流域梯级电站群多目标联合优化调度与多属性风险决策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域梯级水库群的联合优化调度受气象循环、水文过程、发电控制、电网潮流、用水需求为等多种因素制约,是一类高维度、多目标、强耦合的复杂非线性约束优化问题,一直是水电能源科学与复杂性科学交叉发展的前沿研究领域之一。随着我国水电能源的持续大规模开发,流域梯级水电能源系统规模与拓扑结构日趋复杂,大型水利枢纽综合利用要求也晶益提高,从而给梯级水电站群的联合优化调度带来巨大挑战。流域梯级电站间复杂的水力、电力耦合联系以及不同调度目标间的竞争与冲突关系,使得传统优化调度理论与方法已无法满足大规模梯级水电能源系统整体优化与水能资源高效利用的需求,亟需研究并发展新的优化理论与方法。本文围绕水电能源大规模开发背景下梯级水电站群的联合优化调度决策问题,以梯级水电能源安全和高效利用为目标,结合系统工程理论、现代智能优化理论和多目标决策理论,研究了梯级水电站群联合优化调度决策的先进理论与方法,解决了制约优化理论在复杂水电能源多目标优化调度实际工程应用中的关键技术瓶颈,取得了一些有理论意义和工程实用价值的研究成果。本文的主要研究内容和创新包括:
     (1)针对流域梯级电站群联合优化调度决策变量多且相互耦合的特点,提出了适应于多变量耦合优化问题的文化差分进化算法。该算法从群体空间和知识空间的构造出发,以差分进化算法为群体空间优化驱动机制,并在知识空间中定义3种知识结构,以指导种群的进化过程,避免了算法早熟收敛,提高了算法全局搜索能力;文化差分进化算法应用于梯级水电能源系统的实例研究结果表明,该算法能有效处理复杂约束条件且计算速度快,为梯级水电站群联合优化调度实际工程问题的求解提供了一种有效的新方法。
     (2)为有效求解多目标优化问题,结合多目标优化理论与方法对文化差分进化进行改进、拓展和完善,首先提出了一种多目标文化差分进化算法。将优化方案的形势知识结构视为外部档案集,提出一种“μ+1”循环选择方式对形势知识结构进行更新和维护,提高了非劣解在非劣前沿的分布均匀性;进而运用Pareto支配原理对差分进化算法选择操作进行修正,使其能够处理多目标优化问题;数值仿真计算结果及其与多种流行多目标优化算法的对比分析表明,多目标文化差分进化算法能有效处理非凸、非连续、多模态的多目标约束优化问题,且非劣解集均匀分布于真实非劣前沿,是一种性能优异的多目标优化方法。
     (3)通过分析梯级电站群各调度目标间的竞争与冲突关系,研究并建立了均衡考虑上下游及大坝防洪安全的水库多目标防洪优化调度模型以及兼顾梯级电站发电效益和容量效益的多目标发电调度模型,并运用提出的MOCDE算法对模型进行求解,获得一组满足实际工程需求的非劣调度方案集,解决了梯级电站群多目标优化调度方案快速生成的难题,为三峡梯级防洪、发电调度决策提供了数据支撑;此外,研究了水火电混联系统的短期多目标优化调度问题,提出了系统负荷平衡约束处理的动态调整策略,仿真研究结果验证了MOCDE的合理性和高效性。
     (4)研究并发展了梯级水电能源系统风险分析和多属性风险决策的理论与方法。将预报入库径流拟合为服从正态分布的白噪声随机变量,运用蒙特卡洛模拟方法研究了径流不确定条件下梯级电站群的防洪、发电风险分析问题,并将最高水位、最大下泄流量、末水位、年发电量、最小出力等调度目标值描述为有限区间内服从正态分布的随机变量,建立了含有随机变量的风险型多属性调度决策模型;提出了基于相对优势可能度和综合赋权的多属性风险决策方法,突破了传统确定性决策方法难以有效处理随机决策变量的瓶颈;该方法运用主客观综合赋权的方法确定属性权重,并改进了随机变量相对优势度的计算方法;最后通过三峡梯级的实例研究,验证了风险分析模型和多属性风险决策方法的有效性。
With the constraints of hydrological cycle, generation control, network power flow and water supply, the optimal operation of cascade hydroelectric stations is a high-dimension, multi-objective, strong-coupling, nonlinear optimal problem, and it is also a hot interdisciplinary research field of hydroelectric science and complexity science. Nowadays, with the continued fast exploitation of river basin hydroelectric energy, the scope and topology of cascade hydroelectric stations increases day by day, which bring great challenges to the joint operation of cascade hydroelectric stations. The traditional optimization theories and methods can not satisfy the demands of joint optimal operation of large-scale hydroelectric energy systems and high efficient utilization of river basin water resources. Therefore, it is quite necessary to study interrelated new optimal theories and decision-making methods. In this thesis, concering on the joint optimal operation problems of cascade hydroelectric stations, we deeply study the joint optimal operation theories and decision-making methods, by adopting the system engineering theory, modern optimization methods based on swarm intelligence, and multi-objective decision-making theory. Some conclusions with theoretical and practical value are obtained. The main conclusions of research and innovation are as follows:
     (1) Considering that the joint optimal operation problems of cascade hydroelectric stations have a large number of variables and these variables are usually coupled, we present a cultural differential evolution (CDE), which is suited for the optimal problems with multiple coupled variables. CDE consistes of two parts:population space and belief space. In population space, differential evolution (DE) is adopted as the searching engine of the population, and in the belief space, three knowledge structures are defined to guide the evolution process of the population, which can avoid premature convengence and improve the algorithm's global searching ability. CDE is tested by several benchmark functions and applied to the optimal operation problems of a hydropower system with 10 stations and the Three Gorges-Gezhouba cascade stations. The obtained results show that CDE can handle the complex constraints efficiently and has fast convergence rate and high convergence precision, thus it is an efficient method for joint optimal operation of cascade hydroelectric stations.
