铝合金表面Ce-Mn转化膜常温制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用六价铬转化膜来提高铝合金的耐腐蚀性能,是最常用的表面处理技术之一。然而,六价铬有毒,在电器及电子工业中,欧盟已经禁止使用,因此对环境友好的替代铬技术的研究与开发成为当今铝合金表面急需解决的问题。稀土转化技术就是其中最有希望替代铬化处理的技术。
     目前大多数稀土转化成膜工艺复杂,处理的温度较高,时间较长等限制了其规模化的应用。本文针对上述问题研究了一种高效、环保、金黄色的稀土转化膜室温制备技术,并对其成膜机理和耐腐蚀性能进行了系统而深入的研究。
     首先确定了以Ce(NO_3)_3为主盐和KMnO_4为氧化剂的常温转化液基础工艺。采用正交实验和单因素实验研究了四个变量(包括沉积时间、槽液pH及硝酸铈和高锰酸钾的浓度)对Ce-Mn转化膜的防腐蚀性能的影响,获得了该体系的优化工艺条件:时间30min、pH=2.0、Ce(NO_3)_3和KMnO+4的浓度分别为10g/L和2g/L。采用扫描电镜、能谱及光电子能谱对转化膜的形貌、成份及价态进行了表征,结果表明,转化膜中铈元素的价态为三价和四价,锰元素的价态为四价。
     为了提高Ce-Mn转化膜的常温成膜速度和耐腐蚀能力,以前述基础工艺为前提选择添加H_3BO+3、Zr(SO_4)_2、NaF、HF、NaBF_4和Na_2ZrF_6为成膜促进剂。实验发现,NaF和NaBF+4能有效地提高成膜速度,9min就可以在铝合金表面生成金黄色的转化膜,耐腐蚀能力明显得到改善。无论是极化曲线还是交流阻抗结果都显示,NaF是其中最好的成膜促进剂。采用扫描电镜、能谱及光电子能谱分析了转化膜的形貌、成份及价态,结果表明添加NaF后,转化膜膜层更均匀,铈和锰的含量增加,铈元素的价态为三价和四价,锰元素的价态为四价。
     选择NaF为成膜促进剂,采用正交实验和单因素实验,进一步优化了制备Ce--Mn转化膜的工艺。获得了最佳工艺参数为10 g/L Ce(NO_3)_3 + 2 g/LKMnO_4 + 0.6g/L NaF, 9 min。通过大量实验发现,前处理对转化膜的成膜过程和性能至关重要。通过优化获得了一种新的前处理工艺:即在混合酸溶液(HNO_3(100mL/L)、Na_3PO_4(10mL/L)、HF(10mL/L)、OP-10(1.5g/L)和硫脲(0.5g/L))中室温下浸泡3分钟→1%NaOH溶液中浸渍30秒。就前处理对转化膜成膜过程的影响规律进行了深入研究,发现应用混酸处理后,没有以往前处理工艺中铁,铜和锌的溶解--再沉积过程的发生,表面阴极点分布均匀细密,沉积速率大幅提高,生成的膜厚且致密均匀,使Ce-Mn转化膜耐腐蚀能力得到较大提高。
     深入研究了转化膜的成膜原理。对各元素沉积的临界pH值进行了理论计算,采用极化曲线及交流阻抗技术研究了成膜时间、转化液pH值以及硝酸铈、高锰酸钾和氟化钠的浓度对成膜过程的影响;建立了转化膜成膜机理模型,采用光电子能谱(XPS)验证了机理模型的合理性。
     对Ce-Mn转化膜处理后的样品进行热喷涂实验,结果显示本研究提出的稀土转化技术符合国标GB 5237.4-2004第四部分,粉末喷涂型材的要求,达到国家标准。本课题研究的Ce-Mn膜转化技术,可以使6063铝合金表面生成金色的化学转化膜,具有良好的耐腐蚀性能。该处理工艺简单,无毒副作用,有望成为铝型材铬酸盐化学转化处理的替代技术。
As one of the most popular surface treatment technologies, chemical conversion coating based on Cr~(6+) is widely used to improve the corrosion resistance of aluminium alloys. However, Cr~(6+) is toxic and its application has been prohibited in electrical and electronics industries by the European Union. There is an emergent need to develop an environmentally friendly chromate-free technology for the surface treatment of aluminium alloys. Rare-earth metals conversion coating is one of the most promising green alternatives.
     Currently most rare-earth metals conversion coating technologies are complicated, time consuming and elevated temperature is needed for the treatment. Its industrial application is thus limited. In this thesis, a high efficient, environmentally friendly conversion coating technology based on rare-earth metals is presented. The treatment is carried out at room temperature and the coating is of golden color. The detailed mechanism of coating formation and the reason for corrosion resistance enhancement are discussed.
