棉花滴灌节水机理与优质高效灌溉模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆荒漠内陆气候为棉花生长提供了得天独厚的自然生态环境,已发展成我国最大的优质棉生产基地。但是,水资源匮乏、农业水资源供需矛盾突出等问题又在一定程度上限制了棉花产量的提高。如何高效利用有限水资源进行灌溉已成为当地棉花生产中急需解决的突出问题之一。本文以新疆大田棉花为研究对象,探讨膜下滴灌和地下滴灌条件下,水分调控对棉花根区土壤水分、棉株生长发育、籽棉产量和棉纤维品质等指标的影响,确定适合新疆滴灌棉花的优质高效灌溉模式及相应灌溉指标。取得了以下主要成果:
     (1)提出了膜下滴灌条件下土壤剖面平均含水率计算方法。采用3点取样(膜下宽行中央、膜下窄行中央和膜外裸地),在水平方向上利用面积加权平均法计算各层土壤平均含水率,然后在垂直方向上利用积分中值定理法计算平均值,其结果与真实值(高密度取样积分法求解)最接近;膜下滴灌棉田墒情监测的土壤水分传感器适宜埋设位置是地表下0~10cm、20~30cm、40~50cm和60~80cm(选膜下宽行中央、膜下窄行中央和膜外裸地3个观测点)。
     (2)分析了蕾期和花铃期水分调控对棉花株高、茎粗、叶面积以及根系生长发育的影响。蕾期适度水分胁迫(灌水下限为60%田间持水率(θf)),既能适度抑制地上部分营养生长,促进根系生长发育,又能促进光合产物向生殖器官的运转,为棉花的优质高产奠定基础;蕾期水分过低(灌水下限为50%θf)会抑制棉花植株的正常生长发育,水分过高(灌水下限为75%θf)又会造成棉株旺长,均不利于棉花高产。花铃期水分胁迫不仅抑制棉株生长,还导致棉花蕾铃大量脱落,这种负面影响随水分胁迫的加剧而加重(与75%θf灌水下限处理籽棉产量相比,50%θf灌水下限处理减产24.19%~29.17%)。与膜下滴灌相比,地下滴灌能促进深层根系发育(花铃期调查发现,地下滴灌43~70cm土层平均根重密度比膜下滴灌高37.64%),有利于提高水分利用效率。
     (3)阐明了不同生育期水分调控对棉花品质的影响。蕾期适度水分胁迫有利于霜前花衣分以及棉纤维上半部平均长度和断裂比强度的提高,但过度水分胁迫会使其降低;花铃期水分胁迫降低了棉纤维上半部平均长度,而且随着水分胁迫的加剧而加重;花铃期适度水分胁迫有利于棉纤维断裂比强度的提高,但过度水分胁迫则会降低棉纤维断裂比强度。棉纤维整齐度、伸长率和马克隆值对水分调控的敏感性非常小。除受水分调控的影响外,棉花品质指标还受灌水方式的影响,地下滴灌更有利于棉花品质的改善,棉纤维上半部平均长度、断裂比强度、伸长率和整齐度分别比膜下滴灌提高了0.18%~0.97%、0.84%~1.88%、0.99%~2.53%和0.96%~1.61%。
     (4)分析了不同灌水方式对棉花耗水量和水分利用效率的影响。高产条件下棉花全生育耗水量为453~540mm,苗期、蕾期、花铃期和吐絮期的耗水量分别占全生育耗水量的17%-22%、14%~19%、49%~58%和6%~15%;阶段耗水量和总耗水量均随水分胁迫程度的加剧而降低。相同水分处理条件下,地下滴灌耗水量比膜下滴灌增加了4.42%~8.98%,产量除蕾期重度亏水处理外其他处理均比膜下滴灌有不同程度的增加,而水分利用效率差异相对较小。与对照处理相比,蕾期适度水分胁迫处理的籽棉产量提高了11.28%~13.10%,水分利用效率提高了9.91%~12.40%。
     (5)建立了3种棉花需水量估算模型,包括基于恒水位蒸发皿蒸散量模型、基于有效积温模型以及基于叶面积指数模型。利用2008年棉花生育期内的实测资料进行模型验证,模拟值的相对误差分别为2.37%~13.53%(基于叶面积指数模型)、0.68%~21.72%(基于有效积温模型)和1.77%~4.35%(基于蒸发皿蒸发量模型);蕾期和花铃期累积需水量的模拟值与实测值的相对误差分别为1.52%-5.53%和0.29%~8.88%,能够满足实时灌溉对作物需水量计算精度的要求。
     (6)初步确定了适合不同毛管布设方式下的新疆滴灌棉花优质高效灌溉模式。一膜一管四行:出苗水45mm,苗期和吐絮期不灌水,蕾期和花铃期灌水定额分别为22.5mm和37.5mm,灌水周期均为7d;一膜两管四行和地下滴灌:出苗水45mm,苗期和吐絮期不灌水,蕾期和花铃期的灌水控制下限分别为60%和75%田间持水率(以窄行土壤含水率为依据),灌水定额均为30mm。出苗水灌45mm,苗期和吐絮期不灌水,蕾期和花铃期当冠层上方恒水位蒸发皿累积蒸发量达到75mm和50mm时进行灌水,灌水定额分别为30mm和35mm。
     本研究的主要创新点:
     ①提出了适宜滴灌棉田土壤剖面平均含水率的计算方法以及膜下滴灌棉田墒情监测的土壤水分探头布设方案;
     ②构建了滴灌条件下基于恒水位蒸发皿蒸散量的棉田需水量估算模型,模型精度高、操作方法简单,便于推广应用;
     ③提出了适合新疆滴灌棉花优质高产的节水灌溉模式及相应的灌溉指标,基于恒水位水面蒸发量的优质高效灌溉模式,以设备简易、操作简单的优势可以大范围推广应用。
Xinjiang has the largest cotton plantation area of China due to its favourable natural and climatic conditions. However, the lack of water resources, particultural for agriculture production, is very serious, the contradiction between supply and demand of water resources has become more and more apparent. Thus, how to effectively utilize the limited water resources and improve water use efficiency is the main concern for cotton production in this area. In2009-2010, an experiment was conducted in Xinjiang with cotton as research crop under drip irrigation (e.g. drip irrigation under mulch and subsurface drip irrigation). The characteristics of soil moisture dynamic variation, plant growth, seed cotton yield, fibre quality as well as water use efficiency were investigated. The main results are as following.
