小麦新抗源一粒葡抗条锈病的组织学和超微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是中国以及世界上其它国家小麦生产上最重要的病害之一。培育和利用抗病品种是防治小麦条锈病最经济、有效的措施之一。进行小麦抗锈性机制的研究,是选育抗病品种和合理利用寄主抗病性的前提和基础。本文采用荧光显微镜、微分干涉显微镜和电子显微镜技术,系统研究了小麦新抗源一粒葡抗小麦条锈病的组织学和超微结构特征,为评估抗原材料抗病特点和应用潜力提供科学依据。结果如下:
     (1)在组织学水平,表现为菌丝生长受抑,菌落发育延迟或败育,吸器母细胞和吸器数目明显减少;同时,侵染点的寄主细胞表现出不同程度的过敏性坏死症状。
     (2)电镜观察发现,在一粒葡和感病品种中,条锈菌均可由芽管顶端直接进入或通过形成附着胞进入小麦气孔。其后,在一粒葡上,病菌胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,其中原生质电子致密度逐渐加深,液泡增多变大,逐渐消解原生质;胞间菌丝、吸器母细胞细胞壁不规则增厚;胞间菌丝线粒体肿胀数目增多,逐渐解体;吸器母细胞细胞质逐渐空泡化后丧失其生理功能。吸器外质膜皱褶;吸器外间质加宽并有丝状或颗粒状物质形成,吸器体壁逐渐消解出现孔洞,吸器体最终畸形坏死;同时,寄主细胞产生一系列显著的结构防卫反应:形成胞壁沉积物、乳突、吸器鞘等结构,以及发生坏死,阻碍及抑制病菌的发育及扩展。
     (3)结果表明:一粒葡对条锈菌的侵染,相对于感病品种,在组织学和超微结构上表现出明显的抗锈性特征。
     (4)发现条锈菌,可入侵一粒葡叶片表皮细胞形成吸器,而吸器结构异常,表明抗锈性同样可在表皮细胞得以表达。
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat production in China and many other countries worldwide. It is the most economical and effective method to breed and utilize the wheat resistant cultivar for controlling the disease. The research on resistant mechanism to rust fungi is the basis of breeding resistant cultivar selectively and utilizing host rsistace in reason. In this paper, the histology and ultrastructure of resistant mechanism of a new wheat material-Yilipu to Puccinia striiformis were examined by means of fluorescent microscopy,differential interference contrast microscopy,and electron microscopy. It provided scientific basis for avaluating resistant features and application potential of wheat material. The mainly results were as follows:
     (1) The main histological manifestation of the pathogen development in the Yilipu wheat included inhibition of hyphal growth, delay of hyphal branching and colony formation, decrease of formation of haustorial mother cells and haustoria, at the same time, occurrence of host cell necrosis in different degrees.
     (2) The observation by scanning electron microscopy demonstrated that the pathogen can enter pore of stomatal by developed appressorium or apical of germ tube both in Yilipu and susceptible wheat cultivar. Later, a series of abnormal changes occurred in intercellular hyphae, haustorial mother cells and haustoria during pathogen development in the Yilipu. The cytoplasm became more electron-dense and vacuoles increased in number and in size which digested the protoplasm. The cell wall of intercellular hypha and haustorial mother cell were thichened irregularly. The mitochondria became swollen and increased in mumber,then hypha disintegrated gradually. The cytoplasm were degraded into central vacuole gradually and haustorial mother cells lost their physiological function. The extrahaustorial membrane was wrinkled, the extrahaustorial matrix is widened and great amount of fibril or granular deposits accumulated here. The cell walls of hostorial body degraded gradually and perforated, At the end, the haustorial body were malformed and necrosed. At the same time, the structural defense reactions such as formation of cell wall apposition, papilla, encasement of haustorium and necrosis of host cell were essentially more pronounced in the infected wheat leaves of the Yilipu than in the susceptible one. All constitute essential factors of resistance.
     (3) As compared on susceptible wheat cultivar, the observation of Yilipu following infection by the pathogen revealed a striking resistant characteristics in histology and ultrastructure.
     (4) The observation discovered that pathogen could invade epidermal cell of wheat leaves and developed into haustorium in it .It suggested that resistance to rust fungi could expressed in epidermal cell besides mesophyll cell.
引文
[1] 李振歧主编. 中国小麦锈病[M]. 北京:中国农业出版社,2000.
    [2] 万安民,赵中华,吴立人. 2002年我国小麦条锈病发生回顾[J]. 植物保护,2003,29(2):5-8.
