the different condition of temperature, particle diameter, solid concentration, the inoculum additives, C/N, the changes of stability of dry anaerobic fermentation production biogas and biogas yield, and adapt the Response Surface Methods to make sure that the best condition of dry anaerobic fermentation is the mixed bacteria Bio-pretreatment, temperature (35℃), particle size 1~3 mm, density of TS is 21.4%, the inoculum additives is 25.5%, the initial C/N is 30.2:1.In the optimal technological conditions, make the corn stalks dry fermentation experiment in a 1L reactor in a 100d fermentation period, the cumulative gas production is 31.78L,TS which is the fermentation materials that the gas yield is 0.476 L/g and the volume fraction of methane in biogas is 50.13% on average. It explain that after optimized the process conditions can effectively promote produce methane in the way of stalks dry anaerobic fermentation, and provide the theory basis for the reasonable design and operation of the corn stalks dry anaerobic fermentation system.
     (4) Though the experiment analysis of nutrient content and pollution index of the residue of corn stalks dry anaerobic fermentation. The results shows that the fermentation residue which the raw material is stalks rich of nutritional substances, among it all kinds of the nutrient content of residue is higher than biogas slurry, in residue the content of total-N、total-P and total-K are all higher, relative to the residue of the poultry feces after fermented in a higher level. Compare contamination control standards in agricultural sludge(GB4284-84),each heavy metal element content of residue in this laboratory condition are all in the standard range. It indicate that residue not only rich of nutrient element, and also can be used long-term used as a kind of raw material of efficient pollution-free organic matrix.
     (5) The study of making use of anaerobically digested slurry. The different ratio of the anaerobically digested slurry, the index like volume density、moisture content、pH value、EC value are all in a suitable scope, among it will promote the root development when residue:vermiculite is 1:2-3 and dry matter accumulated more, photosystem (PSⅡ) have larger photosynthetic electron acceptor library(Sm)which could accept more electronic, contributed to transfer in electron-transport chain and made the maximum conversion efficiency of light energy (Fv/Fm) and potential activity of PSⅡ(Fv/Fo) improve. The microflora composition of substance is changed after added proportional biogas residue and the presence of actinomycetes and bacterium in the strawberry rhizosphere matrix is improved obviously, in it if residue:vermiculite is 1:2 that bacteria/fungi is 3.09 times of control subjects and the proportion of actinomyces/fungi is as high as 76.23 times, the strawberry rhizosphere environment is improved when active agent of substance improve, it expressed that strawberry root vigor is improved 19.17% compared by control subjects and total root respiratory rate is improved significantly 47.67% compared by control subjects, the root system biochemical breathing metabolic pathway is converted into TCA breath pathway which is full of higher output and improve energy to plants for fine growth.
     (6) Under drought adverse environmental stresses, when residue:vermiculite=1:2 strawberry plants net photosynthetic rate of substance is improved significantly 44.39% compared by control subjects, increase the efficiency of water of plants usage, strawberry leaves PSⅡtransfer electrons are suffering considerable damage; under low temperature conditions when residue:vermiculite is 1:3 and made the Pn of leaves in high level,but the receptor side electronic of PSⅡtransfers from QA- to QB- has been a degree of restraint; under the condition of strong light when residue:vermiculite is 1:2 PIABS is higher than other processes obviously, the efficiency is high of photosynthetic electronic transfer. The research shows that when residue:vermiculite is 1:2 the stress resistance is strong of strawberry plants and it is an ideal culture substrate.
引文
1. 白洁瑞,李轶冰,郭欧燕,等.2009.不同温度条件粪秆结构配比及尿素、纤维素酶对沼气产量的影响[J].农业工程学报,25(2):188-192.
    2.毕经毅,夏吉庆,马添翼,等.2010.厌氧发酵系统中回流沼液的产甲烷活性研究[J].环境工程学报,4(11):2631-2634.
    3.蔡振明,高爱忠,祁梦兰.1993.固体废物的处理与处置[M].北京:高等教育出版社,248-250.
    4.陈广银,郑正,常志州,等.2011.不同氮源对麦秆厌氧消化过程的影响[J].中国环境科学,31(1):73-77.
    5.陈广银,郑正,邹星星,等.2009.稻草与猪粪混合厌氧消化特性研究[J].农业环境科学学报,28(1):185-188.
    6.陈洪章,近光,冯孙正,等.2009.高浓度有机废液COD处理获取产业化沼气的技术开发进展[J].中外能源,14(7):30-33.
    7.陈小华,朱洪光.2007.农作物秸秆产沼气研究进展与展望[J].农业工程学报,23(3):279-283.
