皖西白鹅和雁鹅的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养鹅业是我国农民的传统副业,我国鹅种具有产蛋多、羽绒品质好和肉质佳等优势。实验在分子水平上对皖西白鹅和雁鹅进行了RAPD分析,为皖西白鹅和雁鹅品种资源特性的研究,选育以及推广提供科学依据。
    实验提取了46只皖西白鹅和48只雁鹅的血液基因组DNA,DNA的OD260/OD280值介于1.4~1.8之间,用作RAPD扩增基因组DNA的模板。对RAPD反应条件和程序逐个进行筛选,建立了最适宜的RAPD反应体系和反应程序。用RAPD技术分析皖西白鹅和雁鹅的基因组DNA的遗传多样性。研究结果表明:
    1.用实验提取的基因组DNA对皖西白鹅和雁鹅的每个个体进行扩增,可以产生清晰,稳定的RAPD图谱。
    2.筛选并建立了适合于皖西白鹅和雁鹅的扩增反应体系和程序:反应体积25μl,内含100ng的模板DNA,MgCl2(20mM)2.5μl,dNTP(5mM)1μl,随机引物(20μM)1μl,1U TaqDNA聚合酶。扩增程序为:94℃预变性4min,94℃变性1min,36℃退火1min,72℃延伸1min,42个循环后72℃延伸10min,于4℃结束反应。
    3.用随机扩增多态性DNA技术对皖西白鹅和雁鹅进行遗传多样性分析,从50个随机引物中筛选出了12个引物对两个品种的所有个体的基因组DNA进行PCR扩增,扩增结果表明:50个随机引物中有12个引物在皖西白鹅及雁鹅基因组中分别扩增共获得83和85条条带,其中多态性条带分别为51条和57条,多态性条带率分别为61.44%和67.06%;碱基对数分别为0.21~1.52kb 和0.196~1.55kb之间,每个引物产生的条带数在2~9和3~9之间。
    4.皖西白鹅和雁鹅扩增出来的条带的频率最低只有11.11%,所有引物的带频率的平均值分别为0.8236、0.7442,可以看出两群体的选育程度较高,皖西白鹅要略高于雁鹅;皖西白鹅及雁鹅群体内的遗传相似度分别平均为0.8645和0.8205,群体内的遗传多样性指数分别平均为0.7250和 1.1649,可见皖西鹅群体内个体间遗传差异较雁鹅小;两群体的遗传分化指数平均为0.7957,两群体遗传分化指数变化范围在0.6785~0.8770之间,平均值为0.7957,表明,在总遗传变异中,存在于群体间的变异达79.57%,群体内的变异仅为20.43%,显示,两群体的遗传变异主要发生在群体间,而不是群体内。
Goose breeding is a traditional homework in our country. The breeds of goose in our country have many merits such as producing many eggs, good feather and meat quality. This experiment analyzed on Wanxi White goose and Yan goose of RAPD markers in molecule level, to further provide scientific evidence for the breed resources research, selection and application on Wanxi White goose and Yan goose.
    An experiment was conducted with 46 Wanxi White goose and 48 Yan goose.The OD value of Genomic DNA is between 1.4~1.8. Genomic DNA extracted from the blood of goose, which were directly used as template of PCR. RAPD reaction was carried out and programs were filtrated one by one, Optimal PCR conditions and programs were developed. RAPD is used to amplify genomic DNA of Wanxi White goose and Yan goose, their genetic diversity were also analyzed. The research results indicated:
    1. Using conventional method to extract genomic DNA. The OD value of all the individual genomic DNA between 1.4~1.8. Amplified results indicated that it can produced explicit and steady RAPD bands, and testified that RAPD reaction did not request for template strictly.
