碳纳米管、纳米金刚石、空心碳球及其复合物的PECVD制备和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的飞速发展,纳米碳材料越来越受到人们的关注。由于碳原子具有良好的成键性能,碳元素组成的物质具有多种丰富的形貌和优良的性能。近年来,纳米金刚石、碳纳米管及其复合物、碳球等碳基材料受到了人们的广泛关注。
     碳纳米管以其高的长径比、良好的导电性、化学稳定性、热稳定性和力学性能而成为理想的场发射冷阴极材料之一。研究表明,将碳纳米管和其它材料复合后,将会获得场发射性能更加优异的材料。近几年来,碳纳米管复合物的研究已经成为碳纳米管应用研究的热点之一。在本文工作中,我们采用PECVD方法,通过对基片采用不同的预处理和选取不同的沉积参数,成功地合成了碳纳米管及碳纳米管/纳米金刚石复合物,并探讨了它们的生长机制和场发射性能;此外,我们还合成出树状碳纳米管和翅膀状碳纳米管,并探讨了不同形貌的碳纳米管生长机制及其场发射性能。
     由于碳纳米管具有独特的结构特点和稳定的化学性质,因此可以作为金属、无机材料、聚合物、以及生物分子的理想载体。金属铁、钴、镍等磁性纳米颗粒在空气中或酸性环境中是不稳定的,因此近年来人们一直在探索将硅、有机聚合物以及碳等作为纳米金属颗粒保护壳。然而,目前所面临的挑战是如何用一种简单的方法合成尺寸可控的碳包覆的金属纳米颗粒。在本文工作中,我们采用PECVD方法,合成出碳纳米管/碳包覆的铁纳米颗粒复合物,并研究了其磁学特性。
     在现代科学和技术中,空心碳球可以应用到很多行业中,如作为新型电极材料、气体储存材料、药物传输工具、催化剂的载体等。随着越来越多的科研工作者成功制备出空心碳球,其生长机制众说纷纭。在本文工作中,我们采用PECVD方法合成了非晶空心碳球,并探讨了其生长机制。
With the rapid development of nanotechnology, much interest has been paid to the nano-carbon materials. As the carbon atoms can form several kinds of bonding, carbon materials have ample morphology and excellent properties. Recently, especially nanodiamond, carbon nanotube and their composite, carbon sphere have attracted much attention. To develop CNT-based field electron emission (FEE) devices, a lot of efforts have been implemented to synthesize the hybrid CNTs, in particular, hybrid CNTs and ND, with the enhancing FEE properties. The unique mechanical and electronic properties of CNTs and ND make both promising candidates for use as microelectronic devices. Because of the excellent FEE property of CNTs and ND, it can be speculated that the synergistic effect of CNTs and NCD will give rise to the materials with more improved FEE property that could be advantageously used as cold-cathode field emitter. So far, although the FEE properties of the tree-like CNTs have been investigated, its FEE peoperty needs to be improved. Furthermore, the FEE properties of the wing-like CNTs have not been reported. Therefore, the mechanism underlying the enhancement of FEE properties in the tree- and wing-like CNTs need to be explored.
     Due to their nanoscaled and steady structure characteristics and morphologies, as well as inert and resistance properties, CNTs have been considered as ideal supports for metal, inorganic materials, and coatings to biomolecules. Recent advances in attachment of metal nanoparticles to CNTs provide a way to obtain novel hybrid materials with useful properties for gas sensor, catalytic application, conducting and magnetic materials. As metallic nickel, iron, cobalt ferromagnetic nanoparticles are inherently instable in air and acid atmosphere, which limits their potential applications and scientific studies, a way to deposit a protective shell, such as silica, organic polymers, or carbon, has been recommended and been researched widely for many years. However, to obtain a simple method for preparing carbon encapsulated metallic nanoparticles with controllable size in a high yield is still a challenge.
     Hollow carbon spheres (HCSs) can be used to develop electrode, gas storage media, drug delivery devices, artificial cells, protectors for sensitive components and supports for catalysts, hollow sphere composites, or even used as templates for synthesis of other useful hollow spheres, which means that HCSs have many potential applications. Up to now, various methods have been used for synthezing HCSs, a lot of growth mechanism has been presented, but they are often in contradiction wih each other. In this thesis, we try to reveal the growth mechanism of Amorphous HCSs synthesized by PECVD.
     In Chapter 1, we give a brief introduction to the structures, properties, syntheses and applications of nanodiamond, carbon nanotube and its composite, carbon sphere, etc.
     In Chapter 2, we give a detailed description on the experiments for preparing and characterizing samples, as well as the working principles of PECVD and magnetron sputtering.
     In Chapter 3, Micro-Diamond, Nanodiamond, CNTs/Nanodiamond nanocomposite and CNTs have been synthesized via different nucleation pretreatment schemes and deposition conditions, and their growth mechanism and field emission properties have been investigated. We find that the pretreated substrate and the gas flow rate ratio of H2/CH4 are critical to the size, nucleation density and microstructure of the obtained sample. We also find that the CNTs/nanodiamond exhibits a more excellent FEE property than either CNTs or nanodiamond.