    8.陈育如,夏黎明,吴绵斌.1995.植物纤维素原料预处理技术的研究[J].化工进展,4:24-26.
    9.陈子爱,邓小晨.2006.微生物处理利用秸秆的研究进展[J].中国沼气,24(3):31-34.
    10.程斐,孙朝晖,赵玉国,等.2001.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报,24(3):19-22.
    11.程序,梁近光,郑恒受,等.2010.中国“产业沼气”的开发及其应用前景[J].农业工程学报,26(5):1-6.
    12.董宇,马晶,张涛,等.2010.秸秆利用途径的分析比较[J].中国农学通报,26(19):327-332.
    13.邓光联.2008.大中型沼气发展模式探讨.中国农村生物质能源国际研讨会论文集[M].北京:中国农业出版社.
    14.邓良伟,陈子爱,龚建军.2008.中德沼气工程比较[J].可再生能源,26(1):110-114.
    15.邓舟,蒋建国,杨国栋.2005.有机固体废弃物生化产甲烷潜能测定标准方法[J].清华大学学报(白然科学版),45(9):1213-1216.
    16.杜连柱,陈羚,杨鹏,等.2010.猪粪秸秆不同物料比对固体产酸发酵效果的影响[J].农业工程学报,26(7):272-276.
    17.段传人,朱丽平,姚月良.2009.三种白腐菌及其组合菌种木质素降解酶比较研究[J].菌物学报,28(4):577-583.
    18.高白茹,常志州,叶小梅,等.2010.堆肥预处理对稻秸厌氧发酵产气量的影响[J].农业工程学报,26(5):251-256.
    19.高丽红.2004.无土栽培固体基质的种类与理化特性[J].农村实用工程技术,(2):28-30.
    20.郭铁成.2011.中国生物燃气现状分析[J].能源材料,10(4):106-107.
    21.郭世荣.2005.固体栽培基质研究、开发现状及发展趋势[J].农业工程学报,21(增刊):1-4.
    22.郭世荣,李式军,程斐等.2000.有机基质培在蔬菜无土栽培上的应用研究[J].沈阳农业大学学报,31(1):89-92.
    23.郭燕锋,李东,孙永明,等.2011.梧州市生活垃圾高固体厌氧发酵产甲烷[J].中国环境科学,31(3):412-416.
    24.韩捷,向欣,李想.2008.覆膜槽沼气规模化于法发酵技术与装备研究[J].农业工程学报,38(2):189-192.
    25.韩鲁佳,闰巧娟,刘向阳,等.2002.中国农作物秸秆资源及其利用现状[J].农业工程学报,18(3):87-91.
    26.胡纪萃,周孟津,左剑恶.2003.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社.
    27.胡启春,宋立.2005.奶牛养殖场粪污处理沼气工程技术与模式[J].中国沼气,23(4):22-25.
    28.黄惠珠.2007.红泥塑料在规模化畜禽养殖场沼气下程中的应用—介绍福建省永安文龙养殖场沼气工程[J].中国沼气,25(3):23-26.
    29.黄惠珠,叶夏,肖弘建.2007.谈秸秆生物气化技术在沼气建设中的应用研究[J].能源与环境,60-61.24(10):100-104.
    30.孔德杰,改河,任广鑫,等.2008.沼肥不同用量对小麦光合特性和产量的影响[J].西北农业学报,2008,17(2):64-9.
    31.孔德杰,刘娜娜,杨改河,等.2009.施沼肥对半干旱地区冬小麦光合特性和产量的影响[J].西北农业学报,18(1):117-22.
    32.寇巍,赵勇,徐鑫,等.膨化技术用于玉米秸秆厌氧干发酵的试验研究[J].可再生能源,28(3):63-66.
    33.雷中方,陆雍森.1995.木质素在厌氧生物处理过程中的转化[J].同济大学学报,23(4):421-426.
    34.李冰冰,肖渡,胡智泉,等.2010.堆肥预处理对生物质厌氧消化特性的影响[J].安徽农业科学,38(10):10848-10851.
    35.李存斌,罗光辉,郭英洲.2010.间歇式沼气干法发酵的研究[J].农机化研究,31(5):69-72.
    36.李东,孙永明,张宇,等.2008.城市生活垃圾厌氧消化处理技术的应用研究进展[J].生物质化学工程,42(4):43-50.
    37.李东,孙永明,袁振宏,等.2010.有机垃圾组分中温厌氧消化产甲烷动力学研究[J].太阳能学报,31(3):386-390.