     The room temperature treatment solution is based on Ce(NO_3)_3 and KMnO4. Four parameters (deposition time, pH value, the concentration of Ce(NO_3)_3 and KMnO4) were investigated for the influence on corrosion resistance of Ce-Mn conversion coating by orthogonal and single factor experiments, respectively. The solution composition and treatment parameters were optimized as follows: treatment time is 30 min, pH = 2, and the concentrations of Ce(NO_3)_3 and KMnO4 are 10g/L and 2g/L respectively. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photo-electron spectroscopy (XPS) were used for the conversion coating characterization. Ce was found in the coating with the valence state of +3 and +4, while the valence state of Mn was +4.
     In order to improve the corrosion resistance and room temperature formation speed of Ce-Mn conversion coatings,H_3BO_3、Zr(SO_4)_2、NaF、HF、NaBF_4和Na_2ZrF_6 were selected as additives in to the above mentioned treatment solution. Both NaF and NaBF4 can effectively increase the coating formation speed and in dued golden conversion coating with exellent corrosion resistance. As indicated by both potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS), NaF is the best additive for the forming of the coating of high quality. The solution composition was further optimized as: 10 g/L Ce(NO_3)_3 + 2 g/LKMnO_4 + 0.6 g/L NaF, the coating process only 9 min.
     It is interesting to note that pre-treatment process is crucial to the formation speed and performance of conversion coating. A new pre-treatment was developed: 3 min soaking in home made solution (100mL/L HNO_3 + 10mL/L Na_3PO_4 + 10mL/L HF + 1.5g/L OP-10 + 0.5g/L thiourea) at room temperature, followed by 30 seconds soaking in 10 wt.% NaOH. It was found that after such pre-treatment, there was no dissolution and re-precipitation of iron, copper and zinc during conversion coating process. Cathodic area was small and distributed closely and uniformly on the aluminium alloy surface. The coating formation speed was raised and the resultant coating was compact and uniform. The coating corrosion resistance was enhanced.
     The formation mechanism of conversion coating was investigated. The critical pH value for the deposition of different elements was calculated. The effects of treatment conditions (time, pH value, concentration of Ce(NO_3)_2, KMnO_4 and NaF) on the growth of conversion coating was studied by electrochemical techniques. A model of conversion coating formation mechanism was put forward and justified by XPS.
     Thermal spray was carried out on aluminium alloy after Ce-Mn conversion coating treatment. The conversion coating technology developed in this study was shown to meet the Part 4 of National Standard GB 5237.4-2004 as required by powder coating profiles. A golden conversion coating with good corrosion resistance was achieved on 6063 aluminium alloy. Such conversion coating treatment on aluminium profiles is simple and environmentally friendly, and might be used as an alternative for the treatment that is based on toxic chromate.
引文
[1]朱祖芳.铝合金阳极氧化与表面处理技术.北京:化学工业出版社[M], 1999: 58-86
    [2]朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社[M], 1998: 126-135
    [3] Szklarska-Smialowska Z.. Pitting corrosion of aluminum[J]. Corrosion Science, 1999, 41(9): 1743-1767
    [4] Frankel G.S., Stockert L., Humkeler F., et al. Metastable pitting of stainless-steel[J]. Corrosion, 1987, 43(7): 429-436
