离子注入光学晶体波导结构的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是信息技术的时代,光已经成为信息最先进、最重要的载体之一。随着多媒体和Internet业务的蓬勃发展,对通信波长容量和传输速率提出了越来越高的要求,全光通信已成为光通信领域发展的必然趋势。光集成是全光通信实现的基础,巨大的发展潜力和应用前景使集成光学受到广泛关注。现在的集成光学已经迎来了成熟阶段,已经发展为集光学、光电子学、激光、非线性光学、光通信等方面于一体的独立学科。光波导作为集成光学系统的基本元件,其性能优劣直接影响着整个系统的质量,对光波导的研究具有重要的应用价值。
     离子注入作为一种重要的材料改性方法,因为其具有可控性好、对材料的选择性较少及注入温度可调等优点,已经发展成为一种相对成熟的波导制备方法。目前为止,用离子注入方法制备的光波导结构已经囊括了光学晶体、半导体、陶瓷、聚合物及各种光学玻璃等在内的各种光学材料。离子注入还可以结合各种掩膜技术实现选择性离子注入,也可以结合各种微加工方法在晶体中制备出不同用途的图形结构。作为干法刻蚀技术的一种,Ar离子束刻蚀是一种纯物理的方法,对被刻蚀材料的适用性广泛,刻蚀参数可以精确调整。离子注入及离子束刻蚀技术均具有精确地可调节性,因此用离子注入结合离子束刻蚀技术在光学晶体材料中制备光波导结构具有较高的重复性,适合规模生产,具有非常重要的研究价值。
     光波导是由低折射率介质包围的高折射率介质,其实质是材料中不同区域的折射率的差异而形成的,光波导中的波导模式等波导特性及波导中的非线性特性均与介质中的折射率分布有着重要的关系。因此,探讨介质光波导中的折射率分布有着重要的意义,不但是研究光波导各种特性的基本条件,也为光波导的设计与制备提供理论指导。
     用离子注入结合光刻技术及离子束刻蚀技术在光学晶体上制备了平面、条形及脊形光波导是本论文的主要内容。涉及到的光学晶体有铁电体(铌酸锉、掺钠的铌酸钙钡),优良的非线性自倍频晶体(磷酸钛氧钾),闪烁晶体(钨酸锌),激光载体材料(钕掺杂锶钆镓氧和钇镓石榴石),软铋矿晶体(钛酸铋)。我们用棱镜耦合方法测试了平面光波导的导模,用反射计算方法(reflectivity calculation method, RCM)计算了平面光波导的折射率分布。对折射率改变机理进行了一定的研究。用端面耦合的方法测试了平面、条形及脊形波导的光传输情况及传输损耗。用有限差分光束传播方法(finite difference beam propagation method, FD-BPM)模拟了波导的模场分布并将计算结果与端面耦合的实验结果进行了比较。用back-reflection(背反射)方法测试了氧离子注入铌酸锂晶体平面光波导的随机及沟道谱,计算了损伤分布。测试了部分样品的透过谱,研究了退火在减少色心方页的作用。用离子注入结合光刻工艺在铌酸锂晶体上制备了功率分离器,在器件研究方面作了初步尝试。本文的主要研究结果如下:
     铌酸锂晶体(LiNbO3, LN)晶体是一种集电光、声光、光弹、非线性、光折变和激光活性等效应于一体的性质优良的光学晶体。铌酸锂晶体光波导已经应用于调制器、光开关、放大器等光子学设计的各个方面。用离子注入方法在铌酸锂晶体上制备光波导结构的研究已经相对成熟。本文中所用样品为同成分铌酸锂晶体,简称CLN。我们利用能量为:(2.2+1.8+1.6)MeV,剂量为:(3+2+1)×1014 ions/cm2的多能量氧离子注入在z切LiNbO3晶体上形成了平面及条形光波导。光刻胶周期分别为11gm和50μm,光刻胶空白区域均为5μm。利用金相显微镜观察了抛光后的条形波导端面;对条形光波导进行了端面耦合测试,得到近场光强分布及传输损耗;用有限差分光束传播方法模拟了模场分布,并与端页耦合结果进行了比较。周期为11μm波导区为5μm的波导出现耦合效应形成了阵列波导,有三个FB带。我们的结果说明调整条形波导周期可以形成阵列波导,在形成光孤子方页有重要的意义。我们用3MeV的O离子注入在铌酸锂晶体上形成了平面光波导,利用背散射方法研究了平面光波导的退火特性,平面光波导的退火温度分别为:200℃、300℃、400℃、500℃,退火时间均为30分钟,用棱镜耦合方法测试了各退火条件样品的导模,用端面耦合方法测试了各样品近场光强分布及传输损耗,测试了不同退火条件样品的背散射沟道谱(RBS/C)。