    [3] 吴立人,杨华安,袁文焕等. 1985~1990年我国小麦条锈菌生理专化研究[J]. 植物病理学报,1993,23(3):269-274
    [4] 牛永养,吴立人. 繁 6-绵阳系小麦抗条锈性变异及对策[J]. 植物病理学报,1997,27(1):5-8.
    [5] 王凤乐,吴立人,许世昌等. 中国条锈菌新小种条中30、31号的研究[J]. 植物保护学报,1996,23(1):39-4.
    [6] 万安民,吴立人,金社林等. 中国小麦条锈菌条中32号的命名及其特性[J]. 植物保护学报,2003,30(4):347-352.
    [7] 吴立人,牛永春. 我国小麦条锈病持续控制的策略[J]. 中国农业科学 2000,33 (5):1-7.
    [8] 李振歧,康振生. 我国小麦抗条锈病育种研究进展[A].小麦遗传育种国际学术讨论会论文集. 2001.
    [9] 万安民. 小麦条锈菌鉴别寄主和小种命名现状[J]. 植物病理学报,2003,33(6):481-486.
    [10] 李力会,杨欣明,李秀全等. 中国小麦野生近缘植物的研究利用[J]. 中国农业科技导报,2000,2(6):73.
    [11] 董玉琛. 小麦远缘杂交育种[A]. 21 世纪小麦遗传育种展望——小麦遗传育种国际学术讨论会文集. 2001.
    [12] 刘萍,储燕宁,康振生. 小麦条锈病的抗性遗传及其在育种中的利用[J]. 宁夏农学院学报,2004,25(4):49-52.
    [13] 郝晨阳,王兰芬,张学勇等. 我国育成小麦品种的遗传多样性演变[J]. 中国科学 C 辑,生命科学,2005,35(5):408-415.
    [14] 张海清,何党明,刘海沦等. 普通小麦与野生燕麦杂交的研究[J]. 湖南农学院学报,1994,20(2):101-105.
    [15] 任贤,樊路,叶兴国等. 普通小麦与燕麦杂交研究初报[J]. 宁夏农林科技,1994,(4):7-10.
    [16] 徐如宏,张庆勤. 中国春与光稃野燕麦杂种核型分析[J]. 西南农业学报,1996,9(1):33-37.
    [17] 张立杰. 燕麦DNA导入小麦后代的变异分析及高抗条锈新品系的获得[D]. 中国农业大学农业推广硕士学位论文,2004.
    [18] 刘 萍. 授粉后外源DNA导入技术在春小麦抗条锈病育种中的应用[D]. 西北农林科技大学农业推广硕士,2004.
    [19] 黄艾祥,肖蓉,吴存. 三燕麦及其营养食品的研究[J]. 粮食与饲料工业,2000,9:49-50.
    [20] 马德泉,燕麦营养价值与保健食品开发[J]. 中国食物与营养,1997,(3):16-19.
    [21] 张庆勤,陈庆富,肖建富. 野生二粒小麦与野生燕麦远缘杂交研究[J]. 种子,l991,(2):2-3.
    [22] 张庆勤,肖建富. 野生二粒小麦与野生燕麦族间杂交研究[J]. 种子,1992,(2):3-7.
    [23] 张庆勤. 小麦远缘杂交中兼抗育种方法研究[J]. 西南农业学报,1999,12(1):32-37.
    [24] 刘萍,张立杰,刘生祥. 燕麦DNA在小麦抗条锈病育种中的利用[J]. 2002,29(4):305-308.
    [25] 张庆勤. 小麦与野燕麦远缘杂交研究进展[J].山地农业生物学报,1999,18 (2):118-119.
    [26] 张凤国. 禾谷类锈病组织病理学研究进展[J].河北农业大学学报,l991,14(3):115-119.
    [27] 陈晔. 微分干涉相衬显微术及其应用南京林业大学学报[J]. 1992,16(2):69-73.
    [28] Zhang Lin, Dickinson Matt. Fluorescence from rust fungi: a simple and effective method to monitor the dynamics of fungal growth in planta[J]. Physiological and Molecular Plant Pathology, 2001, 59: 137-141.
    [29] Freytag Sibylle, Arabatzis Nikolaos, Hahlbrock Klaus et al. Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell death and defense-related gene activation in potato/Phytophthora infestans interactions[J]. Planta, 1994, 194(1): 123-135.
    [30] Michele C. Heath, Zachary L. Nimchuk and HaiXin Xu. Plant nuclear migrations as indicators of critical interactions between resistant or susceptible cowpea epidermal cells and invasion hyphae of the cowpea rust fungus[J]. New Phytologist, 1997, 135(4): 689-700.
