拟南芥MAPKKKX参与ABA调控主根生长分子机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应复杂多变的外部环境,植物形成了多种多样的信号转导途径,从而使细胞能够做出适当的反应。在这些机制中,其中丝裂原活化蛋白激酶(MAPK)级联途径普遍存在于真核生物中。丝裂原活化蛋白激酶途径由三种信号转导分子组成,丝裂原活化蛋白激酶激酶激酶(MAPKKK),丝裂原活化蛋白激酶激酶(MAPKK),丝裂原活化蛋白激酶(MAPK)。当细胞在应答刺激时,MAPKKK通过磷酸化作用激活MAPKK,后者则通过磷酸化激活MAPK。拟南芥基因组编码了60-80个MAPKKK,10个MAPKK,20个MAPK。已经有报道称MAPK级联途径参与了ABA信号转导过程,而对其是否参与ABA抑制主根生长仍不清楚。
     本文鉴定并获得拟南芥中MAPKKK家族成员之一的T-DNA插入纯合突变体mapkkkx,并利用该遗传材料对MAPKKKX在ABA调控的主根生长过程中的作用进行分析。表型分析发现,与野生型相比,在不存在外源ABA时,突变体mapkkkx在主根伸长方面与野生型没有差别,而在50μMABA处理的情况下,突变体的主根伸长是野生型的2倍多。因此我们认为突变体mapkkkx在主根伸长方面对ABA不敏感。但是其他激素和胁迫的处理没有显示出这种差别。RT-PCR的结果显示ABA可抑制MAPKKKX的转录,且MAPKKKX调节了ABA相关基因的表达。为了确定该突变体的表型是由MAPKKKX引起的,我们构建了回补载体和超表达载体。瞬转GFP的结果证明MAPKKKX定位于细胞质中。酵母双杂实验的结果显示MAPKKKX能够与MKK1-MKK10发生相互作用。为了证实酵母双杂的结果,我们构建了双分子荧光互补的一系列载体。
     以上的结果表明MAPKKKX参与了ABA调控的主根生长过程。
Plants have developed various signal transduction pathways in order to modulate diverse cellularresponses for adaptation to changing environment conditions. Among these machineries, mitogen-activatedprotein kinase (MAPK) cascades are fundamental signal pathways conserved in eukaryotes.Mitogen-activated protein kinase cascades consist of three signal transducing components, MAPKKKs,MAPKKs and MAPKs. In response to stimuli, MAPKKK can activate MAPKK by phosphorylation, whichin turn activates MAPK by phosphorylation. The Arabidopsis (Arabidopsis thaliana) genome encodes60-80predicted MAPKKKs,10MAPKKs and20MAPKs. It has been reported that MAPK cascades havean important role in ABA signal transduction, however, it is not clear whether MAPK cascades involved inthe primary root growth modulated by ABA in Arabidopsis.
     We identified T-DNA insertion homozygous mutant mapkkkx of MAPKKK family in Arabidopsis. Wetherefore used it to analyze the function of MAPKKKX in primary root growth modulated by ABA inArabidopsis. By phenotype analysis, in the absence of ABA, primary root growth was indistinguishablebetween mapkkkx and WT. However, the primary roots of mapkkkx were more than twice as long as theprimary roots of WT on the50μM ABA plate. We concluded that mapkkkx showed insensitive to ABA inprimary root length in contrast to WT. However, other phytohormones and stress could not provide thedifference. RT-PCR revealed ABA repressed the transcription of MAPKKKX, and MAPKKKX regulatedthe expression of marker genes responding to ABA. In order to verify that MAPKKKX brought thephenotype of the mutant, we constructed the MAPKKKX complementary vector and overexpression vector.Fluorescence localization result of MAPKKKX::GFP showed MAPKKKX localized in cytoplasm. Theresults of the yeast two-hybrid revealed that MAPKKKX interacted MKK1-MKK10. In order to verify thevalidity of the yeast two-hybrid, we constructed the vectors of BiFC.
     These results suggested that MAPKKK involved in the primary root growth modulated by ABA inArabidopsis.
引文
[1]. Yukun Liu. Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant CellRep.2012,31:1-12.
    [2]. Hunter T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell.1995,83:1-4.
    [3]. Brown OA, Sosa YE, Goya RG. Histones as extracellular messengers: effects on growthhormone secretion. Cell Biol Int.1997,21:787-792.
