复合塔板流体力学和传质性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的复合塔板是在穿流筛板之下紧贴一层50~150mm的规整填料所构成,它有三个传质区,即塔板上的泡沫区、填料层内的液膜区以及填料层下的淋降区,因此,具有很高的传质效率。复合塔板不设降液管,气液同时逆流穿过筛孔。本文根据复合塔板的气液流动特点,分析了气液穿孔流动的机理。根据前人的研究结果,提出复合塔板在操作时,由于泡沫层的波动,其筛孔存在通气、通液和阻塞三种状态。波峰对应的筛孔通液,波谷对应的筛孔通气,波腰对应的筛孔处于阻塞状态。随着波的运动,处于通液、通气和阻塞状态的筛孔不断变化。同一时刻三种状态的筛孔数与总筛孔数之比,分别称为通液率、通气率和阻塞率。
     采用多路电导测试仪,在直径500mm的冷模塔内,以空气-水为介质,首次较系统地测量了开孔率为20%和25%的复合塔板的通气、通液和阻塞筛孔的数量比例,获得了通气率、通液率和阻塞率随气液变化的基本规律。此外,实验发现,不同喷淋密度下,复合塔板液泛时的筛孔真实气速均为11m/s左右,据此,可推算出复合塔板的操作上限。
     复合塔板的压降可认为由干板压降、清液层阻力、填料层压降和克服液体表面张力的压降四部分组成,所建立的压降计算模型,能较好地预测复合塔板的压降,计算值与实验值误差在±20%以内,可用于工程设计。此外,根据复合塔的流体力学性能,确定了其操作范围的计算方法。
     在直径300mm的精馏塔内,以乙醇-水为介质,进行了复合塔板、穿流筛板、筛板和浮阀塔板的传质效率的研究。测定了复合塔板的全塔效率、塔板效率、泡沫区和液膜区效率以及其余三种塔板的效率。实验表明,复合塔的全塔效率和单板效率在F因子1~2.5m/s(kg/m3)”’范围内,
    
    可超过 100%,最高效率达 122%,远高于穿流筛板、筛板和浮阀塔板的
    效率。填料层的效率依据所复合的填料层高度的不同,分别可占到效率
    的 20%~53%。
     在 200mm X 300nun的有机玻璃方塔内,以空气-水为介质,采用 CCD
    拍摄技术和塔内气液两相流计算辨识技术,测定了开孔率为20%的复合
    塔板上泡沫层的气液接触比表面积,并建立了关联式。为建立泡沫层的
    传质模型,提供气液接触比表面积的实验数据。
     以溶质渗透理论为基础,建立了泡沫层的传质模型,根据泡沫层的
    传质模型和规整填料的FBR传质模型,获得了预测复合塔板传质效率的
    模型。模型的预测值与实验值的上偏差在 20%以内,负偏差在 15%以内。
The Compound tray researched in this paper consists of dual-flow tray and 50-1 ^Omm high structural packing which is directly put under the dual-flow tray. It has three mass transfer sections that is the foam section on the tray, the film section in the packing layer and the shower section under the packing, so it has very high mass transfer efficiency. The compound tray has no down comer, gas and liquid counter flow through the holes of on the tray. This paper analyzed the mechanism that gas and liquid flow through the holes according to the fluid characteristics of the compound tray, and put forward that there are three states of liquid flowing, gas flowing and blocked for the holes because of the foam fluctuating on the tray while the compound tray operates . Liquid flows through the holes under wave crest, gas flows through the holes under trough and neither liquid nor gas flows through the holes under the wave middle that means the holes are blocked. The state of the holes changes continuously along with the moving waves. At the same time the number of holes for liquid flowing, gas flowing and blocked to the number of total holes was defined as liquid flowing ratio, gas flowing ratio and blocked ratio.
    The experiment was made with in-diameter 500mm column using water-air system, the ratio was first delected in detail by multi-path conductivity gauge for the compound tray with free area 20% and 25% respectively. The basic regulation of the ratio which changes along with the flo\v rate of liquid and gas was obtained; besides, the experiments discovered that the real velocity of the holes at flooding point is about llm's under different liquid flow rate, according to this the up limit of the compound tray can be reckoned .
    The pressure drop of the compound tray can be regarded as consisting of dry plate pressure drop, clear liquid resistance, liquid surface tension resistance, and packing pressure drop. The model that has established can fairly predict the pressure drop of the compound tray, the value calculated by the model compared with that detected by experiment is less than 20%. so the model can be used for designing of the compound tray: besides, a calculating method was gained for operating region of the compound tray on the basis of its characteristics .
    