     (1) Calculation method of average soil water content in soil profile under mulched drip irrigation conditions was put forward.3sampling points were taken at the wide row under film, the narrow row under film and the bare ground out of film, respectively, the estimated average soil moisture (in the horizontal direction, using the area weighted method to calculate average soil moisture of each soil layer, and calculating average soil moisture in vertical direction with integral weighted method) was very close to the true values estimated by layered integration method at the vertical profile based the high-density sampling. The result based on observations of12probes showed that the suitable location of burying soil moisture sensors was0~10,20~30,40~50and60~80cm below soil surface, and selecting the data of3sampling points to calculate average soil moisture could truly reflect the soil moisture of the profile.
     (2) The influence of water stress at the squaring stage and at the flowering-boll stage on the plant height, stem diameter and leaf area of cotton were analyzed. Moderate water deficit occurring at squaring stage (with the lower limit of soil moisture for irrigation as60%of field capacity) could inhibit the above-ground vegetative growth plant excessive growth of cotton, promote root growth and development, and has an advantage of transporting the photosynthate to fruits which providing a good base for high-yield formation. Heavy water stress (with the lower limit of soil moisture as50%of field capacity) at the squaring stage could inhibit the normal growth and development of cotton, excessive water (with the lower limit of soil moisture as75%of field capacity) result in vigorous growth of cotton plant and were not conducive to cotton yield. Water stress at the flowering-boll stage not only inhibited the growth and development of cotton, but also increased the shedding rate of buds and bolls, and the negative effect increased with degree of water deficit imposed. Compared with the treatment of surface drip irrigation under mulch, subsurface drip irrigation could help the cotton root to penetrate into deep soil layers, and was favorable to the root system to absorb soil moisture within the deeper layer (the average density of root weight at the depth of43~70cm increased37.64%).
     (3)The effect of water control at different growth stages on cotton quality was expounded. Moderate water deficit at the squaring stage could increase the lint percentage of blossom before frost, fibre length and breaking tenacity of cotton fibre, but excessive water stress lower the fibre length and breaking tenacity of cotton fibre. Heavy water stress at flowering-boll stage could decrease the fibre length of cotton, and the response of the fibre length to water stress increased with the degree of water stress, however, moderate water stress could increase the breaking tenacity of cotton fibre, and heavy water stress dramatically reduce the breaking tenacity of cotton. The fibre uniformity index, elongation and micronaire of cotton were little sensitive to water stress in this study. Compared with the treatment of drip irrigation under mulch, the subsurface drip irrigation was more beneficial to the improvement of the fibre quality of cotton, the fibre length, breaking tenacity, elongation and the uniformity index under subsurface drip irrigation improved by0.18%-0.97%,0.84%~1.88%,0.99%~2.53%and0.96%~1.61%, separately.
     (4) The influence of different irrigation methods on water consumption and water use efficiency of cotton was analyzed. The water consumption of cotton in the whole growth stage was453~540mm, of which during the seedling stage, squaring stage, flowering-boll stage and boll opening stage accounted for17%~22%,14%~19%,49%~58%and6%~15%, respectively, and it decreased with the degree of water stress imposed. Compared with surface drip irrigation under same water treatment conditions, the water consumption of subsurface drip irrigation increased by4.42%-8.98%, the seed cotton yield of which in other treatments also increased in various degrees besides the treatment of heavy water stress at the squaring stage, and water use efficiency between two irrigation ways had a little difference.