     In Chapter 4, both the tree- and wing-like CNTs have been synthesized, and we find that the branch diameters of the tree-like CNTs are controlled by changing the quantity of ferrocene contents and the density of graphitic sheet in the wing-like CNTs is controlled by the deposition time. The FEE properties for tree- and wing-like CNTs have been significantly enhanced compared to pristine CNTs. The diameters of the branches and branch alignment in CNTs are the main factors to influence the FEE properties of tree-like CNTs. In contrast, the density of graphitic-sheet in CNTs plays a key role in determining the FEE properties of wing-like CNTs.
     CNTs-carbon encapsulated Fe nanoparticles can be synthesized via a straightforward method. This nanocomposite exhibits a ferromagnetic behavior at room temperature. As Fe nanoparticles with a small size decorate on the MWCNT surface, Ms reduces, compared to bulk Fe (Ms = 222 emu/g). In contrast, compared to bulk Fe (Hc≈1 Oe), an enhancement in coercivity for carbon encapsulated Fe nanoparticles supported on CNTs (Hc = 60 Oe) is observed.
     In Chapter 5, we synthesize Amorphous HCS, with diameters ranging from 100-800 nm. A mechanism for the Amorphous HCS has been proposed. It is found that MgO and Ni nanoparticles together with hydrogen play important roles in the formation of the spheres.
     In conclusion, we have synthesized the CNTs-based nanocomposite, including CNTs/nanodiamond, tree-like CNTs and wing-like CNTs, and investigated their FEE property. The findings in this work provide a design principle for developing CNT-based nanomaterials with superior FEE properties and new insight into their potential applications as field emission devices. In addition, we have also synthesized CNTs-carbon encapsulated Fe nanoparticles and explored its magnetism property. We have also presented a growth mechanism for the growth of Amorphous HCSs, which is quite different from the existing mechanisms .
引文
[1]谭平恒,李峰,成会明,碳材料的拉曼光谱,机械工业出版社, 2007年。
    [2] H W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smally, Buckyminister-fullerene, Nature, 1985, 318: 162.
    [3] S. Iijima, Helical microtubules of graphite carbon, Nature, 1991; 354: 56.
    [4] J. C. Angus, C. C. Hayman, Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases, Science, 1988, 241: 913.
    [5] B.T. Kelly, Physics of Graphite, Applied Science Publishers, London, 1981.
    [6] R. S. Lewis, M. Tang, J. F. Wecker, E. Anders, E. Stell, Interstellar diamonds in meteorites, Nature, 1987, 326: 160.
    [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306: 666.
    [8] A. G. Rinzler, J. H. Hafner, P. Nikolaev, Unraveling nanotubes: field emission from an atomic wire, Science, 1995, 269: 1550.
    [9] R. Berman, Physical Properties of Diamond, Oxford University Press, 1965.
    [10] J. E. Field, Properties of Diamond, Academic Press, New York, 1979.
    [11] T. Tyler II, Characterization of isolated nanodiamond particles, 2004.
    [12]袁立显,人造金刚石合成与金刚石工具制造,湖南,中南工业大学出版社, 1992年。
    [13] J. E. Field, Properties of Diamond, Academic Press, New York, 1979.
    [14] A. R. Krauss, et al, Electron Field Emission for Ultrananocrystalline Diamond Films, Journal of Applied Physics, 2001, 89: 2958.
    [15] W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S. Kerns, Recent Development of Diamond Microtip Field Emitter Cathodes and Devices, Journal of Vacuum Science and Technology B, 2001, 19: 936.
    [16] E. Kohn, W. Ebert, M. Adamschik, P. Schmid, A. Denisenko, Diamond Based MEMS Devices, IEEE Journal of New Diamond & Frontier Carbon Technology, 2001,11: 81-100.
    [17] K. Mitsuda, Y. Kojima, T. Yoshida, K. Akashi, J. Mater, Science, 1987, 22: 1557.
    [18] B. Singh, O. Mesker, A.W. Levine, Y. Arie, Growth of Polycrystalline DiamondParticles and Films by Hot-Filament Chemical Vapor Deposition, Report CN-5300, David Sarnoff Research Center, SRI International, Princeton, NJ, 1988.
    [19] Z. Feng, K. Komvopoulos, I. G. Brown, D. B. Bogy, A pretreatment process for enhanced diamond nucleation on smooth silicon substrates coated with hard carbon films, J. Appl. Phys., 1993, 74: 2841.
    [20] A. A. Morrish, P. E. Pehesson, Effects of surface pretreatments on nucleation and growth of diamond films on a variety of substrates, Appl. Phys. Lett., 1991, 59: 417.
    [21] J. Singh, M. Vellaikal, Nucleation of diamond during hot filament chemical vapor deposition, J. Appl. Phys., 1993, 73: 2831.
    [22] K.V. Ravi, C. A. Koch, Nucleation enhancement of diamond synthesized by combustion flame techniques, Appl. Phys. Lett., 1992, 57: 348.
    [23] S. Yugo, T. Kanai, T. Kimura, T. Muto, Generation of Diamond Nuclei by Electric Field in Plasma Chemical Vapor Deposition, Appl. Phys. Lett., 1991, 58:1036.