    38.李冬梅.2008.玉米秸秆为原料燃料乙醇制备的关键问题研究[D].哈尔滨工业大学.
    39.李军,杨秀山.2002.微生物与水处理工程[M].北京:化学工业出版社.
    40.李佳,陈泽兵,杨秀山等.2011.厌氧消化菌群的筛选及其对高浓度玉米秸秆的厌氧消化[J].可再 生能源,29(3):43-45.
    41.李金平,柏建华,李珍.2010.不同恒温条件厌氧发酵的沼气成分研究[J].中国沼气,28(6):20-23.
    42.李连华,马隆龙,袁振宏,等.2007.农作物秸秆的厌氧消化试验研究[J].农业环境科学学报,26(1):335-338.
    43.李萍萍,胡永光,李式军,等.2000.有机基质在蔬菜栽培上应用效果的研究[J].沈阳农业大学学报,31(1):93-95.
    44.刘睿,万楚筠,黄茜,等.2009.秸秆预处理技术存在的问题与发展前景[J].环境科学与技术,32(5):88-91.
    45.李世密,张晓健,曲静霞,等.2007.秸秆类木质纤维素原料厌氧发酵产沼气的研究[A].2007中国生物质能科学技术论坛[C].营口:辽宁省能源研究所.328-332.
    46.李想,赵立欣,韩捷,等.2006.农业废弃物资源化利用新方向—干法厌氧发酵技术[J].中国沼气,24(4):23-27.
    47.李志军.2008.生物燃料乙醇发展现状、问题与政策建议[J].中国生物工程杂志,28(7):139-141.
    48.刘丽雪,陈海涛,韩永俊.2010.沼渣物理特性及沼渣纤维化学成分测定与分析[J].农业工程学报,26(7):277-280.
    49.刘盛萍,金杰,吴克,等.2008.固含量对生物废物干式厌氧消化的影响[J].环境卫生工程,16(5):59-62.
    50.刘伟伟,谢建.2004.生物质能开发利用现状及展望[J].中国建设动态:阳光能源,59-62.
    51.刘晓风,廖银章,刘克鑫.1995.城市有机垃圾干法厌氧发酵研究[J].太阳能学报,16(2):170-173.
    52.刘晓风,袁月祥,闫志英.2010.生物燃气技术及工程的发展现状[J].生物工程学报,26(7):924-930.
    53.刘相如,尹克林,钱春,等.2007.盆栽草莓基质筛选试验初报[J].中国农学通报,23(4):281-284.
    54.刘英.2009.原料不确定性对沼气工程的影响及对策[J].环境保护,422(6):72-73.
    55.罗庆明.2005.作物秸秆高效厌氧生物气化技术研究[D].北京:北京化工大学.
    56.罗涛.2010.德国新能源和可再生能源立法模式及其对我国的启示[J].中外能源,5(1):34-45.
    57.马文元,郭玉兰.1993.对沼气发酵残留物中生物活性物质的探讨[J].中国沼气,11(2):50-51.
    58.毛羽,张无敌.2005.以沼气为纽带的生态农业模式效益分析[J].中国沼气,23(3):36-39.
    59.孟庆伟,赵世杰,许长城,等.1996.田间小麦叶片光合作用的光抑制和光呼吸的防御作用[J].作物学报,22(4):470-475.
    60.牛铁泉,田给林,薛仿正,等.2007.半根及半根交替水分胁迫对苹果幼苗光合作用的影响[J].中国农业科学,40(7):1463-1468.
    61.庞凤梅,李玉浸,杨殿林,等.2008.作物秸秆沼气发酵与直接利用效益比较[J].中国沼气,26(2):34-37.
    62.庞云芝,王奎升,李秀金.2008.以秸秆为原料规模化生产沼气关键技术与推广应用[J].化工进展,27(8)120-123.
    63.齐伟,张吉旺,王空军,等.2010.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J].应用生态学报,21(1):48-52.
    64.全桂香,常志州,叶小梅,等.2009.秸秆沼气干发酵快速启动条件与影响因素研究[J].江苏农业科学,(3):366-368.
    65.茹征微,彭武厚.1983.有机物产甲烷量的计算和测定[J].太阳能学报,4(4):363-368.
    66.阮文权,郁丹,邹华,等.2006.小城镇废弃物沼气生产技术进展[J].中国沼气,24(4):28-35.
    67.单丽伟,冯贵颖,范三红.2003.产甲烷研究进展[J].微生物学杂志,23(6):42-46.