     (2) According to the characteristics of multi-objective optimization (MOO), we extend CDE to solve multi-objective problems (MOPs) and present a multi-objective algorithm named multi-objective cultural differential evolution (MOCDE). In MOCDE, the situational knowledge is used as archive set and an update strategy based on iterative "μ+1" selection is presented to improve the diversity of the solutions in archive set. Meanwhile, the select operator of DE is modified to suit for MOPs, according to the Pareto dominace principle. MOCDE is tested by a series of widely used multi-objective benchmark functions and it is compared with several popular multi-objective optimal algorithms, the results show that MOCDE can effectively deal with complex MOPs with the characteristics of non-convex, discontinuous and multi-modal, and it is an efficient solver for MOPs
     (3) Besed on analyses of the competition and conflict relation among different objectives, a multi-objective flood control operation model and a multi-objective annual power generation model are established, the former considers the flood control demands of upstream and downstream areas, and the latter considers the cascade stations' generation benefit and capacity benefit. Then we use MOCDE to solve these two multi-objective models, the results show that MOCDE can get a set of non-dominated operation schemes in a single run and provice alternatives for decision makers. Furthermore, MOCDE is used to solve multi-objective short-term optimal operation of a hydrothermal power system. A dynamic adjustment strategy is presented to handle power load balance equivalence constraints. The results validate the rationality and availability of MOCDE.
     (4) Risk analysis and multi-attribute risk decision making theory and methods of cascade reservoir systems are deeply researched. Considering the uncertainty, the natural inflow is described as a stochastic forecast-dependent white noise process, and then we analyse the flood control and power generation risk of cascade stations. The operation objectives, such as the maximum water level, the maximum discharge, the final water level, the annual power production, the minimum power output, and so on, are described as normal distribution stochastic variables. To solve the decision making problems with random variables, a risk decision making method based on superiority possibility and comprehensive weights assignment strategy is presented. This method calculates attribute objective weights according to the deviation of decision variables, and then integrates attribute objective weights and subjective weights to get comprehensive weights. After that, a relative dominance matrix is constructed by comparing each two schemes, and finally we can sort the schemes and pick out the best scheme. Case studies of the Three Gorges Cascade Stations show the validity of the proposed risk analysis and decision making methods.
引文
[1]水电水利规划设计总院.我国水力资源复查成果(2003年)[R].北京:中国电力出版社,2004.
    [2]电力工业“十二五”规划研究报告[R].中国电力企业联合会,2011.
    [3]周建中,张勇传等.复杂能源系统水电竞价理论与方法[M].北京:科学出版社,2010.
    [4]张勇传.系统辨识及其在水电能源中的应用[M].湖北科学出版社,2007.
    [5]张勇传.水电站经济运行原理[M].北京:中国水利水电出版社,1998.
    [6]罗斌,钱凯霞,李安强.乌江梯级水库联合优化调度方案研究[J].人民长江,2010,41(22):8-11.
    [7]张铭,丁毅,袁晓辉,李承军.梯级水电站水库群联合发电优化调度[J].华中科技大学学报(自然科学版),2006,34(6):90-92.
    [8]张铭,李承军,袁晓辉,钟琦.大规模混联水电系统长期发电优化调度模型及求解[J].武汉大学学报(工学版),2007,40(3):45-49.
    [9]郭生练,陈炯宏,刘攀,李雨.水库群联合优化调度研究进展与展望[J].水科学进展,2010,21(4):496-503.
    [10]Yeh W. W. G. Reservoir management and operation models:a state-of-the-art review [J]. Water Resour. Res.,1985,21(2),1797-1818.
    [11]Little JDC. The use of storage water in a hydroelectric system [J]. Journal of the Operations Research Society of America,1955,3(2):187-197.
    [12]Goulter, I. C., Tai, F. K. Practical implications in the use of stochastic dynamic programming for reservoir operations [J]. Water Resour. Bull.,1985,21(1),65-74.
    [13]Huang, W. C., Harboe, R, Bogardi, J. J. Testing stochastic dynamic programming models conditioned on observed or forecasted inflows [J]. J. Water Resour. Ping. Mgmt., ASCE,1991,117(1),28-36.
    [14]Wen-Cheng Huang, Chian Min Wu. Diagnostic Checking in Stochastic Dynamic Programming [J]. J. Water Resour. Ping. Mgmt., ASCE,1993,119(3):490-494.
    [15]纪昌明,冯尚友.可逆性随机动态规划模型及其在库群优化运行中的应用[J].武汉水利电力大学学报,1993,26(3):300-306.
    [16]谭维炎,刘健民,黄守信,方淑秀.应用随机动态规划进行水电站水库的最优调度[J].水利学报,1982,(7):1-7.
    [17]王金文,袁晓辉,张勇传.随机动态规划在三峡梯级长期发电优化调度中的应用[J].电力自动化设备,2002,22(8):54-56.
    [18]Tilmant A., Faouzi E.H., Vanclooster M. Optimal operation of multipurpose reservoirs using flexible stochastic dynamic programming [J]. Applied Soft Computing,2002,2(1):61-74.
    [19]周惠成,王峰,唐国磊,王雅军,蹇德平.二滩水电站水库径流描述与优化调度模型研究[J].水力发电学报,2009,28(1):18-24.
    [20]王金文,王仁权,张勇传,张世钦,张建平.逐次逼近随机动态规划及库群优化调度[J].人民长江,2002,33(11):45-48.
    [21]Young G. K. Finding reservoir operating rules [J]. Journal of Hydraulics Division, 1967,93(6):297-321.
    [22]Unny T. E. A Model for Real-Time Operation of A Large Multi-Reservoir Hydroelectric System[C], Proceedings of International Symposium on Real-Time Operation of Hydrosystems, Waterloo, Canada,1981.