    [4]. Hardie DG. PLANT protein serine/threonine kinases: classification and functions. Annu RevPlant Physiol Plant Mol Biol.1999,50:97-131.
    [5]. Bardwell L. A walk-through of the yeast mating pheromone response pathway. Peptides.2005,26:339-350.
    [6]. Ikner A, Shinozaki K. Yeast signaling pathways in the oxidative stress response. Mutat. Res.2005,569:13-27.
    [7]. Schwartz MA, Madhani HD. Principles of MAP kinase signaling specificity inSaccharomyces cerevisiae. Annu Rev Genet.2004,38:725-748.
    [8]. Jonak C, Heberle BE, Hirt H. MAP kinases: universal multi-purpose signaling tools. PlantMol Biol.1994,24:407-416.
    [9]. Mizoguchi H, Ichimura K, Shinozaki K. Environmental stress response in plants: the role ofmitogen-activated protein kinases. Trends Biotechnol.1997,15:15-19.
    [10]. Hirt H. MAP kinases in plant signal transduction. Results Probl Cell Differ.2000,27:1-9.
    [11]. Chimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activateArabidopsis MAP kinases ATMPK4and ATMPK6. Plant J.2000,24:655-665.
    [12]. Morris PC. MAP kinase signal transduction pathways in plants. New Phytol.2001,151:67-89.
    [13]. Tena G, Asai T, Chiu WL, et al. Plant mitogen-activated protein kinase signaling cascades.Curr Opin Plant Biol.2001,4:392-400.
    [14]. Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved inmultiple biological processes. Biochem J.2008,413:217-226.
    [15]. MAPK Group. Mitogen-activated protein kinase cascades in plants:a new nomenclature.Trends Plant Sci.2002,7:301-308.
    [16].刘强,张贵友,SHINOZAKI Kazuo.植物促分裂原活化蛋白(MAP)激酶.植物学报.2000,42:661-667.
    [17]. Sturgill TW, Ray LB. Muscle proteins related to microtubule associated protein-2aresubstrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun.1986,134:565-571.
    [18]. Rossomando EF, Hadjimichael J, Varnum-Finney B, et al. HLAMP-a conjugate ofhippuryllysine and AMP which contains a phosphoamide bond--stimulates chemotaxis inDictyostelium discoideum. Differentiation.1987,35:88-93.
    [19]. Gotoh Y, Nishida E, Yamashita T, et al. Microtubule-associated-protein (MAP) kinaseactivated by nerve growth factor and epidermal growth factor in PC12cells. Identity withthe mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem.1990,193:661–669.
    [20]. Stafstrom JP, Altschuler M, Anderson DH. Molecular cloning and expression of a MAPkinase homologue from pea. Plant Mol Biol.1993,22:83-90.
    [21]. Jouannic S, Hamal A, Leprince AS, et al. Plant MAP kinase kinases structure, classificationand evolution. Gene.1999,233:1-11.
    [22]. Knetsch ML, Wang M, Snaarjagalska BE, et al. Abscisic acid induced mitogen-activatedprotein kinase activation in barley aleurone protoplasts. Plant Cell.1996,8:1061-1067.
    [23]. Mori IC, Muto S. Abscisic acid activates a48-kilodalton protein kinase in guard cellprotoplasts. Plant Physiol.1997,113:833-839.
    [24]. Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrosenonfermenting1-related protein kinase2family by hyperosmotic stress and abscisic acid.Plant Cell.2004,16:1163-1177.
    [25]. Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inverselymodulated by an abscisic acidinduciblemitogen-activated protein kinase. Plant Cell.2003,15:745-759.
    [26]. Ishibashi Y, Tawaratsumida T, Kasa S, et al. Reactive oxygen species are involved ingibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol.2012,158:1705-1714.
    [27]. Burnett EC, Desikan R, Moser RC, et al. ABA activation of an MBP kinase in Pisumsativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot.2000,51:197-205.
    [28]. Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxidemediate abscisic acid signaling in guard cells. Nature.2000,406:731-734.
    [29]. Jammes F, Song C, Shin D, et al. MAP kinases MPK9and MPK12are preferentiallyexpressed in guard cells and positively regulate ROS-mediatedABAsignaling. Proc NatlAcad Sci U S A.2009,106:20520-20525.
    [30]. Bewley JD, Black M. Seeds: Physiology of Development and Germination. Plenum. NewYork.1994.