    2.The influencing factors of RAPD of Wanxi White goose and Yan goose genetic diversity research were studied and the experimental parameters were optimized. The optimal RAPD conditions are: 25μl reaction volume, containing 100ng template DNA, MgCl2(20mM)2.5μl,dNTP(5mM)1μl,primer (20μM)1μl,1UTaqDNA polymerase. Amplification program is : After initial denaturation at 94℃ for 4min, the amplification was performed by using 42 cycles of denaturation at 94℃ for 1min, annealing at 36℃ 1min, and extension at 72℃ for 1min. A final period of extention was carried out for 10min and final holding at 4℃.
    3.Genetic diversity of Wanxi White goose and Yan goose was assessed through
    
    
    Random Amplified Polymorphic DNA (RAPD) analysis. The total genomic DNA of all the individuals of both breeds were amplified through PCR method with 12 selected primers out of 50 arbitrary primers. The results suggested: Total 83,85 bands and 51, 57 polymorphic bands were acquired, which polymorphic rate is 61.44%, 67.06% respectively, The amplified base pair size were 0.21~1.52kb, 0.196~1.55kb and the number in each track were 2~9, 3~9 respectively, it also indicated that RAPD is a kind of higher polymorphic DNA marker method .
    4.The lowest amplified band frequency of Wanxi White goose and Yan goose is only 11.11% of all, the average of band frequency of all primes is 0.8236, 0.7442 separately. It is obvious that higher selecting (choosing) in both populations, which Wanxi White goose is a little higher than Yan goose. The average genetic comparability is 0.8645, 0.8205 and genetic diversity is 0.7250, 1.1649 respectively, it is seen that Wanxi White goose has a smaller genetic difference in population than Yan goose’s. The average genetic differentiation index is 0.7957 in both population, whose range is between 0.6785~0.8770, its average is 0.7957, the data indicated, in total genetic variation, over 79.57% variation consist in both population, 20.43% variation consist in individual population, therefore, genetic variation does not occur in individual population mostly, but in both population.
引文
[1] 郑作新等. 中国动物志(鸟纲第二卷雁形目). 北京:科学出版社,1979, 29.
    [2] 薄吾成. 中国家鹅的起源. 中国家畜起源论文集,天则出版社,1993,67~74.
    [3] Delacour. The waterfowl of the world. Country Life Ltd., London, 1954, 1: 251.
    [4] Johnsgard P A. Ducks, Geese, and Swans of the World. Univ. Nebraska press, Lincoln, 1978.
    [5] 邱祥聘,陈锷,陈育新. 中国家禽品种志. 上海: 上海科技出版社,1989.
    [6] 陈育新,曾凡同. 中国水禽. 北京:农业出版社,1994,5~10.
    [7] Crawford R D. Origin and history of poultry species. In: Poultry Genetics and Breeding (R D Crawford ed.), Elsevier. Amsterdam. 1990, 1~41.
    [8] Silversides F G, Crawford R D and H C Wang. The cytogenetics of domestic geese. Journal of Heredity. 1988, 79: 6~8.
    [9] 陈育新. 中国地方鹅品种分类初探. 畜牧科技进展,北京:中国农业科技出版社,1994:107~111.
    [10] 徐桂芳, 陈宽维主编. 中国家禽地方品种资源图谱, 2002.
    [11] 陈灵芝.中国的生物多样性-现状及保护对策.北京:科学出版社,1993, 99-113.
    [12] 沈浩,刘登义.遗传多样性概述.生物学杂志.2001, 18(3): 5-7.
    [13] Williams J G K, Kubelic A R, Livak K J, Rafalski J A and S T Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 1990, 18: 6531-6535.
    [14] Monna L, Miyao A, Inoue T, Fukuoka S, Yamazaki M, Zhong H S, Sasaki T and Y Minobe. Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STS-specific primers. DNA Res, 1994, 1: 139-148.
    [15] 陈奕欣, 左正宏. RAPD技术探讨几种家鸭与野鸭遗传多样性及亲缘关系. 厦门大学学报, 2001, 40(1): 141-145.