    [24] X. Jiang, C.-P Klages, Heteroepitaxial diamond growth on (100) silicon, Diamond Relat. Mater., 1993, 2: 1112.
    [25] X. Jiang, C.-P. Klages, R. Zachai, M. Hartweg, H.-J. Fuèsser, Epitaxial Diamond Thin Films on (001) Silicon Substrates, Appl. Phys. Lett., 1993, 62: 3438.
    [26] B. R. Stoner, J. T. Glass, Textured diamond growth on (100)β‐SiC via microwave plasma chemical vapor deposition, Appl. Phys. Lett., 1992, 60: 698.
    [27] David Amans, Anne-Claire Chenus, Gilles Ledoux, Christophe Dujardin, Cécile Reynaud, Olivier Sublemontier, Karine Masenelli-Varlot, Olivier Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids, Diamond & Related Materials, 2009, 18: 177–180.
    [28] K. Hanada, K. Matsuzaki, T. Sano, Nanocrystalline diamond films fabricated by sol–gel technique, Surface Science , 2007, 601: 4502–4505.
    [29] N. Fujimori, A. Ikegaya, T. Imai, K. Fukushima, N. Ota, in: J. Dismukes, et al. (Eds.), Diamond and Diamond-like Films, Electrochem. Soc. Proc., Pennington, NJ, 1989, PV 89-12, 465.
    [30] Q. Chen, Z. Lin, Electron-emission-enhanced diamond nucleation on Si by hot filament chemical vapor deposition, Appl. Phys. Lett., 1996, 68: 2450.
    [31] Q. Chen, J. Yang, Z. Lin, Synthesis of oriented textured diamond films on siliconvia hot filament chemical vapor deposition, Appl. Phys. Lett., 1995, 67: 1853.
    [32] S.-Tong Lee, Z. Lin, X. Jiang,CVD diamond films: nucleation and growth,Materials Science and Engineering, 1999, 25: 123-154.
    [33] T. Shardaa, M. M. Rahamanb, Y. Nukayac, Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition, Diamond and Related Materials, 2001, 10: 561-567.
    [34] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, N. Suetin, Electron field emission for ultrananocrystalline diamond films, J. Appl. Phys., 2001, 89: 2958.
    [35] N. A. Fox, W. N. Wang, T. J. Davis, J. W. Steeds, and P. W. May, Field emission properties of diamond films of different qualities, Appl. Phys. Lett., 1997, 71: 2337-2339.
    [36] S. S. Proffitt, S. J. Probert, M. D. Whitfield, J. S. Foord, and R. B. Jackman, Growth of nanocrystalline diamond films for low field electron emission, Diam.Relat. Mater., 1998, 8: 768-771.
    [37] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, Buckyminister-fullerene, Nature, 1985, 318: 162.
    [38] S. Iijima, Helical microtubules of graphite carbon, Nature, 1991, 354: 56.
    [39] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 1976, 32: 335.
    [40] T. W. Ebbesen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, 1992, 358: 220.
    [41] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1 nm diameter, Nature, 1993, 363: 603.
    [42] D. S. Bethune, C. H. Kiang, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363: 605.
    [43] T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358: 220.
    [44] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 1996, 273: 483-7.
    [45] C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, Semi-continuoussynthesis of single-walled carbon nanotubes by a hydrogen arc discharge method, Carbon, 1999, 37: 1865.
    [46] C. Liu, Y. Y. Fan, M. Liu, H. T. Cond, H. M. Cheng, M. S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 1999, 286: 1127.
    [47] P. C. Collins, M. S. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292: 706.
    [48] M. Kociak, A.Yu. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Y. B. Gorbatov, Superconductivity in ropes of single-walled carbon nanotubes, Phys. Rev. Lett., 2001, 86: 2416.
    [49] M. Brandbyge; J. L. Mozos, P. Ordejin, J. Taylor, K. Storbor, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65: 165401.
    [50] K. Hernadi, A. Fonseca, J. B. Nagy, Catalytic Synthesis and Purification of Carbon Nanotubes. Synthetic Metals, 1996, 77: 31-34.
    [51] T. W. Ebbesen, P. M. Aiayan, Large-scale Synthesis of Carbon Nanotubes, Nature, 1992, 358: 220-222.
    [52] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, 1998.
    [53]孔浩,碳纳米管的原位ATRP可控功能化,[博士学位论文],上海交通大学,2004.
    [54] R. Saito, G. Dresselhaus, M. S. Dresselhaus, In“Physical properties of carbon nanotubes”, Imperial College Press, London, 1998, 35.
    [55] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, Unusual properties and structure of carbon nanotubes, Annu. Rev. Mater. Res., 2004, 34: 247.
    [56] M. Terrones, Science and thechnology of the twenty-first century: Synthesis, Properties, and Applications of Carbon Nanotubes, Annu. Rev. Mater. Res., 2003, 33: 419.
    [57] W. D. J. Callister, Materials Science and Engineering an Introduction, 6th ed., Wiley, New York, 2003.