     (5) The estimation models of water requirement for cotton under drip irrigation in Xinjiang province were established based on pan evaporation, effective accumulated temperature and leaf area index of cotton, respectively. The models were verified by using the measured values in2008, and the result showed that average relative error of simulated values was2.37%~13.53%(based on leaf area index model),0.68%-21.72%(based on the effective accumulated temperature model) and1.77%-14.35%(based on pan evaporation model), separately. The average relative error of cumulative water consumption for simulated values during the squaring stage and flowering-boll stage was1.52%~5.53%and0.29%~8.88%, respectively. Therefore, the established models could satisfy the precision needs of calculating crop water requirement for real time irrigation.
     (6) The irrigation index and irrigation pattern were determined to achieve high yield, high quality and efficiency for cotton production under drip irrigation in Xinjiang province. As for one tube controlling four rows of cotton,45mm of irrigation water was applied to ensure emergence after sowing, no water applied at both the seedling stage and boll opening stage, and irrigation water quota was22.5mm and37.5mm with7d of irrigation frequency at the squaring stage and flowering-boll stage, respectively. Under the irrigation way of two tube controlling four rows of cotton and subsurface drip irrigation, irrigation water quota was30mm and22.5mm at the squaring stage and flowering-boll stage, respectively, when the lower limit of soil moisture at the squaring stage and flowering-boll stage was60%and75%of field capacity respectively, and the irrigation water quota was30mm and35mm at the squaring stage and flowering-boll stage, respectively, in the case of the accumulated pan evaporation reached75mm an50mm at the squaring stage and flowering-boll stage, separately.
     Main highlights of this paper:
     ①The suitable method to calculate average soil water content in soil profile and the layout scheme of the soil moisture monitoring probes in drip irrigation under mulch were put forward.
     ②The estimation model of water consumption for cotton under drip irrigation in Xinjiang province was established based on the pan evaporation and it can satisfy the precision needs of calculating crop water requirement for real time irrigation.
     ③The irrigation index and irrigation pattern were determined in order to achieve high yield, high quality and efficiency for cotton production under drip irrigation in Xinjiang province, particularly, the irrigation pattern based on accumulated pan evaporation due to the advantages of simple equipment and easy operation could be popularized and applied.
引文
1. 蔡焕杰,邵光成,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J].水利学报,2002,(11):119-123
    2. 曹红霞,康绍忠,何华.蒸发和灌水频率对土壤水分分布影响的研究[J].农业工程学报,2003,19(6): 1-4
    3. 陈多方,许鸿,徐腊梅,等.北疆棉区棉花膜下滴灌蒸散规律研究[J].新疆气象,2001,24(2): 16-17
    4. 陈洁,陈阳,吴卫熊,等.地下滴灌条件下砖红壤水分入渗特性试验研究[J].水土保持研究,2008,15(2):26-28,52
    5. 陈培元,詹谷宇,谢伯泰.冬小麦根系研究[J].陕西农业科学,1980,(6):1-6
    6. 陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利水电出版社,1995
    7. 丁浩,李明思,孙浩.滴灌土壤湿润区对棉花生长及产量的影响研究[J].灌溉排水学报,2009,28(3):42-45
    8. 段爱旺,崔文军.中子仪计数规律及测量时间的选择[J].农田水利与小水电,1994,3:18-20
    9. 段爱旺.水分利用效率的内涵及使用中需要注意的问题[J].灌溉排水学报,2005,24(1):8-11
    10.段爱旺,孙景生,刘钰,等.北方地区主要农作物灌溉用水定额[M].中国农业科学技术出版社,2004:32-36