    [31] 霍霞,吕建勋,杨仁东. 激光共聚焦显微镜与光学显微镜之比较[J]. 激光生物学报,2001,10(1):76-79.
    [32] 许险峰, 徐锡金, 霍霞. 共聚焦激光扫描显微镜技术[J]. 激光生物学报,2003,12(2):156-159.
    [33] 周丽华,黄光文. 激光扫描共聚焦显微镜在植物学中的应用[J]. 激光生物学报,2005,14(1): 76-79.
    [34] 闫炀. 激光扫描共聚焦显微术在生物医学中的研究[J]. 生命的化学,2003,23(3):233-235.
    [35] 杨海伟, 霍霞. 共聚焦激光扫描显微镜在发育生物学中的应用[J]. 激光生物学报,2003,12(6):463-466.
    [36] 朱珊珊,黄志江. 激光扫描共聚焦显微镜在生命科学研究中的应用[J].《国外医学》麻醉学与复苏分册,2005,26(2):118-119.
    [37] Richard J. Howard. Cytology of fungal pathogens and plant—host interactions[J]. Current Opinion in Microbiology, 2001, 4(4): 365-373.
    [38] 王进军,陈小川,邢达. FRET技术及其在蛋白质2蛋白质分子相互作用研究中的应用[J]. 生物化学与生物物理进展,2003,30 (6):980-984.
    [39] Koh Serry, Somerville Shauna. Show and tell: cell biology of pathogen invasion Current[J]. Opinion in Plant Biology, 2006, 9(4): 406-413.
    [40] 刘春春,杭海英. 生物大分子相互作用检测技术新进展——三色荧光级联荧光共振能量转移技术[J]. 生物化学与生物物理进展,2006,33(3):292-296.
    [41] 杨大莉,景乃禾. 荧光共振能量转移技术在生物学研究中的应用[J]. 生命科学,2003,15(2):88-91.
    [42] 霍霞,徐锡金,陈耀文. 激光扫描共聚焦显微镜荧光探针的选择和应用[J]. 激光生物学报,1999,8(2):152-156.
    [43] Elison B. Blancaflor, Simon Gilroy. Plant cell biology in the new millennium: new tools and new insights[J]. American Journal of Botany, 2000, 87: 1547-1560.
    [44] Wasteneys G. O., Willingale-Theune J., Menzel D. Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls[J]. Journal of Microscopy, 1997, 188(1): 51–61.
    [45] 鞠传丽,王东,孔冬冬等. 绿色荧光蛋白在植物细胞生物学中的应用[J]. 生命的化学,2001,21(6):528-530.
    [46] 吴瑞,张树珍. 绿色荧光蛋白及其在植物分子生物学中的应用[J]. 分子植物育种,2005,3(2): 240-244.
    [47] 赵华,梁婉琪,杨永华. 等绿色荧光蛋白及其在植物分子生物学研究中的应用[J]. 植物生理学通讯,2003,39 (2):171-178.
    [48] Lorang J. M., Tuori R. P., Martinez J. P. et al. Green Fluorescent Protein Is Lighting Up Fungal Biology[J]. Applied and Environmental Microbiology, 2001, 67(5): 1987-1994.
    [49] Malhó R, Moutinho A., Luit A. van der, Trewavas A. J. Spatial characteristics to calcium signalling; the calcium wave as a basic unit in plant cell calcium signaling[J]. Philos Trans R Soc Lond B Biol Sci, 1998, 353(1374): 1463-1473.
    [50] Xu Haixin, Heath Michèle C. Role of Calcium in Signal Transduction during the Hypersensitive Response Caused by Basidiospore-Derived Infection of the Cowpea Rust Fungus[J]. The Plant Cell, 1998, 10: 585–597.
    [51] Grant Murray, Brown Ian,Adams Sally. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death[J]. The Plant Journal, 2000, 23 (4): 441-450.
    [52] Lamb Chris, Dixon Richard A. The oxidative burst in plant disease resistance [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.
    [53] Hueckelhoven R, Kogel K-H. Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. Hordei)[J]. Molecular Plant-Microbe Interactions, 1998, 11(4): 292-300.
    [54] Thordal-Christensen, Hans, Zhang Ziguo, Wei Yangdou et al. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction[J]. The Plant Journal, 1997, 11(6): 1187-1194.
    [55] Michele C. Heath. Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus[J]. New Phytologist, 1998, 138 (2): 251-263.