    [5] Williams D.E, Stewart J., Balkwill P.H., et al. The nucleation, growth and stability of micropits in stainless steel[J]. Corrosion Science, 1994, 36(7): 1213-1235
    [6] Frankel G.S., Scully J.R., Jahnes C.V.. Repassivation of pits in aluminum thin films[A]. Natishan P.M.. Proceedings of the Symposium on Critical Factors in Localized Corrosion II [C]. Chicago: IL, 1995: 9-11
    [7] Buzza D.W., Alkire R.C.. Growth of corrosion pits on pure aluminum in 1M NaCl[J]. Journal of the Electrochemical Society , 1995, 142(4): 1104-1111
    [8] Galvele J.R. De Micheli S.M.. Mechanism of intergranular corrosion of Al-Cu alloys[J]. Corros Sci., 1970, 10(11): 795-807
    [9] Hunkeler F., Boehui H.. Determination of pit growth rates on aluminium using a metal foil technique [J]. Corrosion, 1981, 37(11): 645-650
    [10]曹发和.高强度航空铝合金局部腐蚀的电化学研究[D].杭州:浙江大学, 2005
    [11] McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions[J]. Corrosion Science, 2003, 45(7): 1421-1438
    [12] Sehgal A., Lu D., Frankel G.S.. Pitting in aluminum thin films - Supersaturation and effects of dichromate ions[J]. Journal of the electrochemical society, 1998, 145(8): 2834-2840
    [13] Frankel G.S.. Pitting corrosion of metals - A review of the critical factors[J]. Journal of the electrochemical society, 1998, 145(6): 2186-2298
    [14] Wu B., Scully J.R., Mikhailov A.S.. Cooperative stochastic behavior in localized corrosion .1. Model[J]. 1997, 144(5): 1617-1620
    [15] Ergun M., Balbasi M., Tosun A.. Correlation model of aluminium pitting potential variation withenvironmental conditions[J]. British corrosion Jornal, 1997, 32(2): 117-120
    [16] Zhang W.L., Frankel G.S.. Anisotropy of localized corrosion in AA2024-T3[J]. Electrochemical and solid stateletters, 2000, 3(6): 268-270
    [17] Tak Y., Sinha N., Hebert K.R.. Metal dissolution kinetics in aluminum etch tunnels[J]. Journal of the electrochimical society, 2000, 147(11): 4103-4110
    [18] Katoh M.. Influence of chelating agent (citric acid) and F? on corrosion of Al[J]. Corrosion Science, 1968, 8 (6): 423-431
    [19] Richardson J.A., Wood G.C.. A study of the pitting corrosion of Al by scanning electron microscopy[J]. Corrosion Science, 1970, 10(5): 313-323
    [20] Murglescu L.G., Radovic O., Ciolac S.. The effect of some oxidizing substances on the behaviour of some aluminium alloys[J]. Corrosion Science, 1964,4(1-4): 353-361
    [21] Pryor V.. Contribution to a discussion on "a study of the pitting corrosion of Al by scanning electron microscopy" by J.A.Richardson and G.C.Wood. Corrosion Science, 1971, 11(6):463-464
    [22] Wilson B.A.. Identification of inhibitor films on aluminium in silicate solutions[J]. Corrosion Science, 1971, 11(7): 527-531
    [23] Foley R.T.. Localized corrosion of aluminum alloys-a review[J]. Corrosion, 1986, 42(5): 277-288
    [24] Baumgartner M., Kaesche H.. The nature of crevice corrosion of aluminum in chloride solutions[J]. Werkstoffe und Korrosion, 1988, 39(3): 129-135
    [25] Richardson J.A., Wood G.C.. A study of the pitting corrosion of Al by scanning electron microscopy[J]. Corrosion Science, 1970, 10(5): 313-323
    [26] Chao C., Zhao z., Fahe C., et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique[J]. Journal of Electroanalytical Chemistry, 2005, 578(1): 143-150
    [27] Yu S.Y., O'Grady W.E., Ramaker D.E., et al. Chloride ingress into aluminum prior to pitting corrosion - An investigation by XANES and XPS[J]. Journal of the electrochimical society, 2000, 147(8): 2952-2958