    [23]张勇传,刘鑫卿,王麦力,曹征,李仲南.水库群优化调度函数[J].水电能源科学,1988,6(1):69-79.
    [24]张勇传.水库群优化调度理论研究SEPOA方法,水电能源科学,1987,5(3):234-244.
    [25]陈洋波,陈惠源.水电站库群隐随机优化调度函数初探[J].水电能源科学,1990,8(3):216-223.
    [26]田峰巍,解建仓.梯级水电站群隐随机优化调度函数的统计分析[J].水力发电学报,1992,(2):52-58.
    [27]卢华友,郭元裕.利用多层递阶回归分析制定水库优化调度函数的研究[J].水利学报,1998,(12):71-76.
    [28]周晓阳,马寅午,张勇传.梯级水库的参数辨识型优化调度方法(Ⅱ)—最优调度函数的确定[J].水利学报,1999,(9):10-19.
    [29]刘攀,郭生练,张文选,肖义,高仕春.梯级水库群联合优化调度函数研究[J].水科学进展,2007,18(6):816-822.
    [30]纪昌明,苏学灵,周婷,黄海涛,王丽萍.梯级水电站群调度函数的模型与评价[J].电力系统自动化,2010,34(3):33-37.
    [31]胡铁松,万永华,冯尚友.水库群优化调度函数的人工神经网络方法研究[J].水科学进展,1995,6(1):53-60.
    [32]畅建霞,黄强,王义民.基于改进BP网络的西安供水水库群优化调度函数的求解方法[J].西安理工大学学报,2001,17(2):169-173.
    [33]缪益平,纪昌明.运用改进神经网络算法建立水库调度函数[J].武汉大学学报(工学版),2003,36(1):42-45.
    [34]赵基花,付永锋,沈冰,张西乾.建立水库优化调度函数的人工神经网络方法研究[J].水电能源科学,2005,23(2):28-31.
    [35]刘攀,郭生练,庞博,王才君,张洪刚.三峡水库运行初期蓄水调度函数的神经网络模型研究及改进[J].水力发电学报,2006,25(2):83-89.
    [36]吴佰杰,李承军,查大伟.基于改进BP神经网络的水库调度函数研究[J].人民长江,2010,41(10):59-63.
    [37]王东泉,李承军,张铭.基于遗传算法的水库中长期调度函数研究[J].水力发 电,2006,32(10):92-94.
    [38]冯雁敏,李承军,张铭.基于改进粒子群算法的水库中长期调度函数研究[J].水力发电,2008,34(2):94-97.
    [39]都金康,李罕,王腊春,严苏宁.防洪水库群洪水优化调度的线性规划方法[J].南京大学学报,1995,31(2):301-309.
    [40]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报,1998,(1):10-22.
    [41]Needham J., Watkins D., Lund J., et al. Linear programming for flood control in the Iowa and Des Moines rivers [J]. Journal of Water Resources Planning and Management,2000,126(3):118-127.
    [42]Shim K. C., Fontane D., Labadie J. Spatial decision support system for integrated river basin flood control [J]. Journal of Water Resources Planning and Management,2002,128(3):190-121.
    [43]于翠松,王艳玲,安玉坤.仿射变换法的改进及其在水库群防洪联合调度中的应用研究[J].水文,2002,22(2):10-14.
    [44]张庆华,颜宏亮,宋学东,李鹏.多水库联合供水的优化调度方法[J].人民长江,2006,37(2):30-32.
    [45]Becker L., Yeh WW-G. Optimization of Real Time Operation of a Multiple-Reservoir System [J]. Water Resources Research,1974,10(6):1107-1112.
    [46]问德溥.线性-动态规划改进模型及其应用[J].水科学进展,1998,9(2):136-145.
    [47]Barros M., Tsai F., Yang S. L., et al. Optimization of large-scale hydropower system operations [J]. Journal of Water Resources Planning and Management,2003, 129(3):178-188.
    [48]Peng C. S., Buras N. Practical estimation of inflows into multi-reservoir system [J]. Journal of Water Resources Planning and Management,2000,126(5):331-334.
    [49]Lidgate, D., Amir, B. H. Optimal operational planning for a hydro-electric generation system [C]. IEE Proceedings C:Generation Transmission and Distribution.1988,135(3):169-181.
    [50]邹鹰,宋德敦.水库防洪优化设计模型[J].水科学进展,1994,5(3):167-173.
    [51]Wang, J., Yuan, X., Zhang, Y. Short-term scheduling of large-scale hydropower systems for energy maximization [J]. Journal of Water Resources Planning and Management.2004,130(3):198-205.
    [52]Mariano S. J. P. S., Catalao J. P. S., Mendes V. M. F., et al. Head-dependent maximum power generation in short-term hydro scheduling using nonlinear programming [C]. In:Proceedings of the IASTED International Conference on Energy and Power Systems,2007:247-252.
    [53]张勇传,邮凤山.凸动态规划与水电能源[J].水力发电学报,1983,(3):19-27.
    [54]姚华明,张勇传,钟琦,陈雪英,顾宁昌.双状态动态规划算法(BSDP)及其在水库群补偿调节中的应用[J].人民长江,1988,(10):.11-16.
    [55]许自达.动态规划在整体防洪优化调度中应用[J].水力发电学报,1988,(1):12-25.
    [56]董增川,许静仪.水电站库群优化调度的多次动态线性规划方法[J].河海大学学报,1990,18(6):63-69.
    [57]黄强.用模糊动态规划法进行水电站水库优化调度[J].水力发电学报,1993,(1):27-36.
    [58]梅亚东.梯级水库优化调度的有后效性动态规划模型及应用[J].水科学进展,2000,11(2):194-198.
    [59]徐慧,欣金彪,徐时进,黄刘生,陈华平,毛睿.淮河流域大型水库联合优化调度的动态规划模型解[J].水文,2000,20(1):22-25.