    [56] Greenshields David L, Liu Guosheng, Selvaraj Gopalanet al. New insights in to ancient resistance: the molecular side of cell wall appositions[J]. Phytoprotection, 2004, 85(1): 49-52.
    [57] Heath Michèle C. Advance in imaging the cell biology of plant-microbe interactions [J]. Annual Review of Phytopathology, 2000, 38: 443-459.
    [58] 康振生. 植物病原菌超微结构[M]. 中国科学技术出版社,1995.
    [59] Mims C. W., Richardson E. A., Holt B. F. et al. Ultrastructure of the host–pathogen interface in Arabidopsis thaliana leaves infected by the downy mildew Hyaloperonospora parasitica[J]. Can. J. Bot, 2004, 82(7): 1001-1008.
    [60] Mims Charles W., Richardson Elizabeth A. Ultrastructure of Urediniospore Development in Coleosporium ipomoeae as Revealed by High-Pressure Freezing Followed by Freeze Substitution[J]. International Journal of Plant Sciences, 2005, 166: 219-225.
    [61] Mims C. W., Rodriguez-Lother C., Richardson E. A. Ultrastructure of the host-pathogen interface in daylily leaves infected by the rust fungus Puccinia hemerocallidis[J]. Protoplasma, 2002, 219: 221-226.
    [62] Silva M. C., Nicole M., Rijo L, et al. Cytochemical Aspects of the Plant Rust Fungus Interface during the Compatible Interaction Coffea arabica (cv. Caturra) Hemileiavastatrix (race III) [J]. International Journal of Plant Sciences, 1999, 160 (1): 79-91.
    [63] Rohringer R, Chong J., Gillespie R, et al. Gold-conjugated arabinogalactan-protein and other lectinsas ultrastructural probes for the wheat/stem rust complex[J]. Histochemistry and Cell Biology, 1989,91(5): 383-393.
    [64] Stakmen, E.C. Relation between Puccinia graminis and plants highly resistance to its attack[J]. J. Agr. Res., 1915, 4: 193-200.
    [65] Hilu H M. Host-pathogen relationships of puccinia sorghi in nearly isogenic resistant and susceptible seedlings corn[J]. Phytopathology, 1965, 55: 563-569.
    [66] Cartwright D W, Rusell G E. Development of puccinia striiformis in a susceptible winter wheat variety[J].Trans .Br. Mycol, 1981, 76(2): 197-204.
    [67] Dijksterhuis J. Confocal microscopy of Spitzenk?rper dynamics during growth and differentiation of rust fungi[J]. Protoplasma, 2003, 222: 53-59.
    [68] Kwon Y. H., Hoch H. C., Staples R.C. Cytoskeletal organization in Uromyces urediospore germling apices during appressorium formation[J]. Protoplasma, 1991, 165: 37-50.
    [69] Steven D. Harris, Nick D. Read, Robert W. Roberson, et al. Polarisome Meets Spitzenk?rper: Microscopy, Genetics, and Genomics Converge[J]. Eukaryotic Cell, 2005, 4(2): 225-229.
    [70] 康振生,李振岐,商鸿生等. 小麦条锈菌胞间菌丝的超微结构和细胞化学研究[J]. 真菌学报,1993,12 (3):208-213.
    [71] Chong J, Harder D E, Rohringer R. Cytochemical studies on Puccinia graminis f. sp.tritici in a compatible wheat host .Ⅰ. walls of intercellular hyphal cells and haustorium mother cells[J]. Canadian Journal of Botany, 1985, 63: 1713-1724.
    [72] 康振生,李振岐,商鸿生等. 小麦条诱菌吸器母细胞超微结构的研究[J]. 真菌学报,1994,13(3):206-209.
    [73] Chong J, Harder D E, Rohringer R. Cytochemical studies on Puccinia graminis f. sp. tritici in compatible wheat host .ⅡHaustorial mother cell walls at the host penetration site, haustorial wall and the extrahaustorial matrix[J]. Canadian Journal of Botany, 1986, 64: 2561-2575.
    [74] 康振生,李振岐,R罗林格等. 小麦条锈菌生要结构中糖基种类的细胞化学定位研究[J]. 真菌学报,1994,13(1):58-64.
    [75] Mims C W, Taylor J, Richardson E A. Ultrastructure of the early stages of infection of peanut leaves by the rust fungus Puccinia arachidis[J]. Canadian Journal of Botany, 1989, 67: 3570-3579.
    [76] 康振生,李振岐,庄约兰等. 小麦条锈菌吸器超微结构和细胞化学的研究[J]. 真菌学报,1994,13(1):52 -57.