    11.段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,4:41-44
    12.方怡向,赵成义,串志强,等.膜下滴灌条件下水分对棉花根系分布特征的影响[J].水土保持学报,2007,21(5):96-101
    13.方志刚,马富裕,崔静,等.加工番茄膜下滴灌根系分布规律的研究[J].新疆农业科学,2008,45 (1): 15-20
    14.高志红,陈晓远,罗远培.不同土壤水分条件下冬小麦根、冠平衡与生长稳定性研究[J].中国农业科学,2007,40(3):540-548
    15.龚江,王海江,谢海霞,等.膜下滴灌水氮耦合对棉花生长和产量的影响[J].灌溉排水学报,2008,(6):51-54
    16.郭占奎,刘洪禄,吴文勇,等.日光温室覆膜滴灌条件下樱桃西红柿耗水规律[J].农业工程学报,2010,26(9):53-58
    17.韩万海.西北旱区膜下滴灌洋葱需水规律及优化灌溉制度试验研究[J].节水灌溉,2010,6:30-33
    18.阂安成,张一平,朱铭莪,等.田间土壤的水势温度效应[J].土壤学报,1995,32(2):235-240
    19.何华,康绍忠,曹红霞.地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响[J].农业工程学报,2001,17(6):31-33
    20.侯振安,李品芳,吕新,等.不同滴灌施肥方式下棉花根区的水、盐和氮素分布[J].中国农 业科学,2007,40(3):549-557
    21.胡顺军,田长彦,周宏飞.中子仪土壤墒情监测方法研究[J].干旱地区农业研究,2000,6(2)70-75
    22.胡田田,康绍忠,原丽娜,等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报,2008,19(6):1289-1295
    23.胡晓棠,陈虎,王静,等.不同土壤湿度对膜下滴灌棉花根系生长和分布的影响[J].中国农业科学,2009,42(5):1682-1689
    24.胡晓棠,李明思.膜下滴灌对棉花根际土壤环境的影响研究[J].中国生态农业学报,2003,11(3):121-123
    25.康绍忠,杜太生,孙景生,等.基于生命需水信息的作物高效节水调控理论与技术[J].水利学报,2007,38(6):661-667
    26.康跃虎,王凤新,刘士平,等.滴灌调控土壤水分对马铃薯生长的影响[J].农业工程学报,2004,20(2):66-72
    27.孔德杰,郑国宝,张源沛,等.宁夏设施番茄膜下滴灌条件下耗水规律和水分利用效率[J].西北农业学报,2011,20(1):119-123
    28.孔清华,李光永,王永红,等.不同施肥条件和滴灌方式对青椒生长的影响[J].农业工程学报,2010,26(7):21-25
    29.李道西,罗金耀.地下滴灌技术的研究及其进展[J].中国农村水利水电,2003,7:15-17
    30.李富先,杨举芳,张玲等.棉花膜下滴灌需水规律和最大耗水时段及耗水量的研究[J].新疆农业大学学报,2002,25(3):43-47
    31.李明思,康绍忠,杨海梅.地膜覆盖对滴灌土壤湿润区及棉花耗水与生长的影响[J].农业工程学报,2007,23(6):49-54
    32.李明思,马富裕,郑旭荣,等.膜下滴灌棉花田间需水规律研究[J].灌溉排水,2002,21(1):58-60
    33.李明思,郑旭荣,贾宏伟,等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电,2001,11:13-15
    34.黎庆淮.土壤与农作[M].北京:水利电力出版社,1979
    35.李少昆,王崇桃,张旺锋,等.栽培措施对北疆棉花根系及地上部生长的影响这[J].中国棉花,2000,27(5):12-13
    36.梁宗锁,康绍忠,高俊风,等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].作物学报,2000,26(2):250-255
    37.刘浩,孙景生,梁媛媛,等.滴灌条件下温室番茄需水量估算模型[J].应用生态学报,2011b,22(5):1201-1206
    38.刘浩,孙景生,王聪聪,等.温室番茄需水特性及影响因素分析[J].节水灌溉,2011a,4:11-14
    39.刘雁翼,杨贵森,张寄阳,等.利用气象资料指导膜下滴灌棉花灌溉的试验研究[J].灌溉排水学报,2008,27(3):37-40
    40.刘玉春,李久生.毛管理深和土壤层状质地对地下滴灌番茄根区水氮动态和根系分布的影响 [J].水利学报,2009,40(7):782-790
    41.卢碧霞,曾慕衡.积温对棉花产量及铃部性状的影响[J].宁夏农学院学报,2000,21(2):40-42
    42.罗宏海,李俊华,勾玲,等.膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节[J].中国农业科学,2008b,41(7):1955-1962
    43.罗宏海,张宏芝,杜明伟,等.膜下滴灌下土壤深层水分对棉花根系生理及叶片光合特性的调节效应[J].应用生态学报,2009,20(6):1337-1345
    44.罗宏海,张亚黎,张旺锋,等.新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J].作物学报,2008a,34(1):171-174
    45.邹琦,王学臣.农作物高产高效抗逆生理基础研究文集[M].北京:科学出版社,1995:201-210
    46.吕殿青,王全九,王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-802
    47.吕谋超,冯俊杰,翟国亮.地下滴灌夏玉米的初步试验研究[J].农业工程学报,2003,1:67-71
    48.马富裕,严以绥.棉花膜下滴灌技术理论与实践[M].乌鲁木齐:新疆大学出版社,2002
    49.马富裕,朱艳,曹卫星,等.棉纤维品质指标形成的动态模拟[J].作物学报,2006,32(3):442-448
    50.毛洪霞.滴灌大豆需水规律及灌溉制度研究[J].干旱地区农业研究,2009,27(5):112,117
    51.邱永康.棉纤维四项长度指标互相关系的述评[J].中国纤检,2011-11-10,httP://www.qikan. com.cn/Kan She New Display.aspx?pid=3399
    52.任杰,王振华,温新明,等.毛管埋深对地下滴灌线源入渗土壤水分运移影响研究[J].灌溉排水学报,2008,27(5):80-82
    53.任书杰,张雷明,张岁歧,等.氮素营养对小麦根冠协调生长的调控[J].西北植物学报,2003,23:395-400
    54.山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998:159-173
    55.单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002a,35(2):163-168
    56.单世华,施培,孙学振,等,温度影响棉纤维发育研究进展[J].山东农业大学学报(自然科学版),2002b,33(3):395-398
    57.单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4):120-125
    58.申孝军,膜下滴灌棉花实时灌溉预报技术[D].石河子大学硕士学位论文,2008