    [28] Stirrup B.N., Hampson N.A.. Midgley L.S.. Pit formation in relation to the etching of aluminium in chloride solutions[J]. Journal of Applied Electrochemistry , 1975, 5(3): 229-235
    [29] Stirrup B.N., Hampson N.A.. Pit propagation in aluminium under anodic polarization in aqueous chloride electrolyte[J]. Journal of Applied Electrochemistry , 1977, 7(1): 91-92
    [30] Chen G.S., Gao M., Harlow D.G., Wei R.P., "Corrosion and Corrosion Fatigue of Airframe AluminumAlloys," FAA/NASA lnt. Symp. Advanced Structural lntegrity Mthods forAirframe Durability and Damage Tolerance, NASA conf. Pub. 3, 274 Hampton, VA:Langley Research Center, 1994, p.157
    [31] Chen G.S, Liao C.M, Wan K.C, Gao M., Wei R.P..“Pitting Corrosion and Fatigue Crack Nucleation," in Effects of the environment on initiation of Crack Growth, ASTM STP 1298, eds. W.A. Van. Der Sluys, R. S. Piascik, R. Zawierucha (West Conshohocken, P A.: ASTM,1997
    [32]林肇琦.有色金属材料学[M].沈阳:东北工学院出版社, 1986
    [33]刑淑仪.铝合金和钦合金[M].北京:机械工业出版社, 1987
    [34]胡文彬,刘亮.难镀基材的化学镀技术[M].北京:化学工业出版社, 2003
    [35]王受谦.防腐蚀涂料与涂装技术[M].北京:化学工业出版社, 2002
    [36]曾华梁,杨家昌.电解和化学转化膜[M].北京:轻工业出版社, 1987
    [37]孙宝德等.铝合金抗大气腐蚀表面处理.腐蚀与防护[J]. 1999, 20(1): 24-30
    [38]李鑫庆,余静琴,谢蕴丹.铝及其合金阳极氧化的最新发展[J].机械工人热加工, 2005, (9): 19-23
    [39]宋日海,郭忠诚,李爱莲,等.铝及铝合金阳极氧化、着色及封闭的现状和发展趋势[J].电镀与精饰, 2002, 21(6): 27-33
    [40]朱立群.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社, 2005: 217-245
    [41] Tracey A. Markley, Maria Forsyth, et al. Corrosionp rotection of AA20242T3 using rare earth diphenylphosphates[J]. Electrochimica Acta, 2007, 52:4024-4031
    [42]李学军,耿长栓,张胜利.铝合金脉冲换向氧化着色工艺[J].电镀与涂饰, 1998, 18(2): 41-43
    [43]刘珍.铝合金基体微观组织对阳极氧化膜层形貌和性能的影响.太原重型机械学院学报, 1998, 19(3): 230-233
    [44]洪春,王强,肖鑫.铝及其合金光干涉电解着色初探,电镀与精饰, 1998, l0(1): l6-18
    [45] Huiquan Wu. Atomic force mieroscopy study of the intinal stages of anodie oxidation of Aluminum in Phosphoric acid solution, Journal of the electrochemical society, Vol. 147, No.6, 2000
    [46]朱祖芳。铝合金阳极氧化的常见缺陷。轻合金加工技术, 1998, 26(4): 29-32
    [47]韦春才,赵泉柱。铝阳极氧化缺陷形成机制及改善方法。沈阳工业大学学报, 1999, 21(1):48-49
    [48]卢燕平,方百友,金艳明. 6063铝型材表面点腐蚀缺陷分析.表面技术, 1998, 28(4): 5-7
    [49]方百友,卢燕平,余庆,等. 6063铝型材表面过腐蚀的研究.腐蚀科学与防护技术, 1998, 10(1):28-32
    [50] Baizuldin B.M.. Thin Anodie Aluminum Oxide Films with unusual morphology[J]. Metal Finishing,1993, 91(12): 27-29
    [51] Mario Raisi,乔跃民.铝型材表面处理前后缺陷的探讨.铝加工, 1997, 20(1): 39-40
    [52] Xin shiGang, Song LiXin,Zhao RongGen, et al. Properties of alummum oxide coating onaluminum alloy produced by micro-arc oxidation[J]. Surface and Coatings Technology, 2005, 199(2-3): 184-188
    [53] Sdakiyan L.S., EfremovA.P., Epelfeld A.V..Further development of ideas of G.V. Akimov on the surface oxide films and their effect othe corrosion and mechanical behavior of aluminum alloys [J]. Protection of metals, 2002, 38(l): 161-165
    [54] Hong Fei-Guo, Mao Zhong-An, Shen Xu, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy[J]. Materials Letters, 2006, 60(12): 1538-1541
    [55] Nie X., Meletis E.I., Jiang J.C., et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3, Coatings fabricated using plasma electrolysis[J].Surface and Coatings Technology, 2002, 149(2-3): 245-251
    [56] Wei Tong-Bo, Yan Feng-yan, Tian Jun.Characterization and wear- and corrosion-resistance of microare oxidation ceramic coatings on aluminium alloy[J].Journal of Alloys and Compounds, 2005, 389(l-2): 169-176