    [31]. Rock CD, Quatrano RS. in Plant Hormones:Physiology, Biochemistry and MolecularBionlogy, ed. Davies PJ.1995,671-697.
    [32]. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings.Plant Cell.2002,14:15-45.
    [33]. Ingram J, Bartels D. The Molecular basic of dehydration tolerance in plants. Annu Rev PlantPhysiol Plant Mol Biol.1996,47:377-403.
    [34]. Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin PlantBiol.2002,5:33-36.
    [35]. Xing Y, Jia W, Zhang J. AtMKK1mediates ABA-induced CAT1expression and H2O2production via AtMPK6-coupled signaling in Arabidopsis. Plant J.2008,54:440–451.
    [36]. Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin PlantBiol.2002,5:33–36.
    [37]. Xing Y, Jia W, Zhang J. AtMKK1and AtMPK6are involved in abscisic acid and sugarsignaling in Arabidopsis seed germination. Plant Mol Biol.2009,70:725–736.
    [38]. Cheng WH, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase inArabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell.2002,14:2723–2743.
    [39]. Tan BC, Joseph LM, Deng WT, et al. Molecular characterization of the Arabidopsis9-cisepoxycarotenoid dioxygenase gene family. Plant J.2003,35:44–56.
    [40]. Alzwiy IA, Morris PC. A mutation in the Arabidopsis MAP kinase kinase9gene results inenhanced seedling stress tolerance. Plant Sci.2007,173:302–308.
    [41]. Lopez ML, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint ismediated by abscisic acid and requires the ABI5transcription factor in Arabidopsis. ProcNatl Acad Sci USA.2001,98:4782-4787.
    [42]. Lu C, Han MH, Guevara GA, et al. Mitogen-activated protein kinase signaling inpostgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA.2002,99:15812-15817.
    [43]. Mizoguchi T, Gotoh Y, Nishida E, et al. Characterization of two cDNAs that encode MAPkinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin inactivating such kinase activities in cultured cells. Plant J.1994,5:111-122.
    [44]. Calderini O, Glab N, Bergounioux C, et al. A novel tobacco mitogen-activated protein (MAP)kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6MAP kinase. J BiolChem.2001,276:18139-18145.
    [45]. Tena G, Renaudin JP. Cytosolic acidification but not auxin at physiological concentration isan activator of MAP kinases in tobacco cells. Plant J.1998,16:173-182.
    [46]. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK)activation in roots of Arabidopsis seedlings. Plant J.2000,24:785-796.
    [47]. Huttley AK, Phillips AL. Gibberellin-regulated expression in oat aleurone cells of twokinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol Biol.1995,27:1043-1052.
    [48]. Hill RD, Liu JH, Durnin D, et al. Abscisic acid structure-activity relationships in barleyaleurone layers and protoplasts (biological activity of optically active, oxygenated abscisicacid analogs). Plant Physiol.1995,108:573-579.
    [49]. Marcote MJ, Carbonell J. Transient expression of a pea MAP kinase gene induced bygibberellic acid and6-benzyladenine in unpollinated pea ovaries. Plant Mol Biol.2000,44:177-186.
    [50]. Raz V, Fluhr R. Ethylene signal is transduced via protein phosphorylation events in plants.Plant Cell.1993,5:523-530.
    [51]. Gomez GL, Carrasco P. Hormonal regulation of S-adenosylmethionine synthase transcriptsin pea ovaries. Plant Mol Biol.1996,30:821-832.
    [52]. Novikova GV, Moshkov IE, Smith AR, et al. The effect of ethylene and cytokinin onguanosine5'-triphosphate binding and protein phosphorylation in leaves of Arabidopsisthaliana. Planta.1999,208:239-246.
    [53]. Clark KL, Larsen PB, Wang X, et al. Association of the Arabidopsis CTR1Raf-like kinasewith the ETR1and ERS ethylene receptors. Proc Natl Acad Sci U S A.1998,95:5401-5406.
    [54]. Kieber JJ, Rothenberg M, Roman G, et al. CTR1, a negative regulator of the ethyleneresponse pathway in Arabidopsis, encodes a member of the raf family of protein kinases.Cell.1993,72:427-441.
    [55]. Novikova GV, Moshkov IE, Smith AR, et al. The effect of ethylene on MAP kinase-likeactivity in Arabidopsis thaliana. FEBS Lett.2000,474:29-32.