    [58] R. S. Ruoff, D. Qian, W. K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, C. R. Phys., 2003, 4: 993.
    [59] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbonnanotubes, Imperial College Press, 1998.
    [60] M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon fibers based on C60 and their symmetry, Phys. Rev. B, 1992, 45: 6234.
    [61] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391: 62.
    [62] R. Satio, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Electronic structure of chiral graphene tubutes, Appl. Phys.Lett., 1992, 60: 2204-2209.
    [63] Y. H. Huang, M. Okada, K. Tanaka, T. Yamabe, Estimation of superconducting transition temperature in metallic carbon nanotubes, Phys. Rev. B, 1996, 53: 5129.
    [64] H. Dai, E. W. Wong, C. M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 1996, 272: 523.
    [65] Y. Murakami, T. Shibata, K. Okuyama, T. Arai, H. Suematsu, Y. Yoshida, Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation composites, J. Phys. Chem. Solids, 1993, 54: 1861.
    [66]张登松,代凯,方建慧,施利毅,李轩科,雷中兴,多壁碳纳米管的制备与表面修饰,化学研究,2004, 15: 12-15。
    [67] W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, S. S. Xie, Linear specific heat of carbon nanotubes, Phys. Rev. B, 1999, 59: 9015.
    [68] T. Utsumi, Vacuum microelectronics: what's new and exciting, IEEE Trans. Electron Devices, 1991, 38: 2276.
    [69] F. S. Baker, A. R. Osborn, J. Williams, Field Emission from Carbon Fibres: A New Electron Source, Nature, 1972, 239: 96-97.
    [70] C. Lea, Field emission from carbon fibres, J. Phys. D, 1973, 6: 1105.
    [71] W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. H. Baker, L. Forro, and D. Ugarte, Aligned carbon nanotubes films: production and optical and electrical properties, Science, 1995, 268: 845.
    [72] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. G. Dai, Self-oriented regular arrays of carbon nanotube and their field emission properties, Science, 1999, 283: 512.
    [73] H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwalled carbon nanotubes in a polymer matrix, Appl. Phys. Lett., 1998, 72: 188.
    [74] G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature, 1998, 393: 346.
    [75] A. C. Dillin, K. M. Jones, T. A. Bekkedalh, et al, Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 386: 377-283.
    [76] M. Rzepka, P. Lamp, MA De La Casa-Lillo, Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes, J. Phys. Chem. B, 1998, 102: 10894-10898
    [77] P. Chen, X. Wu, J. Lin, et al, High H2 uptake by alkali-daped carbon nanotube under ambient pressure and moderate temperature, Science, 1999, 285: 91-93.
    [78] C. Liu, Y. Y. Fan, M. Liu, et al, Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 1999, 286: 1127-1132.
    [79]林敬东,陈鸿博,荣云等,新世纪的催化科学与技术(第十届全国催化学术会议论文集),山西科学技术出版社,2000, 45: 311-313。
    [80]孙晓刚,曾效舒,程国安,碳纳米管的特性及应用, 2001, 7: 29-33。
    [81]朱宏伟,吴德海,徐才录,碳纳米管,机械工业出版社,2003。
    [82] T. W. Ebbesen, P. M. Ajayan, Large-Scale Synthesis of Carbon Nanotubes, Nature, 1992, 358: 220-222.
    [83] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic- Layerwalls, Nature, 1993, 363: 605-607.
    [84] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487.
    [85] S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Vantendeloo, J. Vanlanduyt, A Structure Model and Growth-Mechanism for Multishell Carbon Nanotubes, Science, 1995, 267: 1334-1338.
    [86] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes, Science, 1994, 265: 635-639.
    [87] J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett., 1999, 75: 367.
    [88] H. J. Kim, I. T. Han, P. Y. Jun, J. M. Kim, J. B. Park, B. K. Kim, N. S. Lee, Synthesis of hybrid multiwall carbon nanotubes and their enhanced field emission properties, Chem. Phys. Lett., 2004, 396: 6.
    [89] X. Xiao, J. W. Elam, S. Trasobares, Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes, Advanced Materials, 2005, 10: 1496-1500.
    [90] X. Xiao, J. W. Elam, S. Trasobares, O. Auciello, J. A. Carlisle, Adv. Mater, 2005, 17, 1496.
    [91] W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, Ji-B. Yoo, and J. Kim, Field-Emission Characteristics from wide-bandgap material-coated carbon nanotubes, Adv. Mater., 2002, 14: 1464-1468.
    [92] F. Jin, Y. Liu, C. M. Day, S. Little, Enhanced electron emission from functionalized carbon nanotubes with a barium strontium oxide coating produced by magnetron sputtering, Carbon, 2007, 45: 587–593.
    [93] Y. M. Ho, G. M. Yang, W. T. Zheng, X. Wang, H. W. Tian, Q. Xu, H. B. Li, J. W. Liu, J. L. Qi and Q. Jiang, Synthesis and field electron emission properties of hybrid carbon nanotubes and nanoparticles, Nanotechnology, 2008, 19: 065710.
    [94] R. W. Wood, A new form of cathode discharge and the production of X-ray, together with some notes of diffraction, Phys. Rev., 1897, 5: 1-10.