    59.申孝军,孙景生,刘祖贵,等.灌水控制下限对冬小麦产量和品质的影响[J].农业工程学报,2010,26(12):58-65
    60.申孝军,孙景生,张寄阳,等.滴灌条件下土壤平均含水率计算方法研究[J].水土保持学报,201 1,25(3):241-244,253
    61.孙浩,李明思,丁浩,等.用中子仪测定土壤含水率时的标定问题研究[J].节水灌溉,2009,4,18-21,25
    62.孙景生,康绍忠,王景雷,等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报, 2005,21(1]):20-24
    63.田义,张玉龙,虞娜,等.温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的影响[J].干旱地区农业研究,2006,24(5):88-92
    64.万素梅,胡守林,翟云龙.膜下滴灌棉花土壤水分动态变化研究[J].水土保持研究,2007,14(1):90-91
    65.王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响[J].应用生态学报,2008,19(9):1965-1970
    66.王法宏,王旭清,刘素英,等.根系分布与作物产量的关系研究进展[J].山东农业科学,1997,(4): 48-51
    67.王国栋.水热条件与作物生长及土壤水热耦合运移的研究[D].西北农业大学博士学位论文,1997
    68.王洪源,李光永.滴灌模式和灌水下限对甜瓜耗水量和产量的影响[J].农业机械学报,2010,41 (5): 10-14
    69.王舒,李光永,王占胜,等.温室分层土壤条件下滴头流量和间距对湿润体的影响[J].灌溉排水学报,2005,24(4):36-40
    70.王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32
    71.王政友.土壤水分蒸发的影响因素分析[J].山西水利,2003,2:26-27,29
    72.危常州,马富裕,雷咏雯,等.棉花膜下滴灌根系发育规律的研究[J].棉花学报,2002,14(4):209-214
    73.武朝宝.日光温室大棚西红柿滴灌试验研究[J].节水灌溉,2011,5:27-31
    74.肖光顺,李保成,马晓梅,等.膜下滴灌早熟陆地棉蕾铃脱落动态规律初报[J].中国农学通报,2008,6(6):159-163
    75.晏清洪,王伟,任德新,等.滴灌湿润比对成龄库尔勒香梨生长及耗水规律的影响[J].干旱地区农业研究,2011,29(1):7-13
    76.杨书运,严平,梅雪英,等.土壤水分亏缺对冬小麦根系的影响[J].麦类作物学报,2007,27(2):309-313
    77.杨苏龙,石跃进,齐宏力,等.滴(渗)灌土壤水分移动规律研究初报[J].山西农业科学,1997,25(1):47-50
    78.杨直毅,汪有科,汪星,等.山地红枣林地滴灌水分运移规律试验研究[J].水土保持学报,2009,23(3):213-216
    79.叶景凯,王子胜,崔再兴.棉花种植实用技术[M].北京:中国农业科学技术出版社,2006
    80.叶志勇,郭克贞,赵淑银,等.河套灌区加工型番茄膜下滴灌技术研究[J].灌溉排水学报,2011,30(2): 10-12
    81.张爱良,苗果园,王建平.作物根系与水分的关系[J].作物研究,1997,(2):4-6
    82.张富仓,张一平,张君常,等.温度对土壤水分保持影响的研究[J].土壤学报,1997,34(2):160-]69
    83.张寄阳,段爱旺,申孝军,等.基于蒸发量的膜下滴灌棉花灌溉预警装置设计与试验[J].农 业机械学报,2010,41(9):56-60
    84.张寄阳,刘祖贵,段爱旺,等.棉花对水分胁迫及复水的生理生态响应[J].棉花学报,2006,]8(6):398-399
    85.张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273
    86.张龙,张娜,马英杰.滴灌条件下核桃树需水量研究[J].现代农业科技,2010,21:117-119
    87.张鲁鲁,蔡焕杰,王健.膜下滴灌对温室甜瓜水分利用效率及品质影响[J].节水灌溉,2011,4:7-10
    88.张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004,9:123-126
    89.张岁岐,周小平,慕自新,等.不同灌溉制度对玉米根系生长及水分利用效率的影响[J].农业工程学报,2009,25(10):1-6
    90.张旺锋,任丽彤,王振林,等.膜下滴灌对新疆高产棉花光合特性日变化的影响[J].中国农业科学,2003,36(2):159-163
    91.张一平,白锦鳞,张君常,等.温度对土壤水势影响的研究[J].土壤学报.1990,27(4):454-458
    92.张永清.谷类作物根系生长与调控研究[M].北京:中国农业科学技术出版社,2006:22-27
    93.张振华,蔡焕杰,郭永昌,等.滴灌土壤湿润体影响因素的实验研究[J].农业工程学报,2002,18(2):17-20
    94.张志刚,曾昭云,杨芳荃,等.对我国棉花纤维品质的探讨[J].作物研究,2002(5):258-261
    95.张自坤,刘作新,张颖,等.日光温室黄瓜地下滴灌灌溉制度的试验研究[J].干旱地区农业研究,2008,26(6):76-81
    96.赵伟霞,蔡焕杰,陈新明,等.灌溉水量对无压灌溉水分运移的影响[J].灌溉排水学报,2007b,26(4):4-7
    97.赵伟霞,蔡焕杰,陈新明,等.无压灌溉土壤湿润体含水率分布规律与模拟模型研究[J].农业工程学报,2007a,23(3):7-12
    98.中华人民共和国2009年国民经济和社会发展统计公报[R].北京:中华人民共和国国家统计局,2010-02-25. http://news.xinhuanet.com/politics/2010-02/25/content_13047677.htm
    99.中华人民共和国2010年国民经济和社会发展统计公报[R].北京:中华人民共和国国家统计局,2011-02-28. http://wenku.baidu.com/view/5950a3d8ad51f01dc281f13d.html
    100.中华人民共和国水利部2008年中国水资源公报[R].北京:中华人民共和国水利部,2010-01-19. http://www.mwr.gov.cn/zwzc/hygb/szygb/qgszygb/201001/t20100119_171051.html
    101. Abrisqueta J M, Mounzer O, lvarez S, et al. A root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation [J]. Agricultural Water Management,2008,95(8): 959-967
    102. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration:Guidelines for computing crop water requirements [J]. Irrigation and Drainage, Paper No.56. FAO, Rome,1998
    103. Allen S J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria [J]. Agricultural and Forest Meteorology,1990,49:291-309