    [56]. Moshkov IE, Novikova GV, Mur LA, et al. Ethylene rapidly up-regulates the activities ofboth monomeric GTP-binding proteins and protein kinase(s) in epicotyls of pea. PlantPhysiol.2003,131:1718-1726.
    [57]. Ludwig AA, Saitoh H, Felix G, et al. Ethylene-mediated cross-talk betweencalcium-dependent protein kinase and MAPK signaling controls stress responses in plants.Proc Natl Acad Sci U S A.2005,102:10736-10741.
    [58]. Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction.Science.1996,274:982-985.
    [59]. Inoue T, Higuchi M, Hashimoto Y, et al. Identification of CRE1as a cytokinin receptor fromArabidopsis. Nature.2001,409:1060-1963.
    [60]. Brandstatter I, Kieber JJ. Two genes with similarity to bacterial response regulators arerapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell.1998,10:1009-1019.
    [61]. D’Agostino IB, Kieber JJ. Molecular mechanisms of cytokinin action. Plant Biol.1999,2:359-364.
    [62]. Mizoguchi T, Irie K, Hirayama T, et al. A gene encoding a mitogen-activated protein kinasekinase kinase is induced simultaneously with genes for a mitogen-activated protein kinaseand an S6ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana.PNAS.1996,93:765-769.
    [63]. Ichimura K, Mizoguchi T, Yuasa T, et al. Oxidative Stress Activates ATMPK6, anArabidopsis Homologue of MAP Kinase. Plant Cell Physiol.2001,42:1012-1016.
    [64]. Teige M, Scheikl E, Eulgem T, et al. The MKK2pathway mediates cold and salt stresssignaling in Arabidopsis. Mol Cell.2004,15:141-152.
    [65]. Mizoguchi T, Ichimura K, Yoshida R, et al. MAP kinase cascades in Arabidopsis: their rolesin stress and hormone responses. Results Probl in Cell Differ.2000,27:29-38.
    [66]. Jonak C, Kiegerl S, Ligterink W, et al. Stress signaling in plants: a mitogen-activated proteinkinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A.1996,93:11274-11279.
    [67]. Bogre L, Ligterink W, Meskiene I, et al. Wounding Induces the Rapid and TransientActivation of a Specific MAP Kinase Pathway. Plant Cell.1997,9:75-83.
    [68]. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling.Trends Plant Sci.2005,10:339-346.
    [69]. Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innateimmunity. Nature.2002,415:977-983.
    [70]. Nishihama R, Banno H, Kawahara E, et al. Possible involvement of differential splicing inregulation of the activity of Arabidopsis ANP1that is related to mitogen-activated proteinkinase kinase kinases (MAPKKKs). Plant J.1997,12:39-48.
    [71]. Kovtun Y, Chiu WL, Tena G, et al. Functional analysis of oxidative stress-activatedmitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A.2000,97:2940-2945.
    [72]. Ichimura K, Mizoguchi T, Irie K, et al. Isolation of ATMEKK1(a MAP kinase kinasekinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. BiochemBiophys Res Commun.1998,253:532-543.
    [73]. Nakashima M, Hirano K, Nakashima S, et al. The expression pattern of the gene for NPK1protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in atobacco plant: correlation with cell proliferation. Plant Cell Physiol.1998,39:690-700.
    [74]. Takahashi Y, Soyano T, Sasabe M, et al. A MAP kinase cascade that controls plantcytokinesis. J Biochem.2004,136:127-132.
    [75]. Kovtun Y, Chiu WL, Zeng W, et al. Suppression of auxin signal transduction by a MAPKcascade in higher plants. Nature.1998,395:716-720.
    [76]. Gomez GL, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of thebacterial elicitor flagellin in Arabidopsis. Molecular Cells.2000,5:1003-1011.
    [77]. Krysan PJ, Jester PJ, Gottwald JR, et al. An Arabidopsis mitogen-activated protein kinasekinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell.2002,14:1109-1120.
    [78]. Sharma PC, Ito A, Shimizu T, et al. Virus-induced silencing of WIPK and SIPK genesreduces resistance to a bacterial pathogen, but has no effect on the INF1-inducedhypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics.2003,269:583-591.
    [79]. Nishihama R, Machida Y. The MAP kinase cascade that includes MAPKKK-related proteinkinase NPK1controls a mitotic proces in plant cells. Results Probl Cell Differ.2000,27:119-130.