    [95] R. H. Fowler, L. W. Nordheim, Electron emission in intense electric fields, Proc. Roy. Soc. A, 1928, 119: 173-181.
    [96] J. E. Henderson, R. K. Dahlstorm, The energy distribution in field emission, Phys. Rev., 1939, 55: 473-481.
    [97]成会明,纳米碳管:制备、结构、物性及应用,化学工业出版社,2002年。
    [98]沈曾发,新型碳材料,北京:化学工业出版社,2003。
    [99] M. Inagaki, Carbon materials structure, texture and intercalation, Solid State Ionics, 1996, 86-88(2): 833-839.
    [100] P. Serp, R. Feure, P. Kalek, A chemical vapour deposition proeess for the production of carbon nanospheres, Carbon, 2001, 39: 622-626.
    [101] Z. C. Kang, Z. L. Wang, Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbonspheres, Philos Mag B, 1996, 73: 905-29.
    [102] Z. L. Wang, Z. C. Kang, Pairing of Pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonizationprocess, J. Phys Chem, 1996, 100: 17725-31.
    [103] M. Sharon, K. Mukhopadhyay, K. Yae, Spongy carbon nanobeads-a new material. Carbon, 1998, 36: 507-511.
    [104] C. N. He, C. S. Shi, X. W. Du, TEM investigation on the initial stage growth of carbon onions synthesized by CVD, Journal of Alloys and Compounds, 2007, 446: 145-149.
    [105] H. S. Qian, F. M. Han, B. Zhang, Non-catalytie CVD preparation of carbon Spheres with a specific size, Carbon, 2004, 42: 761-766.
    [106] A. Borghesi, E. Bussoletti, L. Colangeli, The absorption efficiency of Submicron amorphous carbon particles between 2.5and 40nm. Infrared Phyises, 1983, 23(2): 859-92.
    [107] Y. Saito, T. Yoshikawa, M. Okuda, Carbon nanocapsules encaging metals and carbides, Journal of Physics and Chemistry of solids, 1993, 54: 1849-1860.
    [108] Q. Wang, F. Y. Cao, Q. W. Chen, Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Material letters, 2005, 59: 3738-3741.
    [109] S. B. Yoon, K. Sohn,J. Y. Kim, Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures Advaced Materials, 2002, 14:19-21.
    [110] Q. Wang, H. Li, L. Chen, Novel spherical microporous carbon as anode Material for Li-ion batteries, Solid State Ionics, 2002, 152: 43-50.
    [111] H. S. Qian, F. M. Han, B. Zhang, Non-catalytie CVD preparation of carbon Spheres with a specific size, Carbon, 2004, 42: 761-766.
    [112] Y. Y. Song, Y. Li, X. H. Xia, One-step pyrolysis process to synthesize dispersed Ptcarbon hollow nanospheres catalysts for electrocatalysis, Electrochemistry Communications, 2007, 9: 201-205.
    [113] C. L. Yi, P. Q. Xin, Q. H. Yu, Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts, Carbon, 40: 2375-2380.
    [114] X. L. Li, T. J. Lou, X. M. Sun, Highly sensitive WO3 hollowsphere gas sensors. Inorg Chem, 2004, 43: 5442-5449.
    [1] M. Meyyappan, L. Delzeit, A. Cassell, D. Hash. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 2003, 12: 205.
    [2]郑伟涛,薄膜材料与薄膜技术[M],化学工业出版社, 2004.
    [3] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. K. Han, W. B. Choi, et al. Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synthetic Metals, 2000, 108: 159.
    [4] Y. Yabe, Y. Ohtake, T. Ishitobi. Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diam. Relat. Mater. 2004, 13: 1292.
    [5] D. B. Hash,M. S. Bell,K. B. K. Teo, B. A. Cruden, W. I. Milne, M. Meyyappan. An investigation of plasma chemistry for dc plasma enhanced chemical vapor deposition of carbon nanotubes and nanofibres. Nanotechnology, 2005, 16: 925.
    [6] S. Iijima. Helical microtubules of graphite carbon. Nature, 1991, 354: 56.
    [7]成会明,碳纳米管-制备、结构、物性及应用,化学工业出版社,2002.
    [8]钟文定,铁磁学(中册),科学出版社,2000.
    [1] X. Xiao, J. W. Elam, S. Trasobares, O. Auciello, J. A. Carlisle, Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes, Adv. Mater, 2005, 17: 1496.
    [2] S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, K. H. Lee, S. H. Hong, Field-Emission Behavior of a Carbon-Nanotube-Implanted Co Nanocomposite Fabricated from Pearl-Necklace-Structured Carbon Nanotube/Co Powders, Adv. Mater, 2006, 18: 553-8.
    [3] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, et al., Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond, Adv. Mater, 2005, 17: 1039-45.
    [4] S. S. Proffitt, S. J. Probert, M. D. Whitfield, J. S. Foord, R. B. Jackman, Field emission from thin film diamond grown using a magnetically enhanced radio frequency plasma source, J. Vac. Sci. Technol.B, 1999, 17: 719-22.