    68.史胜青,袁玉欣,张金香,等.2003.不同水分胁迫方式对核桃苗叶绿素荧光动力学特性的影响[J].河北农业大学学报,26(2):20-24.
    69.时连辉,张志国,刘登民.2008.菇渣和泥炭基质理化特性比较及其调节[J].农业工程学报,24(4):199-203.
    70.石磊,赵由才,柴晓利.2005.我国农作物秸秆的综合利用技术进展[J].中国沼气,23(2):11-19.
    71.石卫国.2006.生物复合菌剂处理秸秆产沼气研究[J].农业工程学报.22(增刊):93-95.
    72.石元春.2007.谈发展生物质产业中的几个问题[J].中国基础科学,7(6):3-6.
    73.孙辰,刘荣厚,覃国栋.2010.芦笋秸秆预处理与厌氧发酵制取沼气试验[J].农业机械学报,41(8):95-99.
    74.孙国朝,邵延杰,连莉文,等.1985.干法厌氧发酵工艺条件的研究[J].太阳能学报,6(3):221-235.
    75.孙然,冷云伟,赵兰,等.2010.秸秆原料预处理方法研究进展[J].江苏农业科学,(6):464-455.
    76.孙山,张立涛,高辉远,等.2009.晴天条件下光、温变化对苹果绿色果皮原初光化学反应的影响[J].应用生态学报,20(10):2431-2436.
    77.孙永明,李国学,张夫道,等.2005.中国农业废弃物资源化现状与发展战略[J].农业工程学报,21(8):169-173.
    78.唐一,胡纪萃.1990.辅酶F420作为厌氧污泥活性指标的研究[J].中国沼气,8(1):11-15.
    79.万楚筠,黄凤洪,刘睿,等.2010.微生物预处理油菜秸秆对提高沼气产量的影响[J].农业工程学报,26(6):267-271.
    80.王寿权,阮文权,严群.2008.蓝藻猪粪共发酵产沼气及动力学研究[J].食品与生物技术学报,27(5):108-112.
    81.王永泽,邵明胜,杨立,等.2009.水稻秸秆厌氧发酵产沼气工艺的响应面法优化[J].化学与生物工程,26(11):40-46.
    82.王仲颖,高虎.2009.中国工业化规模化沼气开发战略[M].北京:化学工业出版社.
    83.汪炳良,徐敏,史庆华,等.2004.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧 光参数的影响[J].中国农业科学,37(8):1245-1250.
    84.文新亚,李燕松,张志鹏,等.2006.酶解木质纤维素的预处理技术研究进展[J].酿酒科技,(8):97-100.
    85.吴创之,周肇秋阴秀丽,等.2009.我国生物质能源发展现状与思考[J].农业机械学报,40(1):91-99.
    86.吴甘霖,段仁燕,王志高,等.2010.干旱和复水对草莓叶片叶绿素荧光特性的影响[J].生态学报,30(14):3941-3946.
    87.吴满昌,许可伟,李如燕,等.2005.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程,9:28-30.
    88.武少菁,刘圣勇,王晓东,等.2008.秸秆发酵产沼气技术的概述和展望[J].中国沼气,26(4):20-23.
    89.熊承永,李健,黄利宏.2003.户用沼气池秸秆利用浅析[J].可再生能源,109(3):44-45.
    90.谢景欢,陈钢,袁巧霞,等.2010.沼渣与化肥配合施用对温室番茄生长发育、产量及品质的影响[J].应用生态学报,21(9):2353-2357.
    91.许光文,纪文峰,万印华,等.2007.轻工业纤维素生物质过程残渣能源化技术[J]化学进展,19(2):1164-1176.
    92.徐鑫,寇巍,张大雷,等.2010.以秸秆和厨余垃圾为原料发酵产甲烷工艺的优化[J].可再生能源,28(6):76-83.
    93.徐颖宣,徐尔尼,冯乃宪,2008.微生物混菌发酵应用研究进展[J].中国酿造,186(9):1-4.
    94.薛民琪,任彬,陆胜龙.2009.秸秆沼气关键技术研究与应用[J].农业环境与发展,26(6):34-38.
    95.薛庆玲,王惠生,刘艳敏,等.2009.以沼气为纽带的生态养牛模式的构建[J].中国牛业科学,35(3):77-81.
    96.杨家新.2004.微生物生态学[M].北京:化学工业出版社.
    97.杨渤京,王洪涛,陆文静,等.2008.厌氧条件下纤维素降解产气的研究[J].中国环境科学,28(3):255-259.