    
    
    The test was made on the compound tray, dual flow tray, sieve tray and valve tray for mass transfer efficiency with in-diameter 300 mm column using ethanoi and water system. The total efficiency, plate efficiency, foam efficiency, film efficiency of compound tray, and the total efficiency of the other thee types of plate was detected. The experiment's results show that the total and plat efficiency of the compound tray is over 100%, the highest efficiency can be up to 122% within the range of F factor I~2.5m/s(kg/m3)i/2, it is far higher than the efficiency of dual flow tray , sieve tray and valve tray . The efficiency of compounded packing can reach 0.2~0.53 theoretical plate according to the different height of packing.
    The special area of foam was detected for the compound tray of 20% free area by CCD camera and computer identification technology of gas and liquid two phase flow in column . with the rectangular plexiglass tower in 200mm X 300mm, and it's correlation was obtained .This experiment offered data of special area for establishing mass transfer model of foam.
    The mass transfer model of the foam was established on the basis of the penetration theory, and the mass transfer model of the compound tray was obtained according to the mass transfer model of the foam and FRB model in packing. The error of the model value comparing to the experiment value is less than +20% and -15%.
引文
1、兰州石油机械研究所,现代塔器技术,烃加工出版社,1990
    2、Treybal.R.E.Mass-Transfer Operation,1980,3rd.165.MeGraw-Hill.
    3、Stage,H.Chem.Ing.Tech.1970,42,669.
    4、Fryback,M.G.,and J.A.Hufnangle,Ind.End.Chem.1960,52(8),654.
    5、吉田信之,化学工程(日),1966,10月号,36。
    6、Procter,J.F.,Chem.Eng.Prog.1963,59(3),47.
    7、刘艳升、赵景芳、张连生、沈复.化学工程,1994,22(6):7~14
    8、Billet R.Distillation and Absorption IChemE.Symp.Series,1992,No 128:A361
    9、黄洁、曾爱武、吴剑华、张雅芝,石油化工,1995,24(3):183~187
    10、Nutter.I.E.The Petroleum Engineer,1956,5,6—10
    11、张荣庆,化学工程,1992,20(3):66~69
    12、刘艳升、段道顺、赵景芳、沈复.化学工程,1994,22(1):10~13
    13、刘艳升、段道顺、赵培.石油化工,1996,25(8):563~568
    14、李玉安、赵培、刘吉、路秀林.高校化学工程学报,1997,11(3):261~267
    15、成枫、胡忠良、王忠诚等.石油化工,1995,24(2):118~123
    16、兰州石油机械研究所,塔器,1973
    17、Nutter,IChemE.Symp.Series,1979,No.56:47~61
    18、黄洁、吴剑华、王平.化学工程,1990,18(3):41~49
    19、洛阳石化工程公司设备研究所,第二届全国分离工程会议,天津,1986
    20、美国专利:1957,828,955
    21、韩树铠等.化工学报,1965,2:117~128
    22、兰州石油机械研究所,化工炼油机械通讯,1976,(4):1~12
    23、Hoppe et al.Chem.Techn.1971,23(6):342—348
    24、路秀林、刘玉民.化学工程,1981,(4):49—55
    25、清华大学化工系.化学工程,1975,(1):79~88
    26、Tanigawa Chem.Econ.and Eng.Review,1973,5(2):22
    27、化学装置(日),1978,20(3):69
    28、徐维勤.化学工程,1984,(6):12~17
    29、杜佩衡.石油化工设备,1993,22(5):8~12
    30、兰仁水.中国专利1996,1147412A
    31、王金戌、尚振华等.化学工程,1999,27(1):15~36
    32、谭天恩.化肥工业(旋流塔板技术专辑),1978
    33、化学工程手册编辑委员会.化学工程手册第13篇,1989:206~212
    34、谭天恩、汪大翬、金一中.石油化工设备,1991,(2):13~16
    35、陈建孟、谭天恩、史小农.化工学报,1993,(5):507~514
    36、史惠祥、谭天恩等.高校化学工程学报,1994增刊,133~139
    37、陈建孟、谭天恩、史小农.高校化学工程学报,1995(2):142~148
    38、Chen Jianmeng,Tan Tianen.Chinese J. of Chem.Eng.1997(2),59~65
    