    [5] O. Ternyak, R. Akhvlediani, A. Hoffman, W. K. Wong, S. T. Lee, Y. Lifshitz, et al., Field electron emission from undoped, continuous, submicron-thick diamond films, J. Appl. Phys, 2005, 98: 123522-1-7.
    [6] O. D. Velev, Self-Assembly of Unusual Nanoparticle Crystals, Science, 2006, 312: 376-7.
    [7] A. M .Kakin, F. Marcin, Paszewski Maciej, S. K. Smoukov, Kyle J. M. Bishop, Bartosz A. Grzybowski, et al., Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice, Science, 2006, 312: 420.
    [8] S.-Tong Lee, Z. D. Lin, X. Jiang, CVD diamond films: nucleation and growth, Science and Engineering, 1999, 25: 123.
    [9] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56.
    [10] R. H. Baughman, A. A. Zakhidov, W. A. De Heer, Carbon Nanotubes--the Route Toward Applications, Science, 2002, 297: 787-92.
    [11] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, 1998, 282: 1105.
    [12] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperaturesynthesis of high-purity single-walled carbon nanotubes from alcohol, C. Phys. L 2002, 360: 229-34.
    [13] M. Taniguchi, H. Nagao, M. Hiramatsu, Y.Ando, M. Hori, Preparation of dense carbon nanotube film using microwave plasma-enhanced chemical vapor deposition, Diamond & Relat. Mater, 2005, 14: 855-58.
    [14] J. W. Liu, X. Wang, W. T. Zheng, J. X. Li, Q. F. Guan, Y. D. Su, J. L. Qi, Q. Jiang, Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition, Carbon, 2007, 45: 668.
    [15] K. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, X. Jiang, Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films, J. Appl. Phys, 2000, 88: 2967.
    [16] J. B. Cui, M. Stammler, J. Ristein, L. Ley, The role of hydrogen for field emission from chemical vapour deposited diamond and nanocrystaline diamond powde, J. Appl. Phys, 2000, 88: 3667.
    [17] S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, et al., A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films, Science, 2000, 287: 104.
    [18] L. Sun, J. Gong, D. Zhu, Z. Zhu, S. He, Diamond Nanorods from Carbon Nanotubes, Adv. Mater, 2004, 16: 1849.
    [19] G. Q. Ning, Y. Liu, F. Wei, Q. Wen, G. H. Luo, Porous and lamella-like Fe/MgO catalysts prepared under hydrothermal conditions for high-yield synthesis of double-walled carbon nanotubes, J. Phys. Chem. C, 2007, 111: 1969-75.
    [20] X. Lu, Q. Yang, W. Chen, C. Xiao, A. Hirose, Field electron emission characteristics of diamond films with different grain morphologies, J. Vac. Sci. Technol. B, 2006, 24: 2575-80.
    [21] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, et al., Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett., 2000, 76: 2071-3.
    [22]成会明,碳纳米管-制备、结构、物性及应用,化学工业出版社,2002。
    [1] S. Iijima, Helical microtubules of graphite carbon, Nature, 1991, 354: 56.
    [2] J. M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters Carbon, 2002, 40: 1715.
    [3] K. Kim, S. H. Lee, W. Yi, J. Kim, J. W. Choi, Y. Park, J. I. Jin, Efficient Field Emission from Highly Aligned, Graphitic Nanotubes Embedded with Gold Nanoparticles, Adv. Mater, 2003, 15: 1618.
    [4] H. J. Kim, I. T. Han, P. Y. Jun, J. M. Kim, J. B. Park, B. K. Kim, N. S. Lee, Synthesis of hybrid multiwall carbon nanotubes and their enhanced field emission properties, Chem. Phys. Lett., 2004, 396: 6.
    [5] C. Liu, K. S. Kim, J. Baek, Y. Cho, S. Han, S. Kim, N. Min, Y. Choi, J. Kim, C. Lee, Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles, Carbon , 2009, 47: 1158.
    [6] L. P. Biro, Z. E. Horvath, G. I. Mark, Z. Osvath, A. A. Koos, A. M. Benito, W. Maser, P. Lambin, Carbon nanotube Y junctions: growth and properties, Diam. Relat. Mater., 2004, 13: 241.
    [7] D. Zhou, S. Seraphin, Complex branching phenomena in the growth of carbon Nanotubes, Chem. Phys. Lett., 1995, 238: 286.
    [8] H. Yu, Z. Li, G. Luo, F. Wei, Growth of branch carbon nanotubes on carbon nanotubes as support, Diam. Relat. Mater., 2006, 15: 1447.
    [9] Y. Abdi, S. Mohajerzadeh, J. Koohshorkhi, M. D. Robertson, C. M. Andrei, A PECVD process to achieve branched carbon nanotubes, Carbon, 2008, 46: 1611.
    [10] X. Sun, R. Li, B. Stansfield, J. P. Dodelet, S. Desilets, 3D carbon nanotube network based on a hierarchical structure grown on carbon paper backing, Chem. Phys. Lett., 2004, 394: 266.