    98.杨世关,李继红,孟卓,等.2006.木质纤维素原料厌氧生物降解研究进展[J].农业工程学报,22(增刊1):120-124
    99.杨淑蕙.2001.植物纤维化学(第三版)[M].北京:中国轻工出版社.
    100.姚向君,田宜水.2005.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,35-38.
    101.叶小梅,周立祥,常志州,等.2010.温度、接种量及微量元素对水葫芦产甲烷的影响[J].中国沼气,28(2):34-37.
    102.尹小波,连莉文,徐洁泉,等.1988.产甲烷过程的独特酶类及生化监测方法[J].中国沼气,16(3):8-13.
    103.于翠,吕德国,秦嗣军,等.2007.本溪山樱根际微生物区系[J].应用生态学报,18(2):2277-2281.
    104.余建峰.2006.不同接种物对牛粪高温厌氧发酵过程的影响[D].郑州:郑州大学化工学院.
    105.袁巧霞,王秀娟,艾平.2008.沼渣有机栽培丛质理化特性及栽培效果试验研究[J].农机化研究(2):157-161.
    106.袁振宏,罗文,吕鹏梅,等.2009.生物质能产业现状及发展前景[J].化工进展,28(10):1687-1692.
    107.曾光明,乔玮,袁兴中,等.2003.完全混合厌氧消化处理城市垃圾的特性研究[J].湖南大学学报(自然科学版),30(5):51-54.
    108.张采.2008.挤压膨化原理以及膨化对饲料中各种营养成分的影响[J].当代畜牧,(9):34-36.
    109.张翠丽,李轶冰,卜东升,等.2008.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报,19(8):1817-1822.
    110.张培栋,杨艳丽,李光全,等.2007.中国农作物秸秆能源化潜力估算[J].可再生能源,25(6):80-83.
    111.张全国,倪慎军,杨群发,等.2005.沼气技术及其利用[M].北京:化工出版社,30-31.
    112.张荣成,李秀金.2005.作物秸秆能源转化技术研究进展[J].现代化工,14-17.
    113.张守仁.1999.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,16(4):444-448.
    114.张望.2008.稻草干法厌氧发酵生产生物气的试验研究[D].北京:北京化工大学.
    115.张鑫,刘岩.2005.木质纤维素原料预处理技术的研究进展[J].节能与环保,(3):19-21.
    116.张宇,许敬亮,李东,等.2009.木质素降解菌Ceriporiopsis subvermispora的研究进展[J].武汉理工大学学报,31(10):104-107.
    117.张玉忠,刘洁,高培基.天然纤维素超显微结构的扫描隧道显微镜研究[J].生物物理学报,2002,13(3):375-377.
    118.赵凤莲,孙钦平,李吉进,等.2010.不同沼肥对油菜产量、品质及氮素利用效率的影响[J].水土保持学报,24(3):127-130.
    119.赵玲,敖永华,刘荣厚.2010.不同配比沼渣基质对草莓生长发育及叶绿素荧光特性的影响[J].沈阳农业大学学报,41(2):185-189.
    120.赵丽,周林爱,邱江平.2005.沼渣基质理化性质及对无公害蔬菜营养成分的影响[J].浙江农业科学,(2):101-105.
    121.赵密珍.2006.草莓种质资源描述规范和数据标准[M].北京:中国农业出版社.
    122.赵志刚,程可可,张建安,等.2006.木质纤维素可再生生物质资源预处理技术的研究进展[J].现代化工,26(10):39-42.
    123.郑万里.2004.热碱预处理对秸秆厌氧消化的影响[D].北京:中国农业大学.
    124.周大石.1994.甲烷细菌与沼气发酵[J].生物学通报,29(4):1-3.
    125.周岭,李文哲,石长青.2004.厌氧发酵接种物的特性研究[J].农机化研究,154-156.
    126.周孟津,张榕林编著.2004.沼气实用技术[M].北京:化学工业出版社.
    127.朱春云,蒋卫杰,余宏军,等.2009.沼渣基质对温室番茄生长和产量的影响[J].中国蔬菜,(10):33-36.
    128.朱洪光,陈小华.2006.用沼气技术进行秸秆生物能转化的技术分析[A].可再生能源规模化发展国际研讨会暨第三届泛长三角能源科技论坛论文集[C].南京:东南大学,404-408.
    129.朱圣权,张衍林,张文倩,等.2009.厌氧干发酵技术研究进展[J].可再生能源,27(2):46-51.
    130. A.Ghosh,B.C.Bhattacharyya.1999.Biomethanation of white rotted and brown rotted rice straw[J]. Bioprocess Engineering,(20):297-302.