    [60]苏秋红,董增川.区间优化方法在水库调度中的应用[J].河海大学学报(自然科学版),2004,32(4):384-386.
    [61]马志鹏,陈守伦.水库预报调度的灰色动态规划模型[J].水力发电学报,2007,26(5):7-10.
    [62]任钟淳,P K Ho.用增量动态规划进行联合水资源系统分析[J].水利学报,1994,(9):32-41.
    [63]王双银,刘俊民.综合利用水库兴利调度的二次优化法[J].水力发电学报,2007,26(3):11-16.
    [64]纪昌明,冯尚友.混联式水电站群动能指标和长期调度最优化(运用离散微分动态规划法)[J].武汉水利电力学院学报,1984,(3):.87-95.
    [65]徐鼎甲,张玉山.混联水电站群实时联合优化调度[J].水力发电学报,2001,(3):68-74.
    [66]谢柳青,易淑珍.水库群防洪系统优化调度模型及应用[J].水利学报,2002,(6):38-43.
    [67]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报,2007,26(2):1-4.
    [68]Nanda J., Bijwe P. R. Optimal hydrothermal scheduling with cascaded plants using progressive optimality algorithm [J]. IEEE Transactions on Power Apparatus and Systems,1981,100(4):2093-2099.
    [69]Turgeon A. Optimal short-term hydro scheduling from the principle of progressive optimality [J]. Water Resources Research 1981; 17(03):481-6.
    [70]李义,李承军,周建中POA-DPSA混合算法在短期优化调度中的应用[J].水电能源科学,2004,22(1):37-39.
    [71]余听卉,李承军,刘广宇,张子平.峰谷电价下的梯级水电站短期优化调度分析[J].中国农村水利水电,2005,(3):90-93.
    [72]杨斌斌,孙万光.改进POA算法在流域防洪优化调度中的应用[J].水电能源科学,2010,28(12):36-39.
    [73]周佳,马光文,张志刚.基于改进POA算法的雅砻江梯级水电站群中长期优化调度研究[J].水力发电学报,2010,29(3):18-22.
    [74]刘新,纪昌明,杨子俊,喻杉.基于逐步优化算法的梯级水电站中长期优化调度[J].人民长江,2010,41(21):32-34.
    [75]Howson H. R., Sancho N. G. F. A new algorithm for the solution of multi-state dynamic programming problems [J]. Math. Programm.,1975,8(1):104-116.
    [76]方红远,王浩,程吉林.初始轨迹对逐步优化算法收敛性的影响[J].水利学报,2002,(11):27-31.
    [77]黄志中,周之豪.大系统分解-协调理论在库群实时防洪调度中的应用[J].系统工程理论方法应用,1995,4(3):53-59.
    [78]黄强,沈晋.水库联合调度的多目标多模型及分解协调算法[J].系统工程理论与实践,1997,(1):75-82.
    [79]万俊,陈惠源.水电站群优化调度分解协调-聚合分解模型研究[J].水力发电学报,1996,(2):41-50.
    [80]李爱玲.水电站水库群系统优化调度的大系统分解协调方法研究[J].水电能源科学,1997,15(4):58-63.
    [81]解建仓,田峰巍,黄强,沈晋.大系统分解协调算法在黄河干流水库联合调度中的应用[J].西安理工大学学报,1998,14(1):1-5.
    [82]杨侃,董增川,张静怡.长江防洪系统网络分析分解协调优化调度研究[J].河海大学学报,2000,28(3):77-81.
    [83]都金康,张健挺,王腊春,许有鹏.防洪减灾决策中的分解协调优化方法[J].南京大学学报(自然科学),2001,37(3):287-294.
    [84]李亮,黄强,肖燕,肖志娟DPSA和大系统分解协调在梯级水电站短期优化调度中的应用研究[J].西北农林科技大学学报(自然科学版),2005,33(10):125-129.
    [85]高仕春,万飚,梅亚东,张雪桂.三峡梯级和清江梯级水电站群联合调度研究[J].水利学报,2006,37(4):504-508.
    [86]姜铁兵,梁年生,康玲,黄定疆.用遗传算法确定水电站自动发电计划[J].水力发电学报,1995,(4):7-14.
    [87]马光文,王黎,Walters G. A水电站群优化的FP遗传算法[J].水力发电学报,1998,(4):21-28.
    [88]畅建霞,黄强,王义民.基于改进遗传算法的水电站水库优化调度[J].水力发电学报,2001,(3):85-90.
    [89]王少波,解建仓,孔珂.自适应遗传算法在水库优化调度中的应用[J].水利学报,2006,37(4):480-485.
    [90]万星,周建中.自适应对称调和遗传算法在水库中长期发电调度中的应用[J].水科学进展,2007,18(4):598-603.
    [91]陈立华,梅亚东,麻荣永.并行遗传算法在雅砻江梯级水库群优化调度中的应用[J].水力发电学报,2010,29(6):66-70.
    [92]Robin Wardlaw, Mohd Sharif. Evaluation of genetic algorithm for optimal reservoir system operatipon [J]. Journal of Water Resources Planning and Management, 1999,125(1):25-33.
    [93]Chen L., Chang F. J. Applying a real-coded multi-population genetic algorithm to multi-reservoir operation [J]. Hydrol. Process.2007,21,688-698.
    [94]Eberhart R. C., Kennedy, J. A new optimizer using particle swarm theory[C]. Proc., 6th Symp. On Micro Machine and Human Science, IEEE Service Center, Piscataway, N.J.,1995,39-43.
    [95]杨道辉,马光文,过夏明,涂扬举,陈建春.粒子群算法在水电站优化调度中的应用[J].水力发电学报,2006,25(5):5-8.
    [96]胡国强,贺仁睦.基于协调粒子群算法的水电站水库优化调度[J].华北电力大学学报,2006,33(5):15-18.