    [80]. Machida Y, Nakashima M, Morikiyo K, et al. MAPKKK-related protein kinase NPK1:regulation of the M phase of plant cell cycle. Plant Res.1998,111:243-246.
    [81]. Zhang S, Klessig D. Molecular cloning and characterization of a tobacco MAP kinase kinasethat interacts with SIPK. Mol Plant Microbe Interact.2000,13:118-124.
    [82]. Mayrose M, Bonshtien A, Sessa G. LeMPK3is a mitogen-activated protein kinase with dualspecificity induced during tomato defense and wounding responses. J Biol Chem.2004,279:14819-14827.
    [83]. Wasilewska A, Vlad F, Sirichandra C, et al. An update on abscisic acid signaling in plantsand more. Mol Plant.2008,1:198-217.
    [84]. Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. TrendsPlant Sci.2009,14:310-317.
    [85]. Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interaction. Cull OpinPlant Biol.2005,8:409-414.
    [86]. Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant MolBiol.1998,49:199-222.
    [87]. Parcy F, Giraudat J. Interactions between the ABI1and the ectopically expressed ABI3genesin controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J.1997,11:693-702.
    [88]. Cutler S, Ghassemian M, Bonetta D, et al. A protein farnesyl transferase involved in abscisicacid signal transduction in Arabidopsis. Science.1996,273:1239-1241.
    [89]. Stone JM, Walker JC. Plant protein kinase families and signal transduction. Plant Plysiol.1995,108:451-457.
    [90]. Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science.1998,280:1943-1945.
    [91]. Hong SW, Jon JH, Kwak JM, et al. Identification of a receptor-like protein kinases generapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsisthaliana. Plant Physiol.1997,113:1203-1212.
    [92]. Komatsu S, Karibe H, Masuda T. Effect of abscisic acid on phosphatidyserine-sensitivecalcium-independendent protein kinase activity and protein phophorylation in rice. BiosciBiotech Biochem.1997,61:418-423.
    [93]. Mori IC, Muto S. Abscisic acid activates a48-kilodalton protein kinase in guard cellsprotoplasts. Plant Physiol.1997,113:833-839.
    [94]. Leung J, Bouvier DM, et al. Arabidopsis ABA response gene ABI1: features of acalcium-modulated protein phosphatase. Science.1994,264:1448-1452.
    [95]. Meyer K, Leube MP, Grill E. A protein phosphatase2C involved in ABA signal transductionin Arabidopsis thaliana. Science.1994,264:1452-1455.
    [96]. Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2(ABI2)and ABI1genes encode homologous protein phosphatases2C involved in abscisic acidsignal transduction. Plant Cell.1997,9:759-771.
    [97]. Heimovaara DS, Heistek JC, Wang M. Counteractive effects of ABA and GA3onextracellular and intracellular pH and malate in barley aleurone. Plant Physiol.1994,106:359-365.
    [98]. Lee JS, Ellis BE. Arabidopsis MAPK phosphatase2(MKP2) positively regulates oxidativestress tolerance and inactivates the MPK3and MPK6MAPKs. J Biol Chem.2007,282:25020-25029.
    [99]. Lee JS, Wang S, Sritubtim S, et al. Arabidopsis mitogen activated protein kinase MPK12interacts with the MAPK phosphatase IBR5and regulates auxin signaling. Plant J.2009,57:975-985.
    [100].王树才,徐朗莱,夏凯,周燮.侧根的发生及其激素调控.植物学通报.2003,20:129-136.
    [101]. Benfey PN, Linstead PJ, Roberts K, et al. Root development in Arabidopsis: four mutantswith dramatically altered root morphogenesis. Development.1993,119:57-70.
    [102]. Callahan HS, Pigliucci M, Schlichting CD. Developmental phenotypic plasticity: whereecology and evolution meet molecular biology. Bioessays.1997,19:519-525.
    [103]. Malamy JE. Intrinsic and environmental response pathways that regulate root systemarchitecture. Plant Cell Environ.2005,28:67-77.
    [104]. Fitter AH. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U,eds. Plant Roots:The Hidden Half,3rd edn. New York: Marcel Dekker.1991:3-25.
    [105]. Kramer PJ, Boyer JS. Water Relations of Plants and Soils. San Diego: Academic Press.1995, Inc.
    [106]. Lopez BJ, Cruz RA, Herrera EL. The role of nutrient availability in regulating rootarchitecture. Curr Opin Plant Biol.2003,6:280-287.