    [57] Boguta D.L., Rudnev V.S., Yarovaya T.P., Kaidalova T.A., Gordienko P.S..on composition of Anodic-spark coatings formed on aluminum alloys in electrolytes with polyphosphate complexes of metals[J]. Russian Journal of APplied Chemistry. 2002, 75(10): 1605-1608
    [58] Gordienko P.S., Skorobogatova T.M., Khrisanfova O.A., et al.Protection from bimetal cormsion in a steel titanium pair by microarc oxidation[J].Protection of Metals.1992, 28: 92-96
    [59]薛文彬,邓志威,汪新福,等.铝合金微弧氧化陶瓷膜的形貌及相组成分析[J].北京师范大学学报(自然科学版), 32(1), 1996: 67-70
    [60]李学静,鞠治刚.铝合金表面微弧氧化原位生长A1203:陶瓷层技术.特种铸造及有色合金, 2002, (2): 34-36
    [61] Bakovets V.V.. Oxide films produeed by treatment of aluminium alloys in concentrated sulfuric acid in anodic-spark system. ProtMet, 1986, 22(3): 358-361
    [62] Yang G, Lu X, Ba iY et al.The effcets of current density on the phase composition and m1erostrueture properties of mieroarc oxidation coating. J Alloy Comps, 2000, 345: 196-200
    [63]孙保德.铝及铝合金防腐蚀表面处理技术研究现状与发展.腐蚀与防护. 1998, 19(5): 196-198
    [64]王德云,东青,陈传忠等.微弧氧化技术的研究进展.硅酸盐学报.2005, 33(9): 1135-1140
    [65]韦星,吴幸凯,植海深,等.铝及其合金表面微弧氧化工艺的研究进展。煤矿机械, 2008, 29(9): 10-14
    [66]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景.金属热处理, 2004, 29(l): 23-29
    [67]成都市科技交流站表面处理研究会.电镀技术.成都:四川人民出版社, 1982: 73-74
    [68]翟金坤,黄子勋等.化学镀镍.北京:北京航空学院出版社, 1987: 5-37
    [69]伍学高.化学镀技术.成都:四川人民出版社, 1982;68-74
    [70]秦效慈,余尚银.表面镀覆技术---化学镀的进展,化学通报, 1996, 8: 30-36
    [71] Delaunois F., Petitjean J.P., Lienard P.. Autocatalytic electroless nickel-boron plating on light aloys[J]. Surface and Coating Technology, 2000, 124(2): 201-209
    [72] Delaunois F., Lienard P.. Heat treatments for electroless nickel-boron plating on aluminium alloy[J]. Surface and Coating Technology, 2002, 160(2-3): 239-248
    [73]庄瑞舫.化学镀镍磷合金技术探讨(I)[J].材料保护, 1997, 30(9): 41-43
    [74]姜哓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社, 2000: 45-55
    [75] Wang H., Wang H. W. Thick and hard anodizedaluminum film with large pores for surface composites [J]. TransNonferrous Met Soc China, 2004, 14 (S1): 166-169
    [76] Chen N C, Ao H M, Zhan Z. L. The Controlling Factors in the content of Cr6+ in Green Strontium Ferrite[J]. Materials Science Forum, 2009; 610-613(1): 28-31
    [77] Pohlein M, Bertran R U, Wolf M., Eldik R V. Analytical and Bloanalytical Chemistry, 2009; 394(2): 583-590
    [78] Vizzhachii A.G., Moiseev V.E.; Sharygin L.M.. Homogenity of ephrical sorbents based on zirconium titanium, and tin phosphates and hexacyanoferrates(II), synthesized by the sol-gel method[J]. Inorganic Materials, 1986,22(3): 396-399
    [79] Vennschott H, Kamsdhek U. Chrom-free conversion coating trestment of aluminun. [P] US Patent No 5584946, Henkel KGAA, 1996
    [80]王祝堂.铝材及表面处理手册[M].南京:江苏科学技术出版社, 1992
    [81] Benjamin S. Y. Prepaint treatments for aluminum [J]. Met Finish, 1986,84 (7): 11-14.
    [82]王双红,刘常升,单凤君.铝及其合金无铬钝化的研究进展[J].电镀与涂饰, 2007,26(7) : 48-50
    [83]王成,江峰. LY12Al合金铬磷化处理[J].腐蚀科学与防护技术, 2002,14 (2): 82-85
    [84]孔纲,卢锦堂,陈锦虹.镀锌层铝酸盐钝化膜腐蚀行为的研究[J].材料保护, 2001, 34(11): 7-9
    [85]中田和也,川口元哉,前田一博.輕金属または輕合金材料用表面処理液: JP,特開平11-36082[P]. 1999-02-09
    [86]葛圣松,杨玉香,邵谦.铸铝表面无铬黑色转化膜的形貌及耐蚀性[J].腐蚀科学与防护技术, 2006, 18(3): 228-230
    [87] Wilcox G. D., Gabe D. R., Warwick M. E. The development of passivation coatings by cathodic reduction in sodium molybdate solution[J]. Corrosion Science, 1988, 28 (6): 577-587
    [88] Buchheit R. G. Drewien C. A. Martinez M. A. et al. Chromate-free corrosion resistant conversion coatings for aluminum alloys [C].Proceedings of Annual Meeting & Exhibition of the Minerals, Metals and Materials Society. 1995(08): 173-182.