    
    39、Chen Jianmeng,Tan Tianen.Chem.Eng.Commun.1998,168:243~257
    40、吴忠标、谭天恩.高校化学工程学报,1993(2):136~143
    41、吴忠标、谭天恩、潘学良.环境科学学报,1995(3):336~341
    42、晏乃强、施耀、李玉平等.环境科学,1998(5):72~74
    43、李玉平、谭天恩等.化学工程,1999(1):34~37
    44、施耀、吴忠标、谭天恩等.环境污染与防治,2000(2)
    45、徐崇嗣、俞晓梅.浙江化工学院学报,1979,(1):1
    46、浙江化工学院化工原理教研室.化工炼油机械通讯,1977,(2):9
    47、浙江化工学院化工原理教研室.化学工程,1978,(4):74
    48、王维德、俞晓梅、徐崇嗣.化工设计,1996,(5):38~41
    49、俞晓梅、徐崇嗣、朱锦忠.化工设计,1995,(6):17~30
    50、Sloley.Hydrocarbon Processing,1998,(8):53~61
    51、Williamson,H,F.,R.L.Andreano,A.R.Daum et al,The Ameriean Petroleum Industry——The age of energy 1899—1959,Morthewestern University Press,1963.
    52、Kastanek,F,M.Huml,V.Braum,I Chem.E.Symp.Ser..1969,32:100.
    53、增田贞夫,文富重信,正源司博,日立评注,1970,52(5):52。
    54、1960,33,(5):2029
    55、1966,35,(2):357
    56、张继鉴,双孔径穿流塔板的流体力学,化学工程,1977,(2):59~62。
    57、平田光穗,化学工场(日),1973,17(1):10
    58、金涌、沈静珠,化工学报,1980(1),103
    59、张桂昭、洪大章、蒋述曾,非均匀开孔率穿流塔的设计,化工设计,1997(2):7-11
    60、洪大章,蒋述曾,张桂昭等.非均匀开孔率穿流塔板板效率的研究.化学工程,1987,(3):33-41
    61、赵哲山,非均匀开孔穿流塔板传质过程的研究,化学工业与工程,1995,12(4):47~52
    62、董谊仁、张文敏.化学工程,1996,24(4):21
    63、李景鹤.化学工程,1988,16(1):31
    64、刘一鸣等.化学工程,1979,3:58
    65、王海帆.塔填料,1986
    66、李锡源等.化工机械,1980,5:1
    67、李阿娜等.化学工程,1984,4:37
    68、陈焕钦等.华南工学院学报,1981,2:58
    69、梅慈云、陈焕钦等.化工学报,1988,6:770
    70、化学工程手册编委会.化学工程手册—气液传质设备.化学工业出版社,1979
    71、刘乃鸿、卢励生.SW型网孔波纹填料的开发及工业应用,1992
    
    
    72、周建钧.波纹填料及其塔的工艺设计.上海化工研究院,1995
    73、卢励生、钱恒元、陈大昌.化工炼油机械,1982,(1):12
    74、李锡源.化工炼油机械,1981,(6)
    75、费维扬、房诗宏等.化学工程,1994,22(3):7
    76、费维扬、陈德宝等.化工进展,1997,2:36
    77、梁朝林等.化学工程,1994,22(2):6
    78、王树楹.现代填料塔技术指南,1998
    79、化工部第六设计院.化学工程,1979,3:13
    80、徐崇嗣.中国发明专利,ZL91103326.2
    81、姚克俭、计建炳、谭晓红、徐崇嗣.化学工程,1992,20(6):5~9
    82、计建炳、徐崇嗣.石油化工设备,1994,23(3):4~6
    83、计建炳、徐崇嗣.化学工程,1995,23(5):36~38
    84、Chuang et al.,US Patent 1994,5366,666
    85、Resetarits et al.,U S Patent 1995,5,407,605
    86、俞晓梅,田军,朱锦忠等,发明专利,1997,2L97103868.6
    87、李瓯等.上海化工,1999,11:6~7
    88、Dino A. Spagmolo and K.Tze-tang chuang, improving sieve tray Performance with Knitted Mesh Packing, Ind.Eng. Chem.Process Des. Dev. 1984, 23(3):561—565.
    89、Chen, G.X.. Afacan A..Xu C.et al. Performance of Combined Mesh Parking and Sieve Tray in Distillation. The Canadian Journal of Chemical Engineering. 1990,68(6),382-386
    90、XU, Z. P.,Afacan A.,Chuang K.T. Prediction of packed sieve tray efficiency in distillation. Tans IchemE, 1996,74(A),893-900
    91、化学工程,2000,28(1):14-17
    92、1956,(3): 28
    93、1962, (3): 41
    94、1962, (4): 61
    95、1958, (3): 160
    96、谭晓红,复合塔的研究[硕士论文],浙江工业大学,1992
    97、于凤文,复合塔的传质机理研究[硕士论文],浙江工业大学,1995
    98、1961, (8): 567
    99、Huml,M.&G.Standart:Brit. Chem. Eng., 1966, 11(11): 1370
    100、Foldes,P.&I. Evangelidi:Brit. Chem. Eng.,1968, 13(6): 832
    101、Z.P. Xu,A.Afacan&K.T. Chuang. Efficiency of Dualflow Trays in Distillation The Canadian Journal of Chem. Eng. 1994,72(8):607-613
    102、I.A.Furzer.Midelling of Mass Transfer in Plate Columns With Dual Flow.C.E.S. 1978,33:349-356
    103、O'Connell,H.E.Trans.Am.Inst. Chem. Engr. 1946,42:741
    