    [107]. Nibau C, Gibbs DJ, Coates JC. Branching out in new directions: the control of rootarchitecture by lateral root formation. New Phytol.2008,179:595-614.
    [108]. Iyer PA, Benfey PN. Transcriptional networks in root cell fate specification. BiochimBiophys Acta.2009,1789:315-325.
    [109]. Davies WJ, Bacon MA. Adaptation of roots to drought. In: de Kroon H, Visser EJW, eds,Root Ecology (Ecological Studies). Vol.168. Berlin: Springer-Verlag.2003:173-192.
    [110]. Hose E, Sauter A, Hartung W. Abscisic acid in roots biochemistry and physiology. In:Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: The Hidden Half,3rd edn. New York:Marcel Dekker.2002:435-448.
    [111]. Jan KP, Anna N, Ewa K. Ethylene and in vitro rooting of rose shoots. Plant Growth Regul.2006,50:23-28.
    [112]. Sarquis JI, Jordan WR, Morgan PW. Ethylene evolution from maize (Zea mays L.) seedlingroots and shoots in response to mechanical impedance. Plant Physiol.1991,96:1171-1177.
    [113]. Roberts JA, Hussain A, Taylor IB, et al. Use of mutants to study long-distance signaling inresponse to compacted soil. J Exp Bot.2002,53:45-50.
    [114]. Sharp RE, Lenoble ME. ABA, ethylene and the control of shoot and root growth underwater stress. J Exp Bot.2002,53:33-37.
    [115]. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings.Plant Cell.2002,14:15-45.
    [116]. Chen CW, Yang YW, Lur HS, et al. A novel function of abscisic acid in the regulation ofrice (Oryza sativa) root growth and development. Plant Cell Physiol.2006,47:1-13.
    [117]. Osakabe Y, Maruyama K, Seki M, et al. Leucine-rich repeat receptor-like kinase1is a keymembrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell.2005,17:1105-1119.
    [118]. Fujii H, Verslues PE, Zhu JK. Identification of two protein kinases required for abscisicacid regulation of seed germination, root growth, and gene expression in Arabidopsis. PlantCell.2007,19:485-494.
    [119]. Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1gene encoding a dsRNA bindingprotein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell.2000,12:2351-2365.
    [120]. Pandey S, Assmann SM. The Arabidopsis putative G protein-coupled receptor GCR1interacts with the G protein α subunit GPA1and regulates abscisic acid signaling. PlantCell.2004,16:1616-1632.
    [121]. Zheng ZL, Nafisi M, Tam A, et al. Plasma membraneassociated ROP10small GTPase is aspecific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell.2002,14:2787-2797.
    [122]. Bai L, Zhang GZ, Zhou Y, et al. Plasma membreane-associated proline-rich extensin-likereceptor kinase4, a novel regulator of Ca2+signaling, is required for abscisic acidresponses in Arabidopsis thaliana. Plant J.2009,60:314-327.
    [123]. Bai L, Zhou Y, Zhang XR, et al. Hydrogen peroxide modulates abscisic acid signaling inroot growth and development in Arabidopsis. Chinese Science Bulletin.2007,52:1142-1145.
    [124]. Gapper C, Dolan L. Control of plant development by reactive oxygen species. PlantPhysiology.2006,141:341-345.
    [125]. Kwak JM, Moil IC, Pei ZM,et al. NADPH oxidase AtrbohD and AtrbohF genes function inROS-dependent ABA signaling in Arabidopsis. EMBO Journal.2003,22:2623-2633.
    [126]. Allen GJ, Kuchitsu K, Chu SP, et al. Arabidopsis abi1-1and abi2-1phosphatase mutationsreduce abscisic acid induced cytoplasmic calcium rises in guard cells. Plant Cell.1999,11:1785-1798.
    [127]. Wei KF, Chen J, Chen YF, et al. Molecular mechanism for dynamic regulation ofendogenous ABA signal level. Yi Chuan.2012,34:296-306.
    [128]. Millar AA, Jacobsen JV, Ross JJ, et al. Seed dormancy and ABA metabolism in Arabidopsisand barely: the role of ABA8'-hydroxylase. Plant J.206,45:942-954.
    [129]. Jae MK, Dong HW, Sun HK, et al. Arabidopsis MKKKX is involved in osmotic stressresponse via regulation of MPK6activity. Plant Cell Rep.2012,31:217-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700