    [89]郑辅养,丁红波,马廷椿,等.铝合金上锂盐抗蚀层的研究[C].中国腐蚀与防护学会成立二十周年论文集.北京:中国腐蚀与防护学会,1999: 150-152
    [90]刘文君,张英杰,章江洪,等.工艺因素对硅酸盐无铬钝化中耐蚀性的影响[J].2007,02(31): 1-6
    [91] Wilcox G. D., Gabe D.R.. Passivation studies Using Group VIB Anions, Part 4: Cathodic redox reactions and film formation[J]. British Corrosion Journal, 1984,19(4): 196-222
    [92] Cowieson D.. Scholefield A R.Passivation of tin-zinc alloy coated steel[J]. trans iMF, 1985, 63(2): 56-68
    [93] da Silva C. G, Correia A N. Study of conversion coatings obtained from tungstate-phosphoric acid solutions[J]. Corrosion Science. 2005, 47(3): 709-722
    [94] Uplan P.. The effect of sealers on increase corrosion resistant of chromate-free passivated pn zinc and zinc-alloys[J]. Planing and Surface Finishing, 2001, 88(2): 68-72
    [95] Beccaria A. M.,Chiaruttinil.The inhibitive action of metacryloxy-propylmetho xysilane (MAOS) on aluminium corrosion in NaCl solutions [J].Corrosion Science, 1999, 41 (5): 885-899
    [96]郭瑞光,杨杰,康娟.铝合金表面钦酸盐化学转化膜研究闭[J]..电镀与涂饰, 2006, 25(l): 46-48
    [97] Motoaki Hara, Ryoiehi Iehino, Masazumi Okido. Corrosion protection property of colloidal silicate film on galvanized steel[J].. Surface and Coating Technology,2003, 169-170: 679-681
    [98] Mansfeld F., Lin S., Kim S., et al. Corrosion protection of Al alloys and Al-based metal matrix composites by chemical passivation[J]. Corrosion, 1989, 45(8): 615-629
    [99] Mansfeld F., Wang Y.. Corrosion protection of high copper aluminium alloys by surface modification[J]. British Corrosion Journal, 1994, 29(3): 194-200
    [100]韩克平.镀锌层表面硅酸盐防腐膜的研究[J].腐蚀科学与防护技术, 1997, 9(2): 167-170
    [101] Mansfeld F., Wang V., Shi H.. The Ce-Mo process for the development of a stainless Aluminum[J]. Electrochemical. Acta, 1992, 37(12): 2283-2290
    [102] Mansfeld F.. Surface modification of aluminum alloys in melten salts containing CeCl3[J]. Thin Solid Films, 1995, 270(1-2): 417-421
    [103] Rangel.,CM.Paiva, TI.DaLuz.P.. Anticorrosion treatments for Aluminum and Aluminum alloys[J]. Italy:9th European Symposium on Corrosion Inhibitors, 2000:507-519
    [104] Kasten L.S., Grant J.T. and Grebasch N.. An XPS study of cerium dopants in solgel coatings for aluminum 2024-T3[J]. Suraface and Coatings Technology, 2001,140:11-15
    [105] Fang J.L., Wu N.J.. Determination of the composition of viscous liquid film on electropolishing copper surface by XPS and AES[J]. Journal of the Electrochemical society, 1989, 136 3800-3803
    [106]李久青,卢翠英,高陆生等.铝合金表面稀土铈耐蚀膜[J],北京科技大学学报, 1995, 17 (6):584-589
    [107]李久青,卢翠英,高陆生,等.铝合金表面四价铈盐转化膜及其耐蚀性[J],腐蚀科学与防护技术, 1996, 8(4):271-275
    [108]李久青,田虹,卢翠英,等.铝合金稀土转化膜碱性成膜工艺T3/T7的研究[J],腐蚀科学与防护技术, 1998,10(2):98-102
    [109]于兴文,曹楚男,林海潮,等. LY12铝合金表面双层稀土转化膜的研究[J],材料研究学报, 2000, 14(3):289-295
    [110]于兴文,周育红,周德瑞,等.铝合金LY12表面四价铈转化膜工艺及耐蚀性研究[J].电镀与环保, 1998, 18(5):27-29
    [111]李瑾,胡国武,欧阳砥,等.铈对人膀胱癌细胞基质金属蛋白酶-9表达及活性的影响[J].中国稀土学报, 2003, 21(1):85-88
    [112] Mountain Pass.. Cerium:A Guide to its Role in Chemical Technology[J]. USA: Molycorp, Inc,1995:82
    [113] Hinton B R W.. The inhibition of aluminum corrosion by cerium cations[J]. Metals Forum, 1984,7(4):211-217