    [77] 康振生,黄丽丽,李振岐. 小麦对条锈菌入侵反应的超微结构研究[J]. 西北农业学报,1993,2(3):25-28.
    [78] Hahn Matthias, Mendgen Kurt. Signal and nutrient exchange at biotrophic plant–fungus interfaces[J]. Current Opinion in Plant Biology, 2001, 4: 322-327.
    [79] 王瑶. 小麦对条锈病低反应型抗性的组织学和细胞学研究[D]. 西北农业大学硕士学位论文,1996.
    [80] 徐建强. 我国小麦和小麦秆锈菌互作的组织学、细胞学及互作产物研究[D]. 沈阳农业大学硕士学位论文,2004.
    [81] 蒋选利. 小麦与条锈菌(Puccinia striiformis west.)相互作用的超微结构、细胞化学和分子生物学研究[D]. 西北农林科技大学博士学位论文,2002.
    [82] Deising H B, Werner S, Wernitz M. The role of fungal appressoria in plant infection[J]. Microbesand Infection, 2000, 2: 1631-1641.
    [83] Hoch H C, Staples R C. Structural and chemical changes among the rust fungi during appressorium development[J]. Ann. Rev. Phytopathol, 1987, 25: 231-47.
    [84] Collins T J, Moerschbacher B M,Read N D. Synergistic induction of wheat stem rust appressoria by chemical and topographical signals[J]. Physiological and Molecular Plant Pathology, 2001, 58: 259-266.
    [85] Wieth?lter N, Horn S, Reisige K, et al. In vitro differentiation of haustorial mother cells of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, triggered by the synergistic action of chemical and physical signals[J]. Fungal Genetics and Biology, 2003, 38: 320-326.
    [86] Collins T J, Read N D. Appressorium induction by topographical signals in six cereal rusts[J]. Physiological and Molecular Plant Pathology, 1997, 51: 169-179.
    [87] 康振生,王瑶,黄丽丽,等. 小麦品种对条锈病低反应型抗性的组织学和超微结构研究[J]. 中国农业科学,2003,36(9):1026-1031.
    [88] 蒋选利,康振生,李振岐,等. 抗病品种中小麦条锈菌细胞的超微结构变化过程[J]. 菌物学报,2005,24(1):123-129.
    [89] 马青,商鸿生. 小麦与条锈病菌不亲和互作的超微结构.植物病理学报[J]. 2002,32(4):306-311.
    [90] Voegele R T, Struck C, Hahn M, et al. The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae[J]. PNAS, 2001, 98 (14): 8133-8138.
    [91] Hahn M, Neef U, Struck C, et al. A Putative Amino Acid Transporter Is Specifically Expressed in Haustoria of the Rust Fungus Uromyces fabae[J]. Molecular Plant-Microbe Interactions, 1997, 10 (4): 438-445.
    [92] Mendgen K, Hahn M. Plant infection and the establishment of fungal biotrophy[J]. Trends in Plant Science, 2002, 7: 352-356.
    [93] Voegele R T, Mendgen K. Rust haustoria: nutrient uptake and beyond[J]. New Phytologist, 2003, 159: 93–100.
    [94] Panstruga R. Establishing compatibility between plants and obligate biotrophic pathogens[J]. Current Opinion in Plant Biology, 2003, 6: 320-326.
    [95] Sohn J, Voegele R T, Mendgen K, et al. High Level Activation of Vitamin B1 Biosynthesis Genes in Haustoria of the Rust Fungus Uromyces fabae[J]. Molecular Plant-Microbe Interactions, 2000, 13 (6): 629-636.
    [96] Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis[J]. Joural of Plant Diseases and Protection, 2002, 109 (1): 25-37.
    [97] Hu G G, Rijkenberg F H J. Subcellular localization of β-1, 3-glucanase in Puccinia recondita f. sp. tritici-infected wheat leaves[J]. Planta, 1998, 204: 324-334.
    [98] Robatzek S. Vesicle trafficking in plant immune responses[J]. Cellular Microbiology, 2007, 9 (1): 1-8.
    [99] Koh S, André A, Edwards H, et al. Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections[J]. The Plant Journal, 2005, 44: 516-529.
    [100] Mich`ele C. Heath. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000, 44: 321–334.
    [101] Marie-No?lle Binet, Claude Humbert,David Lecourieux et al. Disruption of Microtubular Cytoskeleton Induced by Cryptogein, an Elicitor of Hypersensitive Response in Tobacco Cells[J]. Plant Physiol, 2001, 125: 564-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700