    [16] 陈奕欣, 左正宏. 我国部分家鸭品种遗传多样性及与野鸭亲缘关系的探讨. 云南大学学报, 21: 237-238.
    [17] 张细权, 吕雪梅, 杨玉华等. 用微卫星多态性和RAPD分析地方鸡种的群体遗传变异.遗传学报, 1998, 25(2): 112-119.
    [18] 毛国祥, 赵万里. 随机扩增多态DNA技术在鹅育种中的应用. 中国家禽, 2001, 23(8), 47-49.
    [19] 郝家胜, 周开亚. 皖西白鹅遗传多样性的RAPD分析. 安徽师范大学学报, 1999, 22(1): 39-43.
    
    [20] 郝家胜, 周开亚. 中国鹅5个品种遗传多样性的随机扩增多态DNA分析. 南京农业大学学报, 2000, 23(1): 58-62.
    [21] 谢庄. 部分中国鹅品种(系)的RAPD分析. 南京农业大学学位论文. 2000. 6.
    [22] Glazko VI. Domanskii NN.Sozinov AA. Current trends in the useof DNA technologies. Tsitol Genet 1998, 32(5): 80-93.
    [23] Huang M C, Lin W C, Horng Y M, Rouvier R and C W Huang. Female-specific DNA sequences in geese. Br Poult Sci. 2003, 44(3): 359~364.
    [24] Bednarczyk M, Siwek M, Mazanowski A and P Czekalski. DNA polymorphism in various goose lines by RAPD-PCR. Folia Biol (Krakow), 2002, 50(1~2): 45~48.
    [25] 孟安明.四个探针产生的的家禽DNA指纹图谱.生物化学与生物物理进展.1993, 20(2): 139-141.
    [26] EJ Smith, CP Jones,Use of randomly amplified polymorphic DNA markers for the genetic analysis of relatedness and diversity in chickens and turkeys. Poult Sci, May 1996; 75(5): 579-584.
    [27] IIu Dolmatova, TF Saitbatalov, and FT Gareev. RAPD-analysis of duck genetic polymorphisms. Interlineal differences in a Peking duck species,Genetika, Jun 2000; 36(6): 805-812.
    [28] 许勇, 欧阳新星, 张海英等.与西瓜野生种质抗枯萎病基因连锁的RAPD标记.植物学报,1999.41(9):952-955
    [29] 邹继军, 杨庆凯, 陈受宜等.大豆灰斑病抗病基因RAPD标记的分子特征及抗、感种质的SCAR标记鉴定.科学通报,1999.44(23):2544-2550.
    [30] Nei M, Li W H. Mathematical modeling for studying genetic variation in tems of restriction endlnucleases. Preeding of the National Academy of science, 1979, 76: 5268-5273.
    [31] 曾福玲, 李宁. 鸡品种(系)的随机扩增多态性DNA指纹分析. 中国动物遗传育种研究—第八次全国动物遗传育种学术讨论会文集. 1995: 41-45.
    [32] Wachria, F. N. Waugh, R.Hachett, C.A.et al. Detection of genetic diversity in tea(Camellia Sinensis) using RAPD markers.Genome, 1995, 38: 201-209.
    [33] J. 萨姆布鲁克, EF. 费里奇, T. 曼尼阿蒂斯著, 金冬雁, 黎孟枫等译, 分子克隆实验指南, 1996, 北京: 科学出版社.
    [34] 汪小全,邹喻苹, 张大明等,RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996 38(12):954-962.
    [35] 徐云碧, 朱立煌. 分子数量遗传学. 中国农业出版社, 1994.
    [36] Williams. J. G, K. Kubelik. A. R, Livak K J, et al. DNA polymorphisms amplified by
    
    
    arbitrary primers are useful as genetic marker, Nucleic. Acids Res. 1990, 18(22)6531~6535
    [37] Skroch, p. w, Nienhuis, J.A RAPD protocol for the air thermo – cycler. Rapid Cyclist, 1992, 1:9.