    [114] Hinton B R W.. The inhibition of aluminum corrosion by rare earth metal cations[J]. Metals Forum, 1985,10(3):12-17
    [115] Campestrini P., Terryn H., Hovestad A., et al. Formation of a cerium-based conversion coating on AA2024:relationship with the microstructure [J]. Surface and Coatings Technology, 2004, 176:365-381
    [116] Hinton B. R. W.. The inhibition of aluminum corrosion by cerium coatings[J]. Metals Forum, 1984, 7 (4):211-217
    [117] Hinton.B. R. W. The inhibition of aluminum corrosion by rare earth metal coatings[J]. Metals Forum, 1985, 10 (3):12-17
    [118] Hinton B R W.. Metal cleaning treatment with acidic solutions containing rare earth ions and suitable for desmutting[P]. AU Patent:WO 08008,1995
    [119]李久青,卢翠英,高陆生,等.铝合金表面稀土耐蚀膜[J].北京科技大学学报, 1995, 17(6): 584-588
    [120]陈溯,陈晓帆,刘传烨,等.铝合金表面稀土转化膜工艺研究[J].材料保护, 2003, 36(8):33-35
    [121] Cheng D. C., Li W.F., Gong W.H., et.al.. Microstructure and formation mechanism of Ce-bases chemical conversion coating on 6063 Al aloy[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 592-600
    [122]陈东初,黄柱周,李文芳.铝合金表面无铬化转化膜的研究[J].表面技术, 2005, 34(6): 38-39
    [123]陈东初,李文芳,龚伟惠,等.铝合金表面无铬化转化膜的制备及其性能[J].中国有色金属学报, 2008, 18(10): 1939-1844
    [124]陈东初,吴桂香,潘晖,等.铝合金环境友好型非铬化化学转化表面处理技术的研究[J].兵器材料科学与工程, 2007, 30(5): 32-36
    [125]吴桂香,陈东初,李文芳,等.铝型材表面环保型稀土转化膜制备与工艺优化[J].轻合金加工技术, 2006, 34(10): 40-46
    [126]陈东初,李文芳,黄铭深.铝合金表面制备耐腐蚀性氧化膜的转化液及其使用方法[P].中国: CN101139708, 2008.03.12
    [127]张军军,李文芳,杜军.室温下铝合金表面Ce-Mn转化膜的制备及性能[J].金属学报, 2009, 45(12):1466-1472
    [128]张军军,李文芳,杜军.常温时添加剂对Ce-Mn转化膜的影响[J].华南理工大学学报(自然科学版), 2010, 38(4):76-82
    [129]张凯,李文芳,杜军.含盐对铝合金稀土转化膜耐腐蚀性能及膜层结构研究[J].功能材料, 2010, 41(3):512-514
    [130] Andrew Kindler.. Chromium-Free method and composition to protect aluminum[P]. US patent: US5192374, 1993
    [131] Yu X.W., Cao C.N., Yao Z.M., et al. Study of double layer rare earth metal conversion coating on aluminum alloy LY12[J]. Corrosion Science, 2001(43):1283-1294
    [132] Mansfeld F.. Surface modification of aluminum alloys in molten salts containing CeCl3[J]. Thin Solid Films, 1995, 270(1-2):417-421
    [133]唐聿明,燕佳焰,左禹.炭板阳极对铝合金表面稀土电沉积转化膜性能的影响[J].材料保护, 2007, 40(1):3-4
    [134]李国强,李荻,郭宝兰等.铝合金阳极氧化膜上铈转化膜沉积的电化学研究[J].北京航空航天大学学报, 2001, 27(10):495-498
    [135] Pardo A., Merino M.C., Arrabal R., et al. Ce conversion and electrolysis surface treatment applied to A3xx.x alloys and A3xx.x/sicp compositipon[J], Applied Surface Science, 2007, 253: 3334-3344
    [136] Heller D.K., Fahrenholtz W.G. and Okeefe M.J.. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3[J]. Corrosion Science, 52(2): 360-368
    [137]唐鋆磊,唐聿明,左禹.稀土转化膜钼酸盐后处理工艺研究[J].材料保护, 2006, 39(11): 27-29
    [138] Hinton B.R.W.. Corrosion inhibition with rare earth metal salts[J]. Journal of Alloys and Compounds, 1992, 180(1-2):15-25
    [139] Arnott D.R., Ryan N.E., Hinton B.R.W.. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminium alloy[J]. Application of surface science, 1985, 22/23(3): 236-251
    [140] Aldykewicz A.J., Issacs H.S., Davenport A.J.. The investigation of Cerium as cathodic inhibitor for aluminium-copper alloys[J]. Journal of the Electrochemical Society, 1995, 142(10):3342-3350