    [11] S. Trasobares, C. P. Ewels, J. Birrell, O. Stephan, B. Q. Wei, J. A. Carlisle, D. Miller, P. Keblinski, P. M. Ajayan, Carbon Nanotubes with Graphitic Wings, Adv. Mater., 2004, 16: 610.
    [12] A. Malesevic, S. Vizireanu, R. Kemps, A. Vanhulsel, C. V. Haesendonck, G. Dinescu, Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition, Carbon, 2007, 45: 2932.
    [13] U. Jeong, X. Tneg, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: controlled synthesis and niche applications, Adv Mater, 2007, 19: 33.
    [14] N. Junichi, O. Chie, O. Osamu, N. Nobuyuki, Synthesis, structures and magnetic properties of carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide, Carbon , 2006, 44: 2943.
    [15] G. X. Zhu, X. W. Wei, C. J. Xia, Y. Ye, Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells, Carbon, 2007, 45: 1160.
    [16] R. Seshadri, R. Sen, G. N. Subbanna, K. R. Kannan, C. N. R. Rao, Iron, cobalt and nickel nanoparticles encapsulated in carbon obtained by the arc-evaporation of graphite with the metals, Chem. Phys. Lett., 1994, 231: 308.
    [17] X. C. Sun, X. L. Dong, Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer, Mater. Res. Bull., 2002, 37: 991.
    [18] Y. W. Ma, Z. Hu, L. S. Yu, Y. M. Hu, B. Yue et al., Chemical Functionalization of Magnetic Carbon-Encapsulated Nanoparticles Based on Acid Oxidation, J Phys Chem B, 2006, 110: 20118.
    [19] Q. F. Liu, W. C. Ren, Z. G. Chen, B. l. Liu, B. Yu, F. Li, H. T. Cong, H. M. Cheng, Direct synthesis of carbon nanotubes decorated with size controllable Fe nanoparticles encapsulated by graphitic layers, Carbon, 2008, 46: 1417.
    [20] S. W. Liu, J. J. Zhu, Y. Mastai, I. Felner, A. Gedanken, Preparation and characteristics of carbon nanotubes filled with cobalt, Chem. Mater., 2000, 12: 2205.
    [21] X. K. Li, Z. X. Lei, R. C. Ren, J. Liu, X. H. Zuo, Z. J. Dong, H. Z. Wang, J. B. Wang, Characterization of carbon nanohorn encapsulated Fe particles, Carbon, 2003, 41: 3068.
    [22] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274: 1701.
    [23] M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon Nanotube Growth by PECVD: A Review, Plasma Sources Sci. Technol., 2003, 12: 205.
    [24] J. W. Liu, X. Wang, W. T. Zheng, J. X. Li, Q. F. Guan, Y. D. Su, J. L. Qi, Q. Jiang, Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition, Carbon, 2007, 45: 668.
    [25] E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, T. W. Chou, Carbon nanotube?carbon fiber hybrid multiscale composites, J. Appl. Phys., 2002, 91: 6034.
    [26] Q. T. Li, Z. C. Ni, J. L. Gong, D. Z. Zhu, Z. Y. Zhu, Carbon nanotubes coated by carbon nanoparticles of turbostratic stacked graphenes, Carbon, 2008, 46: 434.
    [27] W. Z. Li, H. Zhang, C. Y. Wang, Y. Zhang, L. W. Xu, K. Zhu, S. S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 1997, 70: 2684.
    [28] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chem. Int. Ed., 2002, 41: 1853.
    [29] M. H. Rummeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbac et al., Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes, Nano Lett, 2005, 5: 1209.
    [30] S. Trasobares, C. P. Ewels, J. Birrell, O. Stephan, B. Q. Wei, J. A. Carlisle, D. Miller, P. Keblinski, P. M. Ajayan, Carbon Nanotubes with Graphitic Wings, Adv. Mater., 2004, 16: 670.
    [31] J. Jiao, S. Seraphin, Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by threedifferent methods, J. Phys. Chem. Solids, 2000, 61: 1055.
    [32] C. N. He, N. Q. Zhao, C. S. Shi, X. W. Du, J. J. Li, Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts, Materials Chemistry and Physics, 2006, 97: 109.
    [33] J. L. Kang, J. J. Li, X. W. Du, C. S. Shi, N. Q. Zhao, P. L. Nash, Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper, Materials Science and Engineering A, 2008, 475: 136.
    [34] N. Sano, H. Akazawa, T. Kikuchi, T. Kanki, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyolysis of ferrocene in pure hydrogen, Carbon, 2003, 41: 2159.
    [35] B. H. Liu, J. Ding, Z. Y. Zhong, Z. L. Dong, T. White, J. Y. Lin, Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method, Chem. Phys. Lett., 2002, 358: 96.
    [36] A. G. Nasibulin, A. Moisala, D. P. Brown, E. I. Kauppinen, Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors, Carbon, 2003, 41: 2711.
    [37] SI. Nikitenko, Y. Koltypin, O. Palchik, I. Felner, X. N. Xu, A. Gedanken, Synthesis of Highly Magnetic, Air-Stable Iron-Iron Carbide Nanocrystalline Particles by Using Power Ultrasound, Angew Chem-Int Edit, 2001, 40: 44447.