    [38] Wilkie, S.E, Isaac, P.G, Slater, R.J.Random amplified polymorphic DNA(RAPD) markers for genetic analysis in Allium.Theor Appl Genet, 1993, 86: 497-504.
    [39] 沈向, 郑学勤, 任小林等. 核果类基因组DNA的提取及其RAPD分析, 山东农业大学学报, 1999, (2): 156-160.
    [40] 郭兆奎, 万秀清, 魏继承等, 适于PCR分析的烤后烟叶DNA提取方法的研究. 中国烟草科学, 1999, (4): 5-8.
    [41] 郑冬, 孔瑾, 石绍叶等. 从动物毛中提取DNA研究初探. 野生动物, 1996, 2: 24 -26.
    [42] 赵春江, 李宁. 一种从毛发中提取DNA的简易方法. 遗传, 2003, 25(1): 69-70.
    [43] 栗磊, 王慧. 从动物毛发中提取DNA进行RAPD扩增的研究. 山东畜牧兽医, 1999, 2: 1-2.
    [44] Sibley, C. G and J. E. Ahlquist. Phylogeny and classification of Birds: a Study in Molecular Evolution. Yale University Press.1990.
    [45] 潘庆杰. 五龙鹅经济性状标记及其分子系统发育关系的研究. 东北农业大学学位论文. 2001, 5.
    [46] 陈永久, 张亚平. 随机扩增多态DNA影响因素的研究. 动物学研究, 1997, 18(2): 221~227.
    [47] 姜自锋, 林乃铨, 徐梅. RAPD技术及其应用中的一些问题. 福建农林大学学报, 2002, 31(3): 356-360.
    [48] Dweikat, I., Mackenzie, S., Levy, M. and Ohm, H. pedigree assessment using RAPD-DGGE in cereal crop species. Theoretical and Applied Genetics, 1993, 85: 497-505.
    [49] 李新海, 焦少杰, 傅骏骅等. 两种凝胶系统对SSR标记多态性的影响. 东北农业学报, 2001, 16(2): 43-48.
    [50] 曹少先, 杨利国, 赵文魁等. 波尔山羊随机扩增多态DNA标记与体重和体尺的关系. 华中农业大学学报, 2001, 20(2): 159-163.
    [51] 王中仁. 植物遗传多样性和系统学研究中的等位酶分析. 生物多样性, 1994, 2(2): 91-95.
    [52] Mashall D. R. and A .H. D.Brown Optimum Sampling Strategies in genetic In: frankel. D. H. and J.G. Hawles (eds.) conservation, Crop Genetic Resource for today and
    
    
    Tomorrow. Cambridge University Press. London, 53-80.
    [53] Sjogren P. and P.I. Wyoni. Conservation genetics and detection of rare alleles in finite populations. Conservation Biology, 1994, 8(1): 267-270.
    [54] Nei M, Roychoudhury A K, Sampling variances of heterozygosity and genetic distance Genetics, 1987, 76: 379-390.
    [55] 周延清.遗传标记的发展.生物学通报.2000, 5.
    [56] 黎裕, 贾继增, 王天宇. 分子标记的种类及其发展. 生物技术通报. 1999. 4: 19-22.
    [57] 卢立志, 郭雁君等. 生化遗传标记技术在蛋禽育种中的作用. 中国禽业导报. 2002, 19(10).
    [58] 钱迎倩, 马克平. 生物多样性研究的理论与方法. 北京: 中国科学技术出版社, 1994.
    [59] 王中仁. 植物等位酶分析. 科学出版社, 1996.
    [60] 杜立新. 分子遗传标记及其在动物育种中的应用(上). 黄牛杂志. 1995, 22(1): 31-33.
    [61] 刘云芳, 判根强, 王新峰. RFLP技术在动物遗传育种中的应用. 内蒙古畜牧科学, 2002, (2): 17-19.
    [62] 卢江. 随机扩增多态性DNA(RAPD)——一种新的分子遗传标记技术. 植物学报, 1993, 5(增刊): 119-127.