    104. Asseng S, Ritchie J T, Smucker A J M, et al. Root growth and water uptake during water deficit and recovering in wheat [J]. Plant and Soil,1998,201(2):265-273
    105. Bacon, M.A. Water use efficiency in plant biology [M]. Blackwell, Oxford, UK,2004
    106. Barth H K. Resources conservation and preservation through a new subsurface irrigation system [C]. Proc 5th Inter Micro irrigation Congress,1995,168-174
    107. Bastug R, Buyuktas D. The effects of different irrigation levels applied in golf courses on some quality characteristics of turfgrass [J]. Irrigation Science,2003,22:87-93
    108. Blum A, Johnson J W. Wheat cultivars respond differently to a drying top soil and a possible non-hydraulic root signal [J]. Journal of Experimental Botany,1993,44:1149-1153
    109. Blum A, Johnson JW, Ramseur EL. The effect of a drying top soil and a possible non-hydraulic root on wheat growth and yield [J]. Journal of Experimental Botany,1991,42:1225-1231
    110. Boast CW, Robertson T M. A micro lysimeter method for determining evaporation from bare soil: description and laboratory evaluation [J]. Soil Science Society of America Journal,1982,46: 689-696.
    111. Bonachela S, Gonza A M, Ferna M D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data [J]. Irrigation Science,2006,25:53-62
    112. Brown K W, Thomas J C, Friedman S, et al. Wetting patterns associated with directed subsurface irrigation [C]. Proc Int Confon Evapotranspiration and Irrigaion Scheduling,1996,806-811
    113. Bucks D A, Erie L J, French O F, et al. Surbsurface trickle irrigation management with multiple cropping [J]. Transactions of the ASAE,1981,24 (6):1482-1489
    114. Burgess SSO, Adams MA, Turner NC, et al. The redistribution of soil water by tree root systems [J]. Oecologia,1998,115:306-311
    115. Byers PL, Moore JN. Irrigation scheduling for young highbush blueberry plants in Arkansas [J]. Hortscience,1987,22 (1):52-54
    116. Caldwell D S, Spurgeon W E, Manges H L. Frequency of irrigation for subsurface drip irrigated corn [J]. Trans of the ASAE,1994,37 (6):1099-1103
    117. Camp C. R. Subsurface drip irrigation:a review [J]. Transactions of the ASABE,1998,41(5): 1353-1367
    118. Camp C R. Subsurface drip irrigation lateral spacing and management for cotton in the southeastern coastal plain [J]. Transactions of the ASAE,1997,40 (4):993-99
    119. Ciolkosz DE, Albright LD. Use of small-scale evaporation pans for evaluation of whole plant evapotranspiration [J]. Transactions of the ASAE,2000,43 (2):415-420
    120. Coelho E F and Or D A. parametric model for two-dimensional water uptake by corn roots under drip irrigation [J]. Soil Science Society of America Journal,1996,60:1039-1049
    121. Davies WJ, Wilkinson S, Loveys B. Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture [J]. New Phytol,2002,153:449-460
    122. Dogan E, Kirnak H, Berekatoglu K., et al. Water stress imposed on muskmelon (Cucumis Melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions [J]. Irrigation Science,2008,26:131-138
    123. Ehlers W, Hamblin AP, Tennant D. Root system parameters determining water uptake of field crops [J]. Irrigation Science,1991,12:115-124
    124. El Gindy A M, El Araby. Vegetable crop respones to surface drip under calcareous soil [R]. Proc Int. Conf. on Evapotranspiration and Irrigation Scheduling,1996,1021-1028.