    131. A.K.Kivaisi,S.Eliapenda.1995.Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and maize bran[J].Biomass and Bioenergy,8(1):45-50.
    132. ANGELIDAKI I,SANDERS W.2004.Assessment of the Anaerobic degradability of Mscro Pollutants [J].Reviews in Environmental Science and Biotechnology,3(2):117-129.
    133. APPENROTH KJ,STOCKEL J,SRIVASTAVA A,et al.2001.Multiple effect of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution,115:49-64.
    134. Balat M.2006.Recent advances on the production and utilization trends of bio-fuels:A global perspective [J].Energy Conversion and Management,47(9):371-381.
    135. B.K.Ahring,D.Licht,A.S.Schmidt,et al.1999.Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii[J].Bioresource Technology,68(1):3-9.
    136. Bolzonella D,Innocenti L,Pavan P,et al.2003.Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste:focusing on the start-up phase.Biores Technol,86:123-129.
    137. BORJESSON P,BERGLUND M.2006.Environmental Systems Analysisof Biogas Sydtems- Part Ⅰ: Fuel-Cycle Emissions[J].Biomass and Bioenergy,30(5):469-485.
    138. BRUMMELER E T.2000.Full scale Experience With the Biocel Process [J].Water Sciences and Technology,41(3):299-304.
    139. BUFFIERE P,LOISEL D,BERNET N,et al.2005.Towards New Indicators for the Prediction of Solid Waste Anaerobic Digestion Properties [J]. Water Science and Technology,53(8):233-241.
    140. Burak D,Paul S.2009.Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas[J].Renewable Energy,34(12):2940-2945.
    141. Chugh S,Chynoweth DP,Clarke W,et al.1999.Degradation of unsorted municipal solid waste by a leach-bed process[J].Biores Technol,69:103-115.
    142. DE BAERE L.2000.Anaerobic Digestion of Solid Waste:State of the Art [J].Water Science and Technology,41(3):283-290.
    143. DE BAERE L.2006.Will Anaerobic Digestion of Solid Waste Survive in the Future[J].Water Science and Technology,53(8):187-194.
    144. Demirbas MF,Balat M.2009.Progress and recent trends in biogas processing[J].Int J Green Energy, 6:117-142.
    145. Demmig-Adams B,Adams W W Ⅲ.1996.Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species[J].Planta,198(3):460-470.
    146. F.G.Pohland,S.Ghosh.1981.Anaerobic Stabilization of Organic Wastes two-phase Concept [J]. Envir.Lett,(1):255-266.
    147. GHOSH S,BUOY K,DRESSELL L,et al.1995.Pilot-and Full-Scale Two-Phase Anaerobic Digestion of Municipal Sludge[J].Water Environment Research,67(2):206-214.
    148. GUENDOUZ J,BUFFIERE P,CACHO J,et al.2007.Dry Anaerobic Digestion in Batch Mode: Design and Operation of a Laboratory Scale,Completely Mixed Reactor[C]//11 th Worm Congress on Anaerobic Digestion,23-27 September,2007,Brisbane,Australia Presented in Session Organic Solids.Brisbane:lWA.223-227.
    149. HARTMANN H,AHBING B K.2006.Strategies for the Anaerobic Digestion of the Organic Fraction of Municipal Solidwaste:An Overview[J].Water Science and Technology,53(8):7-22.
    150. HASEGAWA S,SH1OTA N.KATSURA K,et al.2000.Solubilizatien Of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion[J].Water Science and Technology,41(3):163-169.
    151. Hills D J,Roberts D W.1981.Anaerobic digestion of dairy manure and field crop residues[J]. Agricultural Wastes,(3):179-189.
    152. Jothi G,Pugalendhi S,Poornima K.2003.Management of root-knot nematode in tomato Lycopersion esculentum with biogas slurry[J].Bioresource Technology,(89):169-170.
    153. Kapdi S S,Vijay V K,et al.2005.Biogas Scrubbing,Compression and Storage:perspective and prospectus in Indian context[J].Renewable Energy,30:1195-1202.
    154. Kobayashi Nobuhiko,Kono Kazuya.2004.Developing water treatment technologys and their support units, high load methane fermentation water treatment unit "UASB-TLP"[J].Sangyo to Kankyo,33(9): 75-76.
    155. KUBLER H.2000.Full scale Co-Digestion of Organic Waste[J]. Water Science and Technology,41(3): 263-274.
    156. LARGUS T,ANGENENT,SHIHWU SUNG.2001.DEVELOPMENT OF ANAEROBIC MIGRA TING BLANKET REACTOR (AMBR),A NOVEL ANAEROBIC TREATMENT SYSTEM[J].Wat. Res, 35(7):1739-1747.