    [63] 邱高峰. 分析基因组DNA的RAPD技术在水产生物技术研究中的应用前景. 上海水产大学学报, 1996, 5(2): 102-106.
    [64] 吕振岳, 周达民, 黄东东. AFLP标记及在微生物和动物中的应用. 生物技术通报, 2001(6): 18-22.
    [65] 谬颖. AFLP分子标记及其应用. 热带植物通讯, 1999, 28(2): 55-60.
    [66] 韩双艳, 郭勇. AFLP在分子生物学中的应用. 生物技术通报, 2001(2): 22-25.
    [67] 吴登俊. 家畜基因组遗传多态标记—微卫星标记研究进展(下). 国外畜牧科技, 1999. 26(2): 37-40.
    [68] Nei M and A K Roychoudhury. Sampling variances of heterozygosity and genetic distance Genetics, 1987, 76: 379-390.
    [69] 张丕燕. 部分中国鹅品种(系)的RAPD分析. 南京农业大学学位论文, 2000(7).
    [70] 黄原. 分子系统学—原理、方法及应用. 中国农业出版社. 北京: 1998.
    [71] Baird E, Cooper-Bland, S, Waugh R, et al, Molecular characterization of inter-and intra-specific somatic hybrids of potato using randomly amplified polymorphic DNA (RAPD) markers Mol. Gen. Genet, 1992, 233: 469-475.
    
    [72] Haemmerli X A, Brandle Μ E, Petrini O, et al. Differentiation of isolates of Discula umbrinella (Teleomorph: Apiognomonia errabunda) from beef, chestnut, and oak using randomly amplified polymorphic DNA markers Mol. Plant-Microbe Interact, 1992 6: 479-483.
    [73] Grattapaglia D, Sederoff R, Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers Genetics, 1994, 137: 1121-1137.
    [74] Rui L and H Gerald. Use of RAPD analyses to estimate population genetic parameters in the alfalfa leafcutting bee, Megachile rotundata Genome, 1996, 39: 655-663.
    [75] 曾福玲, 李宁, 王峰等. 鹌鹑品种(系)的随机扩增多态性DNA指纹分析. 农业生物技术学报. 1995, 3: 61-64.
    [76] Zhang X, Mcdaniel G R and JJ Giambrone. Random amplified polymorphic DNA comparisons among broiler lines selected for incidence of tibial dyschondroplasia. Poult Sci, 1995, 74: 1253-1258.
    [77] 吕雪梅, 杨关福, 张细权等. 蛋鸡品系RAPD 变异及其与杂种优势关系的分析.遗传, 1999, 21(2): 24-28.
    [78] 刘娣. 鸡品种随机引物扩增多态DNA的研究. 东北农业大学学报. 1999, 30(4): 349-354.
    [79] 周怀军, 陈宽维, 张学余等. RAPD技术对鸡种群体遗传结构的分析. 中国家禽. 1997, 5: 7-10.
    [80] 张细权. 用微卫星和RAPD分析珍稀家禽品种的遗传变异. 中国动物遗传育种研究进展. 北京: 中国农业科技出版社, 1997, 61-65.
    [81] 任军, 高军, 黄路生等. 江西省主要地方鸡种的RAPD分析及其群体遗传关系的研究. 遗传, 2001, 23(4): 301-305.
    [82] Smith E J, Jones CP, Bartlett J. et al. Use of randomly amplified polymorphic DNA markers for the genetic analysis of relatedness and diversity in chickens and turkeys. Poultry Science, 1996, 75: 579-584.
    [83] 戴国俊, 王金玉, 王志跃. 新扬州鸡与莱航鸡遗传变异的RAPD分析. 江苏农业研究, 2001. 22(1): 48-54.
    [84] 屠云洁. 安徽地方鹅种遗传多样性及羽绒品质的研究. 安徽农业大学硕士论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700