    125. Ennahlis, Earl H J. Physiological limitations to Photosynthetic carbon assimilation in cotton under water stress [J]. Crop Science,2005,45:2374-2382
    126. Ertek A., Sensoy S., Gedik Ibrahim, et al. Irrigation scheduling based pan evaporation values for cucumber(Cucumis sativus L.) grown under field conditions [J]. Agricultural Water Management. 2006,81:159-172
    127. Eugenio F Coelho, Dani Or. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation [J]. Plant and Soil,1999,206:123-136
    128. Feddes R A, Kowalik P, Kolinska-Malinka K, et al. Simulation of field water uptake by plants using a soil water dependent root extraction function [J]. Journal of Hydrology,1976,31:13-26
    129. Gedroc J K., Mcconnaughay D M., Coleman J S. Plasticity in root/shoot partitioning:optimal, ontogenetic, or both? [J]. Functional Ecology,1996,10:44-501
    130. Hai-Jun Liu, Yaohu Kang. Sprinkler irrigation scheduling of winter wheat in the North China Plain using a 20 cm standard pan [J]. Irrigation Science,2007,25:149-159
    131. Hang AN, Miller DE. Yield and physiological responses of potatoes to deficit, high frequency sprinkler irrigation [J]. Agronomy Journal,1986,78:436-440
    132. Harmanto, Salokhe V.M., Babel M.S., et al. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment [J]. Agricultural Water Management,2005,71:225-242
    133. Hegde D M. Effect of soil matric potential, method of irrigation and nitrogen fertilization on yield, quality, nutrient uptake and water use of radish (Raphanus sativus L.) [J]. Irrigation Science,1987. 8(1):13-22
    134. Howell T A, Schneider A D, Evett S R. Subsurface and surface micro irrigation of corn Southern High Plain [J]. Transactions of the ASAE,1997,40(3):635-641.
    135. Imtiyaz M, Mgadla NP, Chepete B, et al. Response of six vegetable crops to irrigation schedules [J]. Agricultural Water Management,2000,45:331-342
    136. Janoudi A.K., Widders I.E., Flore J.A. Water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis astivus) [J]. Journal of the American Society for Horticultural Science,1993,118(3):336-370
    137. Kamara L, Zartman R, Ramsey R H. Cotton-root distribution as a function of trickle irrigation emitter depth [J]. Irrig Sci,1999, (12):141-144
    138. Kanber, R., Yazar A., Onder S., et al. Evapotranspiration of graperfruit in the Eastern Mediterranean region of Turkey [J]. Scientia Horticulturae,1992,52:53-62
    139. Kruger E, Schmidt G, Bruckner U. Scheduling strawberry irrigation based upon tension meter measurement and a climate water balance model[J]. Scientia Horticulturae,1999,81:409-424
    140. Lawlor D W, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells:a critical evaluation of mechanisms and integration of processes [J]. Annals of Botany,2009,103(4):561-579
    141. Li Mingsi. Root architecture and water uptake for cotton under furrow and mulched trickle irrigation [C].//Proceedings of International Conference on Water-saving Agriculture and Sustainable Use of Water and Land Resources. Xi'an:Shaanxi Science and Technology Press,2003
    142. Li P, Zhao Z H. Vertical root distribution character of Robiniap seudoacacia on the loess plateau in China [J]. Journal of Forestry Research,2004,15 (4):87-92
    143.Locascio S. J. and Smajstrla A. G. Water application scheduling by pan evaporation for drip-irrigated tomato [J]. Journal of the American Society of Horticultural Science,1996,121 (1): 63-68
    144. Lloret F, Casanovas C, Penuelas J. Seedling survival of Mediterranean shrub land species in relation to root:shoot ratio, seed size and water and nitrogen use [J]. Functional Ecology,1999,13: 210-2161
    145. Magnani F, Mencuccini M, Grace J. Age-related decline in stand productivity:the role of structural acclimation under hydraulic constrints [J]. Plant Cell and Environment,2000,23:251-263
    146. Martin E C, Slack D C, Pegelow E J. Crop coefficients for vegetables in Central A rizona [C]. Int Conf on Evapo transpiration and Irrigation Scheduling,1996,381-386
    147. Metin Sezen S, Attila Yazar, Salim Eker. Effect of drip irrigation regimes on yield and quality of field grown bell pepper [J]. Agricultural Water Management,2006,81 (1/2):115-131
    148. Michelakis N, Vougioucalou E and Clapaki G. Water use, wetted soil volume, root distribution and yield of avocado under drip irrigation [J]. Agricultural Water Management,1993,24:119-131
    149. Panigrahi B, Panda SN, Raghuwanshi NS. Potato water use and yield under furrow irrigation [J]. Irrigation Science,2001,20:155-163
    150. Patel N, Rajpu T B S. Effect of drip tape placement depth and irrigation level on yield of potato [J]. Agricultural Water Management,2007,88:209-223
    151. Plaut Z, Rom M, Meiri A. Cotton response to subsurface trickle irrigation [C]. Proc 3rd Int Drip Trickle Irrigation Congress,1985, 11:916-920.
    152. Powell N L, Wright F S. Grain yield of subsurface micro irrigated corn as affected by irrigation line spacing [J]. Agronomy Journal,1993,86 (6):1164-1169.