    
    104, Chu,J.c.et al. J.Appl.Chem. 1951,1:529
    105, English,G.E.,Van Winkle,M.Chem.Eng.,1963,70(23) :241
    106, Gester,J.A.et al .Tray Efficiencies in Distillation Columns,Final Report from the Univ .of Delaware, 195 8
    107, A.I.Ch.E. Bubble Tray Design Manual,1958
    108, Nernst ,W.Z.,Phys.Chem., 1904,47:52
    109, Higbie, R., Trans, A.I.Ch.E.,1935,31:368
    110, Danckwerts, P.V.,Ind.Eng.Chem.,1951,43:1460
    111, M.Prado &J.R.fair,A fundamental model for the prediction of sieve tray efficiency ,lnst .Chem.Eng.Symp.Ser.1987,(104) :A529
    112, G.X.Chen&K.T.Chuang, Prediction of Point Efficiency for Sieve Trays in Distillation ,Ind .Eng. Chem.Res.l993,32(4) :701-708
    113, Spiegel, L., Meier W. Correlations of Performance Characteristics of the Various Mellapak Types. (Capacity, Pressure Drop and Efficiency) . Inst.Chem.Eng.Symp.Ser. 1987,( 104) :203-215
    114, Michael.J.Lockett. Easily Predict Structured-packing HETP. Chem.Eng. Prog.(Reactions and separations). 1998,(1) ,60-66
    115, Harrison ,M.E.&J.J.France .Distillation Column Troubleshooting,Chem.Eng. 1989,(4) :121
    116, J.L.Bravo,J.A.Rocha&J.R.Fair,Mass Transfer in Gauze Packings ,Hydroc .Proc. 1985,(1) :91-95
    117, J.L.Bravo,J.A.Rocha&J.R.Fair,A Comprehension Model for the Performance of Column Containing Structured Packings ,I.Chem.E.Symp.Ser.l992, (128) :A439
    118, J.R.Fair & J.L.Bravo, Distillation Column Containing Structured Packing , C.E.P.1990,(1) 19-29
    119, J.L.Brav,J.A.Rocha &J.R.Fair, Distillation Columns Containing Structured Packings : 1 .A Comprehensive Model for their Performance, 2 .Mass Transfer Model ,Ind .Eng.Chem.Res . 1996,3 5:1660
    120, F.J.Zuidenveg ,P.J.Hoek&L.Lahm Jr .,The Effect of Liquid Distribution & Redistribution on the Saparating Efficiency of Packed Columns ,Inst.Chem. Eng.Symp.Ser.l987,(104) :A217
    121 , H.L.Mahendru & A.Hackl, Contribution to The Design of Trayss Without Downcomers I.Chem.E.Symposium.Series NO.56,35-46
    122, 萧成基,于鸿寿,气液传质设备,化学工程手册,化学工业出版社,1979,13:83
    123, 王良华,穿流板结构参数对复合塔板的性能影响[硕士论文] 浙江工业大学,1998
    124, Toshiro Miyahara ,Kurihare M,Asoda M.et al. Gas-liquid interfacial area and
    
    liquid-phase mass transfer coefficient in sieve plate columns without downcomer operating at high gas velocities. Journal of Chemical Engineering of Japan. 1990,23(3),280-285
    125、Sundaresan, A. & Varma Y.B.G. Interfacial Area and Mass Transfer in Gas-Liquid Cocurrent Upflow and Countercurrent Flow in Reciprocating Plate Column. The Canadian Journal of Chemical Engineering. 1990,68:952-958
    126、杨建忠,周肇义.筛板上气泡群的传质,化工学报,1989,(4):500-506
    127、Colderbank,P.H.&M.B.Mao-young,The Mass-Transfer of Distillation & Gas-Absorption Plate Column,Inst.Chem.Eng. Symp. Ser. 1960,No.60:59-72
    128、Kawase,Y.&M.B.Mao-young,Mathermatical Models for Design of Bioreactors,Chem. Eng. J. 1990,43:B19-B43
    129、王树楹主编,现代填料塔技术指南,中国石化出版社,1998:95
    130、李再琮,李玉生 丙酮精馏塔的计算工艺分析,石油化工,1983,12(10):591~599
    131、张文效,王殿忠 我国甲醇生产主精馏塔现状分析,化学工程,1992,20(3):75~76
    132、钱仁渊,程明霄,史美仁等 甲醇生产主精馏塔的模拟计算,燃料化学学报,1995,23(2):162~167
    133、张菊珍,秦金平,钱仁渊等 我国甲醇精馏主塔废水的分析,天然气化工,1995,20(6):31~35
    134、姚克俭,祝玲钰,计建炳等 复合塔的开发及其工业应用,石油化工,2000,29(10):772~775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700