    [97]袁鹏,常江,朱兵,李彬.粒子群算法的惯性权重模型在水库防洪调度中的应用[J].四川大学学报(工程科学版),2006,38(5):54-57.
    [98]张双虎,黄强,吴洪寿,杨菊香.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007,26(1):1-5.
    [99]Nagesh Kumar D., Janga Reddy M. Multipurpose Reservoir Operation Using Particle Swarm Optimization [J]. Journal of Water Resources Planning and Management,2007,133(3):192-201.
    [100]Dorigo M., Maniezzo V., Colorni A. Ant system:optimization by a colony of cooperating agents [J]. IEEE Trans on SMC,1996,26(1):28-41.
    [101]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400.
    [102]徐刚,马光文.基于蚁群算法的梯级水电站群优化调度[J].水力发电学报,2005,24(5):7-10.
    [103]徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题[J].水利学报,2005,36(8):978-982.
    [104]刘卫林,董增川,王德智.混合智能算法及其在供水水库群优化调度中的应用[J].水利学报,2007,38(12):1437-1443.
    [105]Jalali M. R., Afshar A., Marino M. A. Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem [J]. Water Resour Manage,2007, 21:1429-1447.
    [106]张智晟,樊秀娟,林涛.基于量子蚁群优化算法的梯级水电系统经济调度[J].电力自动化设备,2010,30(10):17-21.
    [107]邱林,田景环,段春青,陈晓楠,黄强.混沌优化算法在水库优化调度中的应用[J].中国农村水利水电,2005,(7):17-19.
    [108]王文川,程春田,徐冬梅.基于混沌遗传算法的水电站优化调度模型及应用[J].水力发电学报,2007,26(6):7-11.
    [109]Yuan X., Zhang Y., Yuan Y. Improved Self-Adaptive Chaotic Genetic Algorithm for Hydro-generation Scheduling [J]. Journal of Water Resources Planning and Management,2008,134(4):319-325.
    [110]黄炜斌,马光文,王和康,李佳,王立明.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(1):102-105.
    [111]芮钧,梁伟,陈守伦,何春元.基于变尺度混沌算法的混联水电站水库群优化调度[J].水力发电学报,2010,29(1):66-71.
    [112]康立山.非数值并行算法第一册--模拟退火算法[M].北京:科学出版社,2000.
    [113]李涛.计算机免疫学[M].北京:电子工业出版社,2004.
    [114]Leandro N. de Castro, Fernando J. Von Zuben. Learning and Optimization Using the Clonal Selection Principle [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), Special Issue on Artificial Immune Systems,2002,6(3):239-251.
    [115]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,(11):32-38.
    [116]Storn R, Price K. Differential Evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. University of California, Berkeley:ICSI,1995.
    [117]张双虎,黄强,孙廷容.基于并行组合模拟退火算法的水电站优化调度研究[J].水力发电学报,2004,23(4):16-20.
    [118]左幸,马光文,徐刚,陶春华.人工免疫系统在梯级水库群短期优化调度中的应用[J].水科学进展,2007,18(2):277-281.
    [119]覃晖,周建中,李英海,卢有麟,杨俊杰,张勇传.基于文化克隆选择算法的梯级水电站联合优化调度.系统仿真学报,2010,22(10):2342-2347.
    [120]Reynolds R G. An Introduction to cultural algorithms[C]. Proc. of the 3th annual Conf. on Evolution Programming, Sebalk, A.V. Fogel, River Edge, NJ. World Scientific Publishing,1994,131-136.
    [121]王正初,周慕逊,李军,孙宝军.基于人工鱼群算法的水库优化调度研究[J].继电器,2007,35(21):43-47.
    [122]卢有麟,周建中,覃晖,杨俊杰,张勇传.基于自适应混合差分进化算法的水火电力系统短期发电计划优化[J].电网技术,2009,33(13):32-36.
    [123]黄志中,周之豪.防洪实时优化调度的多目标决策模型[J].河海大学学报,1994,22(6):16-21.
    [124]陈洋波,王先甲,冯尚友.考虑发电量与保证出力的水库调度多目标优化方法[J].系统工程理论与实践,1998,(4):95-101.
    [125]陈洋波,胡嘉琪.隔河岩和高坝洲梯级水电站水库联合调度方案研究[J].水利学报,2004,(3):47-53.
    [126]彭杨,李义天,张红武.水库水沙联合调度多目标决策模型[J].水利学报,2004,(4):1-7.
    [127]Nagesh Kumar D., Janga Reddy M. Ant Colony Optimization for Multi-Purpose Reservoir Operation [J]. Water Resources Management,2006,20:879-898.
    [128]杜守建,李怀恩,白玉慧,陈常金.多目标调度模型在尼山水库的应用[J].水力发电学报,2006,25(2):69-73.
    [129]胡国强,贺仁睦.梯级水电站长期多目标模糊优化调度新模型[J].电力自动化设备,2007,27(4):23-27.
    [130]杨芳丽,张小峰,谈广鸣.考虑生态调度的水库多目标调度模型初步研究[J].武汉大学学报(工学版),2010,43(4):433-437.
    [131]吴杰康,祝宇楠,韦善革.采用改进隶属度函数的梯级水电站多目标优化调度模型[J].电网技术,2011,35(2):48-52.
    [132]游进军,纪昌明,付湘.基于遗传算法的多目标问题求解方法[J].水利学报,2003,(7):64-70.
    [133]Kim T., Heo J. H., Jeong C. S. Multi-reservoir system optimization in the Han River basin using multi-objective genetic algorithms [J]. Hydrol. Process.,2006, 20(9),2057-2075.
    [134]Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ [J]. IEEE Trans. Evol. Compu.,2002,6(2):182-97.
    [135]Janga Reddy M., Nagesh Kumar D. Optimal reservoir operation using multi-objective evolutionary algorithm [J]. Water Resour. Manage.,2006,20(6), 861-878.