    [38] K. Lafdi, A. Chin, N. Ali, J. F. Despres, Cobalt-doped carbon annotubes-preparation, texture,and magnetic propertie, J. Appl. Phys., 1996, 79: 6007.
    [39] A. V. Krasheninnikov, K. Nordlund, M. SirviO, E. Salonen, J. Keinonen, Formation of ion irradiation-induced atomic-scale defects on walls of carbon nanotubes, Phys. Rev. B, 2001, 63: 245405.
    [40] J. A. V. Pomoell, A. V. Krasheninnikov, K. Nordlund, J. Keinonen, Ion ranges and irradiation-induced defects in multi-walled carbon nanotubes, J. Appl. Phys., 2004, 96: 2864.
    [41] G. Zhou, W. Duan, B. Gu, Appl. Phys. Lett., Dimensional effects on field emission properties of the body for single-walled carbon nanotube, 2001, 79: 836.
    [42] H. Y. Jung, S. M. Jung, L. Kim, J. S. Suh, Horizontally aligned single-walled carbon nanotube field emitters fabricated on vertically aligned multi-walled carbon nanotube electrode arrays, Carbon, 2008, 46: 969.
    [43] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett., 2000, 76: 2071.
    [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318: 162-163.
    [2] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56.
    [3] D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, 1999, 359: 707-9.
    [4] Z. C. Kang, Z. L. Wang, On accretion of nanosize carbon spheres, J. Phys. Chem, 1996, 100: 5163.
    [5] K. Niwase, T. Homae, K. G. Nakamura, K. Kondo, Generation of giant carbon hollow spheres from C-60 fullerene by shock-compression, Chem. Phys. Lett., 2002,362: 47-50.
    [6] J. W. Liu, M. W. Shao, Q. Tang, X. Y. Chen, Z. P. Liu, Y. T. Qian, Carbon, 2002,411: 1645.
    [7] Z. G. Fang, C. S. Li, J. Y. Sun, H. T. Zhang, J. S. Zhang, The electromagnetic characteristics of carbon foams, Carbon, 2007, 45: 2873.
    [8] A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, T. W. Ebbesen, Graphitic Cones and the Nucleation of Curved carbon Surfaces, Nature, 1997, 388: 451-4.
    [9] P. M. Ajayan, J. M. Nugent, R. W. Siegel, B. Wei, Ph. Kohler-Redlich, Growth of carbon micro-trees, Nature, 2000, 404: 243.
    [10] K. T. Lee, Y. S. Jung, S. M. Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, Jam Chem Soc, 2003, 125: 5652-3.
    [11] H. Tamai, T. Sumi, H. Yasuda, Preparation and characteristics of fine hollow carbon particles, J Colloid Interf Sci, 1996, 177: 325-8.
    [12] Z. Y. Zhong, Y. D. Yin, B. Gates, Y. N. Xia, Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads, Adv Mater, 2000, 12: 206. [ 13 ] E. Baumeister, S. Klaeger, Advanced New Lightweight Materials: Hollow-Sphere Composites (HSCs) for Mechanical Engineering Applications, Adv Eng Mater, 2003, 5: 673-7.
    [14] L. Q. Xu, W. Q. Zhang, Q. Yang, Y. W. Ding, W. C. Yu, Y. T. Qian, A novel route to hollow and solid carbon spheres, Carbon, 2005, 43: 1090-2.
    [15] Z. L. Wang, Z. C. Kang, Pairing of Pentagonal and Heptagonal Carbon Rings in the Growth of Nanosize Carbon Spheres Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process, J. Phys. Chem., 1996, 100: 17725-17731.
    [16] Z. L. Wang, J. S. Yin, Graphitic hollow carbon calabashes, Chem Phys Lett., 1998, 289: 189-92.
    [17] Y. D. Xia, R. Mokaya, Ordered Mesoporous Carbon Hollow Spheres Nanocast Using Mesoporous Silica via Chemical Vapor Deposition, Adv Mater., 2004, 16: 886-91.
    [18] B. Y. Liu, D. C. Jia, Q. C. Meng, J. C. Rao, A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere, Carbon, 2007, 45: 668-70.
    [19] T. K. Zhao, Y. N. Liu, J. W. Zhu, Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge, Carbon, 2005, 43: 2907-12.
    [20] Z. C. Kang, Z. L. Wang, Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres, Philos. Mag. B, 1996, 73: 905.
    [21] Z. L. Wang, Z. C. Kang, Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nanosized carbon spheres, Philos. Mag. B, 1996, 74: 51.
    [22] Z. L. Wang, Z. C. Kang, Graphitic structure and surface chemical activity of nanosize carbon spheres, Carbon, 1996, 35: 419.
    [23] H. W. Kroto, K. McKay, The Formation of Quasi-icosahedral Spiral Shell Carbon Particles, Nature, 1988, 331: 328-321.
    [24] L. D. Lamb, D. R. Huffman, R. K. Workman, S. Howells, T. Chen, D. Sarid, D. Ziolo, R. F. Ziolo,Extraction and STM Imaging of Spherical Giant Fullerenes,Science, 1992, 255: 1413-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700