    157. LEHTOM A,HUTTUNEN S,RINTALA J A.2007.Laboratory Investigations on Co-Digestion of Energy Crops and Crop Residues With Cow Manure for Methane Production:Effect of Crop to Manure Ratio[J].Resources,Conervation and Recycling,51(3):591-609.
    158. Lindorfer H,Corcobar A,Vasilieva V,et al.2008.Doubling the organic loading rate in the co-digestion of energy crops and manure[J].Bioresource Technology,99(8):1148-1156.
    159. LIU GT,PENG XY,LONG T R.2006.Advance in High-Solid Anaerobic Digestion of Organic Fraction of Municipal Solid Waste[J]. Journal of Central South University of Technology,13(4):151-157.
    160. Marcelo L.Garcia,Largus T.Angenent.2009.Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment[J].water research,43:373-382.
    161. Margareta von Siver,Guido Zacchi.1995.A techno-economical comparison of three processes for the production of ethanol from pine[J].Bioresource Technology,(51):43-52.
    162. Martinez-Perez N,Cherryman S J,Premier.G C,et al.2007.The potential for hydrogen-enriched biogas production from crops:Scenarios in the UK[J].Biomass and Bioenergy,31:95-104.
    163. Matthew T.Agler,Zeynep Aydinkaya,Theresa A.Cummings.et al.2010.Anaerobic digestion of brewery primary sludge to enhance bioenergy generation:Acomparison between low-and high-rate solids treatment and different temperatures[J]. Bioresource Technology,101:5842-5851
    164. Miriam Rosenbaum,Federico Aulenta,Marianna Villano,et al.2011.Cahodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved[J].Bioresource Technology,102:324-333.
    165. MSHANDETE A,KIVAISI A,RUBINDAMAYUGI M,et al.2004.Anaerobic Batch Co-Digestion of Sisal Pulp and Fish Wastes[J].Bio-Resource Technology,95(1):19-24.
    166. MSHANDETE A,BJORNSSON L,AMELIA K,et al.2006.Effect of Particle Size on Biogas Yield From Sisal Fibred Waste[J].Renewable Energy.31(14):2385-2392.
    167. Muller H.W.1986.Troesh W.Screening of white rot fungi for biological pretreatment of wheat straw for biogas production[J].Appl.Microbiol. Biotechnol.(24):180-185.
    168. Nathan Mosier,Charles Wyman,Bruce Dale.2005.Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresource Technology,96(6):673-686.
    169. NGUYEN P H L,KURUPARAN P,VISVANATHAN C.2007. Anaerobic Digestion of Municipal Solid Waste as Treatment Prior to Landfill[J].Bio-Resource Technology.98(2):360-387.
    170. OUEDRAOGO A.1999.Pilot-Scale Two-Phase Anaerobic Digestion of the Biodegrable Orphic Fraction of Bamako Distict Municipal Solid Waste[C]//Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Waste. Barcelon:International Association on Water Quality,109-122.
    171. P.A.M.Claassen,J.B.van Lier,A.M.Lopez,et al.1999.Uilization of biomass for the supply of energy carriers[J].Appl Microbial Biotechnol,52:741-755.
    172. PARAWIRA W,MURTO M,ZVAUYA R, el al.2004.Atmembic Batch Digestion of Solid Potato Waste Alone and in Combination With Sugar Beet leaves[J].Renewable Energy,29(11):1811-1823.
    173. Parawira W,Read J S,Mattiasson D,et al.2008.Energy production from gricultural residues:High methane yields in pilot-scale two stage anaerobic digestion[J]. Biomass and Bioenergy,32(1):4-50.
    174. Pavan P,Battistotini P,Cecchi F,et al.2000.wo-phase anaerobic digestion of source sorted OFMSW: performance and kinetic study. Water Sci Technol,41:111-118.
    175. Peter weiland.2000. Anaerobic waste digestion in Germany-Status and recent developments [J]. Biodegradation,11 (4):15-421.
    176. Rebecca A,Silverstein,Ye Chen,et al.2006.A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J].Bioresource Technology,35:359-368.
    177. R.M.Dinsdale,G.C.Premier,F.R.Hawkes.2000.Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters.Bioresource Technology,72:159-168.
    178. Rodrigo A.Labatut,Largus T.Angenent,Norman R.Scott.2011.Biochemical methane potential and biodegradability of complex organic substrates[J].Bioresource Technology,102:2255-2264.