    [136]Janga Reddy M., Nagesh Kuma D. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation [J]. Hydrol. Process.,2007, 21(21),2897-2909.
    [137]杨俊杰,周建中,方仍存,钟建伟MOPSO算法及其在水库优化调度中的应用[J].计算机工程,2007,33(18):249-251.
    [138]刘攀,郭生练,李玮,林凯荣.用多目标遗传算法优化设计水库分期汛限水位[J].系统工程理论与实践,2007,(4):81-90.
    [139]Chen L., McPhee J., Yeh W. W. G. A diversified multi-objective GA for optimizing reservoir rule curves [J]. Adv. Water Resour.,2007,30(5),1082-1093.
    [140]Baltar A. M., Fontane D. G. Use of multi-objective particle swarm optimization in water resources management[J]. J. Water Resour Plann Manage.,2008,134(3), 257-265.
    [141]Li Y. H., Zhou J. Z., Zhang Y. C., Qin H., and Liu L. Novel multi-objective shuffled frog leaping algorithm with application to reservoir flood control operation [J]. J. Water Resour. Plann. Manage.,2010,136(2),217-226.
    [142]Hui Qin, Jianzhong Zhou, et al. Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation [J]. Water Resources Management,2010,24(11):2611-2632.
    [143]覃晖,周建中,王光谦,张勇传.基于多目标差分进化算法的水库多目标防洪 调度研究[J].水利学报,2009,40(5):513-519.
    [144]覃晖,周建中,肖舸,赵云发,卢有麟,张勇传.梯级水电站多目标发电优化调度[J].水科学进展,2010,21(3):377-384.
    [145]Hui Qin, Jianzhong Zhou. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydrothermal scheduling [J]. Energy Conversion and Management,2010,51(4):788-794.
    [146]周建中,李英海,肖舸,张勇传.基于混合粒子群算法的梯级水电站多目标优化调度[J].水利学报,2010,4(10):1212-1221.
    [147]田峰巍,黄强,解建仓.水库实施调度及风险决策[J].水利学报,1998,(3):57-62.
    [148]田峰巍,解建仓,王新宏,阎宗锋,刘俊萍.水库调度决策中的风险及其传递计算方法[J].西安理工大学学报,1998,14(1):13-17.
    [149]黄强,苗隆德,王增发.水库调度中的风险分析及决策方法[J].西安理工大学学报,1999,15(4):6-10.
    [150]李万绪.风险调度的基本程序[J].水电能源科学,2002,20(1):26-29.
    [151]曾玉红,胡敏良,梁在潮.防洪系统风险分析及其预报阈值研究[J].武汉大学学报(工学版),2003,36(6):27-30.
    [152]竹磊磊,郭同德,胡彩虹,吴泽宁.故县水库分期洪水防洪调度风险分析[J].人民黄河,2006,28(3):33-35.
    [153]王才君,郭生练,刘攀,周芬,熊立华.三峡水库动态汛限水位洪水调度风险指标及综合评价模型研究[J].水科学进展,2004,15(3):376-381.
    [154]姜树海,范子武.水库防洪预报调度的风险分析[J].水利学报,2004,(11):102-107.
    [155]许新发,梅亚东,叶琰.万安水库调度的蓄水风险和发电风险计算[J].武汉大学学报(工学版),2005,38(6):35-39.
    [156]吴泽宁,胡彩虹,王宝玉,刘红珍.黄河中下游水库汛限水位与防洪体系风险分析[J].水利学报,2006,37(6):641-648.
    [157]李继清,张玉山,王丽萍,纪昌明.基于集对分析理论的水电站中长期风险调度问题研究[J].水文,2006,26(4):21-26.
    [158]周惠成,董四辉,邓成林,李菡.基于随机水文过程的防洪调度风险分析[J].水利学报,2006,37(2):227-232.
    [159]冯平,韩松,李健.水库调整汛限水位的风险效益综合分析[J].水利学报,2006,37(4):451-456.
    [160]席秋义,谢小平,黄强,王义民,张雯怡.基于PSO的水库泄洪风险计算[J].系统工程理论与实践,2006,(9):129-134.
    [161]李帅,蒋传文,刘红岭.考虑电价风险的水电站长期优化调度及风险评估[J].水电能源科学,2007,25(3):82-84.
    [162]王本德,张静.基于随机模拟的分类预报调度方式风险分析[J].水力发电学报,2009,28(2):8-13.
    [163]刘艳丽,周惠成,张建云.不确定性分析方法在水库防洪风险分析中的应用研究[J].水力发电学报,2010,29(6):47-53.
    [164]段金长,宋雅坪,纪昌明,张验科.东北电网水库群发电调度风险分析[J].水电能源科学,2010,28(5):163-165.
    [165]刁艳芳,王本德.基于不同风险源组合的水库防洪预报调度方式风险分析[J].中国科学(技术科学),2010,40(10):1140-1147.
    [166]Bellman, R E, Zadeh, L A. Decision-making in a fuzzy environment [J]. Management Science,1970,17:141-164.
    [167]张勇传,邴凤山,熊斯毅.模糊集理论与水库优化问题[J].华中工学院学报,1983,11(5):25-34.
    [168]廖伯书,张勇传.水库优化运行的随机多目标动态规划模型[J].水利学报, 1989,(12):43-49.
    [169]陈守煜,邱林.水资源系统多目标模糊优选随机动态规划及实例[J],1993,(8):43-48.
    [170]王本德,周惠成,程春田.梯级水库群防洪系统的多目标洪水调度决策的模糊优选[J].水利学报,1994,(2):31-40.
    [171]王本德,于义彬,刘金禄,王淑英.水库洪水调度系统的模糊循环迭代模型及应用[J].水科学进展,2004,15(2):233-237.