    153. Shalhevet J, Shimshi D, Meir T. Potato irrigation requirement in a hot climate sprinkler and drip methods [J]. Agronomy Journal,1983,75:13-16
    154. Shangguan ZP, Shao MA, Ren SJ, et al. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat [J]. Bot Bull Acad Sin,2004,45:49-54
    155. Shuqin Wan, Yaohu Kang. Effect of drip irrigation frequency on radish growth and water use [J]. Irrigation Science,2006,24 (3):161-174.
    156. Siddique K H M, Belford R K, Tennant D. Root:shoot ratio of old and modern, tall and semidwarf wheat in a Mediterranean environment [J]. Plant and Soil,1990,121:89-98
    157. Singh S, Ram M, Ram D, et al. Response of Iemongrass(Cymbopogon flexuosus) under different levels of irrigation on deep sandy soils [J]. Irrigation Science,2000,20:15-21
    158. Stanhill G. Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? [J]. Agricultural and Forest Meteorology, 2002,112:233-236
    159. Steudle E. Water uptake by roots:Effects of water deficit [J]. Journal of Experimental Botany, 2000,51:1531-1542
    160. Stirzaker RJ, Passioura JB. The water relations of the root-soil interface [J]. Plant, Cell and Environment,1996,19:201-208
    161. Suat Sensoy, Ahmet Ertek, Ibrahim Gedik, et al. Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.) [J]. Agricultural Water Management,2007,88 (1/2/3):269-274
    162. Taylor H M, Nguyen H T. Opportunities for manipulating root systems to reduce drought stress in wheat [J]. In:Srivastava J P, (eds.). Drought Tolerance in Wheat Cereals,1987:285-298
    163.Tennant D. A test of a modified line intersection method of estimating root length [J]. Journal of Ecology,1975,63:995-1103
    164. Thomas DL, Harrison KA, Hook JE. Sprinkler irrigation scheduling with the UGA easy pan: performance characteristics [J]. Applied Engineering in Agriculture,2004,20(4):439-445
    165. Thompson T L, Doerge T A, Godin R E. Nitrogen and water interactions in subsurface drip-irrigated cauliflower:I. plant response [J]. Soil Science Society of America Journal,2000a, 64(1):406-411
    166. Thompson T L, Doerge T A, Godin R E. Nitrogen and water interactions in subsurface drip-irrigated cauliflower: II. agronomic, economic, and environmental outcomes [J]. Soil Science Society of America Journal,2000b,64(1):412-418
    167. Thompson T L, Doerge T A, Godin R E. Subsurface drip irrigation and fertigation of broccoli:I. yield, quality, and nitrogen uptake [J]. Soil Science Society of America Journal,2002,66 (1): 186-192
    168. Thompson T L, White S A, Walworth J, et al. Fertigation frequency for subsurface drip-irrigated broccoli [J]. Soil Science Society of America Journal,2003,67 (3):910-918
    169. Thornley J H M. Modeling shoot:root relations:the only way forwards [J]. Annals of Botany,1998, 81:165-171
    170. Torres JS. A simple visual aid for sugarcane irrigation scheduling [J]. Agricultural Water Management,1998,38:77-83
    171. Vassey T L, Quick P, Sharkey T D, et al. Water stress, carbon dioxide, and light effects on sucrose phosphate synthase activity in phaseolus vulgaris [J]. Physiologia Plantarum,1991,81:37-44
    172. Walder G K. Evaporation from wet soil surface beneath plant canopies [J]. Agricultural and Forest Meteorology,1984,33:259-264
    173. Wang D, Kang Y, Wan S. Effect of soil matric potential on tomato yield and water use under drip irrigation condition [J]. Agricultural Water Management,2007,87 (2):180-186
    174. Warwick N. Stiller, John J., et al. Selection for water use efficiency traits in a cotton breeding program [J]. Crop Science,2005,45:1107-1113
    175. Welsh D F, Kreuter U P, Byles J D. Enhancing subsurface drip irrigation through vector flow [C]. Proc 5th Int Micro irrigation Congress,1995:688-693.
    176. Yuan B, Kang Y, Nishiyama S. Drip irrigation scheduling for tomatoes in unheated greenhouses [J]. Irrigation Science,2001,20:149-154.
    177. Yuan B, Nishiyama S, Kang Y. Effects of different irrigation regimes on the growth and yield of drip irrigated potato [J]. Agriculture Water Managenent,2003,63 (3):153-167.
    178. Yuan B, Sun J, Nishiyama S. Effect of drip irrigation on srawberry growth and yield inside a plastic greenhouse [J]. Bioprocess and Biosystems Engineering,2004,87 (2):237-245.
    179. Z.Plaut, A.Carmi, A.Grava. Cotton growth and production under drip-irrigation restricted soil wetting [J]. Irrigation Science,1988,9:143-156
    180. Z.Plaut., A.Carmi., A.Grava. Cotton root shoot responses to subsurface drip irrigation and partial wetting of the upper soil profile [J]. Irrigation Science,1996,] 6:107-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700