    179. Thomas A,Barbara A,Vitaly K,et al.2007.Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations[J]. Bioresource Technology,98(17):3204-3212.
    180. Sachs JV,Meyer U,Rys P,et al.2003.New approach to control the methanogenic reactor of a two-phase anaerobic digestion system. Water Res,37:973-982.
    181. SAINT J C.DEBOIS S,LOTTI J P.2000.Determinant Impact of Waste Collection and Composition on Anaerobic Digestion Perforce:Industrial Results[J]. Water Science and Technology,41(3):291-297.
    182. SALMINEN E,RINTALA J.2002.Anaerobic Digestion of Organic Solid Poultry Slaughterhouse Water-A Review[J].Bio-Resource Technology,83(1):13-26.
    183. SCHAFER W.LEHTO M,TEYE F.2006.Dry Anaerobic Digestion Of Organic Residues on Form-A Feasibility Study[R].Finland:MTT Agrifood Research Finland, Agricultural Engineering.71-77.
    184. SCHAUSS K,BATEBING S,SCHNELL S.2005.Impact Of Fermented Organic Fertilizer on Trace Gas Emission in Organic Agriculture [M].Kassel:Kassel University Press GMBH,589-592.
    185. SONG H.2003.Characterization of Microbial Community Structure Within Anaerobic Biofilms on Municipal Solid Waste[D].Queensland:School of E119ineering,the University of Queensland.
    186. Song Y C,Kwon S J,Woo J H.2004.Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge[J].Water Res,(38):1653-1662.
    187. Sternberg R.2008.Hydropower: dimensions of social and environmentalcoexistence. Renew Sustain Energy Rev,12(6):1588-1621.
    188. STRASSER RJ,SRIVASTAVA A,GOVINDJEE.1995.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J].Photochemistry and Photobiology,61:32-42.
    189. Strasser B J,Strasser R J.1995.Measuring fast fluorescence transients to address environmental questions:The JIP test.In:Mathis P.Photosynthesis:from Light to Biosphere[M].Dordrecht:KAP Press,977-980.
    190. STROOT P G,KATHERINE D M,RODERICK I M,et al.2001.Anaerabic Co-Digestion of Municipal Solid Waste and Biosolids Under Various Mixing Conditions-I.Digester Performance[J].Water Research,35(7):1804-1816.
    191. Sun Ye,Cheng Jiayang.2002. Hydrolysis of lignocellulosic materials for ethanol production:A review[J].Bioresource Technology,83(1):1-11.
    192. Tae Hyun Kim,Jun Seok Kim,Changshin Sunwoo,et al.2003.Pretreatment of corn stover by aqueous ammonia [J].Bioresource Technology,90(1):39-47.
    193. TEIHM A,NICKWL K,ZELLHORN N,et al.2001.Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Digestion [J].Water Resource,35(8):2003-2009.
    194. TORRES-CASTILLO R,LLABRES-LUENGO P,MATA-ALVAREZ J.1995.Temperature Effect on Anaerobic Digestion of Bedding Straw in a one Phase System at Different Inoculum Concentration[J]. Agriculture, Ecosystems and Environment.54(2):55-66.
    195. Valladares F,Pearcy R W.1997.Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia[J].Plant,Cell and Environment,20:25-36.
    196. VAN HEERDEN PDR,STRASSER RJ,KRUGER GHJ.2004.Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics[J].Physiologia Plantarum,121:239-249.
    197. VERMA S.2002.Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes[D]. Columbia:Department of Earth & Environmental Engineering.Foundation School of Engineering & Applied Science,Columbia University.
    198. VOGT G M,LIU H W,KENNEDY K J,et al.2002.Super Blue Box Recycling(SUBBOR) Enhanced Two-Stage Anaerobic Digestion Process for Recycling Municipal Solid Waste:Laboratory Pilot Studies[J].Bioresource Technology,85(3):291-299.
    199. WEEMAES M,GROOTAERD H,SIMOENS F,et al.2000.Anaerobic Digestion of Ozonized Biosolids [J].Water Research,34(8):2330-2336.
    200. WEILAND P.2000.Anaerobic Waste Digestion in Germany-Status and Recent Developments[J]. Biodegradation.11(6):4[19] Weiland P.2009.Anaetrobic waste digestion in Germany-status and recent developments.Biodegradation,11:415-421.15-421.
    201. Zhang Ruihong, Zhang Zhiqin.1999. Biogasification of rice straw with ananaerobic-phased solids digester system[J].Bioresource Technology,68:235-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700