    [172]程春田,王本德.启发式与人机交互相结合的水库防洪调度模糊优化调度模型[J].水利学报,1995,(11):71-76.
    [173]程春田,李登峰.水库防洪调度模糊迭代方法及应用[J].水利学报,1999,(8):16-20.
    [174]张跃,彭全刚.水库正常蓄水位选择中的多目标模糊决策方法[J].系统工程理论与实践,1999,(12):99-107.
    [175]邹进,张勇传.一种多目标决策问题的模糊解法及在洪水调度中的应用[J].水利学报,2003,(1):119-122.
    [176]侯召成,陈守煜.水库防洪调度多目标模糊群决策方法[J].水利学报,2004,(12):106-112.
    [177]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用[J].水力学报,2007,38(1):100-106.
    [178]钟炜,谭振东.模糊优选方法在流域梯级水电站调度决策方案评估中的应用[J].统计与决策,2010,(17):169-171.
    [179]赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社,2000.
    [180]赵学敏,王永新.综合利用水库工程方案评价的集对分析法[J].水力发电,2009,35(3):11-14.
    [181]杨俊杰,周建中,李英海,覃晖.基于模糊联系数的水库多目标防洪调度决策 [J].华中科技大学学报(自然科学版),2009,37(9):101-104.
    [182]Gau W. L., Buehrer D. J. Vague sets[J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23(2):610-614.
    [183]Atanassov K. New operations defined over the intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems,1994,61(2):137-142.
    [184]Bustince H., Burillo P. Vague sets are intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems,1996,79(3):403-405.
    [185]李娜,梅亚东,段文辉,杨娜.基于Vague集理论和群决策的大坝病险综合评价方法[J].水电自动化与大坝监测,2006,30(6):65-69.
    [186]李英海.梯级水电站群联合优化调度及其决策方法[D].华中科技大学,2009.
    [187]李英海,周建中.基于改进熵权和Vague集的多目标防洪调度决策方法[J].水电能源科学,2010,28(6):32-35.
    [188]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [189]路金喜.水库正常蓄水位方案选择的灰色层次分析方法及应用[J].水电能源科学,1999,17(2):48-52.
    [190]曾勇红,姜铁兵,权先璋.灰色系统理论在水库正常蓄水位方案选择中的应用[J].水电自动化与大坝监测,2003,27(1):57-59.
    [191]马志鹏,陈守伦,芮钧.梯级水库群防洪系统多目标决策的灰色优选[J].数学的实践与认识,2007,37(11):112-116.
    [192]李英海,周建中,张勇传,刘力,覃晖.水库防洪优化调度风险决策模型及应用[J].2009,35(4):19-22.
    [193]岳超源.决策理论与方法[M].科学出版社,2003.
    [194]董前进,王先甲,吉海,王建平.三峡水库洪水资源化多目标决策评价模型[J].长江流域资源与环境,2007,16(2),260-264.
    [195]张振东,潘妮,梁川.基于改进TOPSIS的长江黄河源区生态脆弱性评价[J]. 人民长江,2009,40(16):81-84.
    [196]Deb K. Multi-objective optimization using evolutionary algorithms [M]. Wiley, Chichester, UK,2001.
    [197]Saleh Saleem. Knowledge-Based Solutions to Dynamic Problems Using Cultural Algorithms [D], PhD thesis, Wayne State University, Detroit Michigan,2001.
    [198]V. Sharma, R. Jha, R. Naresh. Optimal multi-reservoir network control by augmented Lagrange programming neural network [J]. Applied Soft Computing, 2007,7:783-790.
    [199]杨俊杰.基于MOPSO和集对分析决策方法的流域梯级联合优化调度[D].华中科技大学,2007.
    [200]Coello C A C. Twenty Years of Evolutionary Multi-objective Optimization:A Historical View of the Field [J]. IEEE Computational Intelligence Magazine,2006, 1(1):28-36.
    [201]郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):188-192.
    [202]David S J. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms [C]. In:Proceedings of t he First International Conference on Genetic Algorithms, Lawrence Erlbaum,1985.93-100.
    [203]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Massachusetts:Addison-Wesley Publishing Company,1989.
    [204]David E. Goldberg, Jon Richardson. Genetic algorithm with sharing for multimodal function optimization [C]. In John J. Grefenstette, editor, Genetic Algorithms and Their Applications:Proceedings of the Second International Conference on Genetic Algorithms, pages 41-49, Hillsdale, New Jersey,1987. Lawrence Erlbaum.
    [205]Fonseca C. M., Fleming P. J. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization [C]. In:Forrest S, ed. proceedings of the Fifth International Conference on Genetic Algorithms, pages San Mateo, California,1993.416-423.
    [206]Srinivas N., Deb K. Multi-objective Optimization Using Non-dominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3):221-248.
    [207]Horn J., Nafpliotis N., Goldberg D. E. A Niched Pareto Genetic Algorithm for Multi-objective Optimization [C]. In:Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol11. Piscataway, New Jersey, June 1994.82-87.
    [208]Zitzler E., Thiele L. Multi-objective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation,1999,3(4):57-271.
    [209]Gunter Rudolph, Alexandru Agapie. Convergence Properties of Some Multi-Objective Evolutionary Algorithms [C]. In Proceedings of the 2000 Conference on Evolutionary Computation, volume 2, pages 1010-1016, Piscataway, New Jersey, July 2000. IEEE Press.
    [210]Knowles J. D., Come D. W. Approximating the Non-dominated Front Using the Pareto Archived Evolution Strategy [J]. Evolutionary Computation,2000,8(2): 149-172.
    [211]Eckart Zitzler, Marco Laumanns, Lothar Thiele. SPEA2:Improving the Strength Pareto Evolutionary Algorithm[C]. In K. Giannakoglou et al., editor, EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pages 95-100, Athens, Greece,2002.