    [141] Aldykewicz A.J., Issacs H.S., Davenport A.J.. Studies of formation of cerium-rich protective films using X-ray absorption near-edge spectroscopy and rotating disk electrode methods[J]. Journal of the Electrochemical Society, 1996, 143(1):147-154
    [142] Hughes A.E., Taylor R.J.. XPS and SEM characterization of hydrated cerium oxide conversion coatings[J]. Surface and Interface Analysis, 1995, 23(7-8):540-550
    [143] Mansfeld F., Wang Y.. Corrosion protection of high-copper aluminum alloys by surface modification[A]. Hebert K.R., Thompson G.E.. Proceedings of the Seventh International Symposium on Oxide Films on Metals and Alloys[C]. Pennington, NJ, USA:Electrochem. Soc, 1994: 200-215
    [144] Manuele D., Lidia A., Alberto B., Et al. Cerium-based eonversion layers on aluminum alloys[J]. Applied surface science, 2001, 172(3-4):312-322
    [145]张海兵.铝合金表面稀土转化膜的成膜机理及其性能改善研究[D].北京:北京化工大学, 2005
    [146]曹楚南.腐蚀电化学原理[M].第二版.北京:化学工业出版社,2003: 190-199
    [147]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006: 161-162
    [148]蒋兰宏.新生Mn对酸性媒介黑T的吸附[J].光谱实验室, 2002, 19(4): 550-553
    [149]曹楚南.腐蚀电化学原理[M].第二版.北京:化学工业出版社,2003: 180-182
    [150] Julien C, Massot M, Baddour-Hadjean R. et al.. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics, 2003, 159(3-4): 345-356
    [151] Nakai S., Watanabe T., Sasaki K., et al.. Resonant L-alpha X-ray Raman scattering spectra of CeF3, CeO_2 and CeB6[J]. Surface review and letters, 2002, 9(2): 1059-1064
    [152]张伟,刘开宇,张莹,等. MnO_2的机械化学法制备及其性能[J].功能材料与器件学报, 2007, 13(5): 415-420
    [153]胡震.在微波辐射作用下制备纳米CeO_2及其表面改性研究[J].香料香精化妆品, 2007, 4: 8-11
    [154]尹晓光,张琪凯,刘金库,等.α-Al_2O_3纳米片的自然烧法控制合成及其抛光性能[J].物理化学学报, 2009, 25(7): 1443-1448
    [155]刘锐平.高锰酸钾及其复合剂氧化吸附集成化除污染效能与机制[D].哈尔滨:哈尔滨工业大学, 2005
    [156] B? S, Greef R,Mcmurray H N, et al.. Kinetic and mechanistic studies of rare earth-rich protective film formation using in situ ellipsometry[J]. J Electrochem Soc, 2000, 147(9): 3286-3293
    [157] Pourbaix M. Atlas of electrochemical Equilibria in Aqueous Solution[M]. New York: Pergamon Press, 1966:183
    [158] YU Xing-wen, CAO Chu-nan, YAN Chuan-wei, et al. Study on the formation mechanism of Ce conversion coatings on LY12 alloy[J]. Acta Metallurgica Sinica, 2000, 36(9):979-984
    [159]周浩然,林飞,赵德明,等. Al_2O_3杂化聚酰亚胺薄膜Al含量测试方法研究[J].光谱学与光谱分析, 2009, 29(1): 250-254
    [160]杨杰.铝合金表面无铬化学转化膜研究[D].西安:西安建筑科技大学, 2007
    [161]李世平. F-在常温封孔中行为的探讨[J].铝加工, 1999, 22(5): 53-57
    [162]方百友,卢燕平,余庆. 6063铝型材碱洗过腐蚀的研究[J].轻合金加工技术, 1997, 25(2): 22-24
    [163] Decroly A, Petitjean J, Study of the deposition of cerium oxide by conversion on to aluminium alloys. Surface and Coating Technology, 2005,194(1):1-9
    [164]陈秀琴,扬扬,徐志强. 6063铝型材表面“斑状”缺陷综述.铝加工, 2001,24(4): 32-34
    [165]查全性.电极过程动力学导论[M].第二版.北京:科学出版社,1994:32
    [166]天津大学无机化学教研室.无机化学[M].第二版.北京:高等教育出版社,1994:94-99
    [167]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:104
    [168]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:182
    [169]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:183
    [170]天津大学无机化学教研室.无机化学[M].第二版.北京:高等教育出版社,1994:312
    [171]天津大学无机化学教研室.无机化学[M].第二版.北京:高等教育出版社,1994:313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700