    [212]Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, Yoshikazu Nishikawa. Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm[C]. In Hans-Michael Voigt et al., editor, Parallel Problem Solving from Nature—PPSN IV, Lecture Notes in Computer Science, pages 504-512, Berlin, Germany, September 1996. Springer-Verlag.
    [213]Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, Eckart Zitzler. Combining Convergence and Diversity in Evolutionary Multi-objective Optimization [J]. Evolutionary Computation,2002,10(3):263-282.
    [214]Zitzler E., Deb K., Thiele L. Comparison of multi-objective evolutionary algorithms:empirical results [J].2000, Evol. Comput.,8(2),173-195.
    [215]Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization test problems [C]. Proc.,2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii,825-830.
    [216]Van Veldhuizen D. A., Lamont G. B. Multi-objective Evolutionary Algorithms: Analyzing the State-of-the-Art [J]. Evolutionary Computation,2000,8(2):125-147.
    [217]Janga Reddy M., Nagesh Kumar D. Multiobjective Differential Evolution with Application to Reservoir System Optimization [J]. Journal of Computing in Civil Engineering,2007,21(2):136-146.
    [218]Salomon R. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions:A survey of some theoretical and practical aspects of genetic algorithms [J]. BioSystems,1996,39(3),263-278.
    [219]Price, K. V. An introduction to differential evolution. New ideas in optimization[C]. D. Corne, M. Dorigo, and F. Glover, eds., McGraw-Hill, London,1999,79-108.
    [220]Madavan N. K. Multi objective optimization using a Pareto differential evolution approach [C]. Proceeding of the Congress on Evolutionary Computation (CEC' 2002), vol.2, IEEE Service Center, Piscataway, NJ,2002, pp.1145-1150.
    [221]Rolic T., Filipic B. DEMO:Differential Evolution for Multi-objective Optimization [C]. Lecture Notes in Computer Science, Berlin, Springer,2005, pp.520-533.
    [222]Qian W. Y., Li A. J. Adaptive differential evolution algorithm for multi-objective optimization problems [J]. Appl. Math. Comput.,2008,201,431-440.
    [223]Deb K., Jain S. Running performance metrics for evolutionary multi-objective optimization [R]. Technical Report 2002004, KanGAL, Indian Institute of Technology, Kanpur 208016, India,2002.
    [224]Tanaka M. GA-based decision support system for multicriteria optimization [C]. In Proc. IEEE Int. Conf. Systems, Man and Cybernetics-2,1995, pp.1556-1561.
    [225]雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326.
    [226]仲志余.长江三峡工程防洪规划与防洪作用[J].人民长江,2003,34(8):37-40.
    [227]刘丹雅,纪国强.三峡工程防洪规划与综合利用调度技术研究[J].水力发电学报,2009,28(6):19-26.
    [228]梅亚东.梯级水库防洪优化调度的动态规划模型及解法[J].武汉水利电力大学学报,1999,32(5):10-12.
    [229]长江水利委员会.三峡-葛洲坝水利枢纽梯级调度规程(2007年修订版)[S].
    [230]郑守仁.三峡工程试验性蓄水175 m水位运行的相关问题[J].人民长江,2010,41(8):1-5.
    [231]杨春花,许继军,董玲燕.金沙江下游梯级水库配合三峡水库联合防洪调度效果分析[J].长江科学院院报,2010,27(10):5-9.
    [232]Allen J. W., Bruce F. W. Power generation, operation, and control [M]. John Wiley &Sons, New York,1984.
    [233]Gent M. R., Lamont J. W. Minimum emission dispatch [J], IEEE transactions on Power Apparatus and Systems,1971,90(6):2650-2660.
    [234]Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling [J]. Electric Power Syst. Res.2004,69 (2) 277-285.
    [235]胡国强,贺仁睦.基于交互式多目标决策方法的水火电力系统日有功负荷优化分配[J].电网技术,2007,31(18):37-42.
    [236]Mandal K. K., Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution [J]. Energy Convers Manage,2009,50(1):97-104.
    [237]钟平安,曾京.水库实时防洪调度风险分析研究.水力发电,2008,38(2):8-10.
    [238]Chu A. T. W., Kalaba R. E., Spingarn K. A comparison of two methods for determining the weights of belonging to fuzzy sets [J]. Journal of Optimization Theory and Application,1979, (27):531-538.
    [239]马永红,周荣喜,李振光.基于离差最大化的决策者权重确定方法[J].东北化工大学学报,2007,34(2):177-180.
    [240]陈华友.多属性决策中基于离差最大化的组合赋权方法[J].系统工程与电子技术,2004,26(2):194-197.
    [241]张全,樊治平,潘德惠.区间数多属性决策中一种带有可能度的排序方法[J].控制与决策,1999,14(6):703-706.
    [242]姜广田,樊治平,刘洋,张晓.一种具有正态随机变量的多属性决策方法[J].控制与决策,2009,24(8):.1187-1192.
    [243]Keyser W. D., Peeters P. A note on the use of PROMETHEE multi-criteria methods [J]. European J. of Operational Research,1996,89(3):457-461.
    [244]Iacoban R., Reynolds R. G., Brewster J. Cultural swarms:modeling the impact of culture on social interaction and problem solving [C]. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, IEEE Service Center,2003, pp.205-211.
    [245]Deb K., Agrawal R. B. Simulated binary crossover for continuous search space [J]. Complex Systems,1995,9:115-148.
    [246]Kusum Deep, Manoj Thakur. A new mutation operator for real coded genetic algorithms [J]. Applied Mathematics and Computation,2007,193:211-230.
    [247]Markos Papageorgiou. Optimal Multireservoir Network Control by the Discrete Maximum Principle [J]. Water Resources Research,1985,21(12):1824-1830.
    [248]Sharma V., Jha R., Naresh R. Optimal multi-reservoir network control by two-phase neural network [J]. Electric Power Systems Research,2004,68: 221-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700