     提出一种制备铌酸锂晶体脊形波导的方法:氧离子注入与Ar离子束刻蚀相结合的方法。我们用离子束溅射的方式将样品的注入层剥离掉一部分再进行RBS分析,通过这种方式我们首次得到了3MeV的O离子注入铌酸锂晶体样品产生的损伤分布。我们成功的制备出脊高度为880nm,波导区宽度为10μm的脊形光波导。用原子力显微镜及金相显微镜观测了脊形波导的表面和端面,显微镜照片表明我们制作出了侧面平滑、低粗糙度的脊形光波导;用端面耦合的方法测量了脊形光波导的光学特性,结果说明该脊形波导可以有效的限制光的传输;用Fabry-Perot resonator方法测量了脊形光波导的损耗为2dB/cm。我们这种铌酸锂晶体脊形光波导的制作方法可以用于光通信和集成光学领域的波导器件的设计。
     磷酸钛氧钾(KTiOPO4, KTP)晶体是一种具有较大倍频系数的非线性光学晶体。利用能量和剂量分别为2.4MeV 1.5×1016ions/cm2的He离子注入KTP晶体,形成了双模光波导。测试了该波导的导模特性及光传输特性,结果显示在633nm波长下KTP平页光波导可以限制TE及TM偏振方向的光且均可以测到两个传输模,但是TM偏振下近场光强明显较弱,约为TE偏振方向的1/100,说明该波导在x方向较易限制光的传输。波导在x方向TEo模式的传输损耗为0.7dB/cm,这个结果说明我们制备的KTP平面光波导在实际应用方面有潜在的价值。我们用离子注入及氩离子束刻蚀相结合的方式在磷酸钛氧钾晶体上制备了平面及脊形光波导。注入离子为Si离子,能量为6MeV,剂量分别为6×1014ions/cm2。我们对平面光波导进行了一系列的退火处理,用棱镜耦合方式测量了每个退火条件下波导的导模特性,经过一定的退火处理后,平面波导可以传输633nm的激光。我们用台阶仪测量了脊形波导的高度,用端面耦合的方式测量脊形波导的近场光强分布,我们的工作为用离子注入与离子束刻蚀相结合的方式在KTP晶体上制备脊形波导提供了可行性依据。
     钨酸锌(ZnWO4)晶体是重要的闪烁晶体,其具有优良的闪烁性能。我们主要研究了离子注入ZnWO4晶体平面光波导的光学性质和退火效果。我们用He离子和C离子注入的方式均形成了折射率增加的波导,增加型的波导结构可以有效限制光的传输。这种折射率分布使得平面波导以非漏的方式传输光波。我们对两种离子注入后的样品均进行了一系列(260℃-550℃)的退火处理。我们用端页耦合方法测试了波导经过一定退火处理后的近场光强分布,并与理论结果进行了比较。在633nm波长下折射率增加的最大值为△nα=0.0128。碳离子注入波导在光通信窗口(1539nm)也可以限制光的传输。吸收谱的测试结果显示注入过程对ZnWO4晶体可见光的吸收性质影响不大。连续退火处理的结果表明C离子注入的波导有较高的热稳定性。我们的实验为用离子注入方法制备ZnWO4晶体平面光波导提供可行性依据,为ZnWO4晶体在集成光学领域的应用提供一种新的思路。
     掺钕的锶钆镓氧(Nd:SrGdGa3O7, Nd:SGG)和钇镓石榴石(Nd:YGa3O12, Nd:YGG)是性能优良的激光载体材料。我们用离了注入的方法制备了平页光波导结构,用棱镜及端面耦合方法测试了波导的导模特性及传输特性。用背反射方法测得碳离子注入Nd:SrGdGa3O7平面光波导的传输损耗为0.84dB/cm,有潜在的应用价值。Nd:YGG波导是“势阱+位垒”型的折射率分布,端面耦合的测试结果显示该波导可以传输633nm激光,离子注入过程没有影响Nd3+在w>550nm的范围内的光吸收性质。共焦微荧光测试结果说明我们的波导制备方法几乎没有对Nd3+的荧光发射性质造成影响。我们的实验在Nd:SGG和Nd:YGG晶体上产生波导激光方面具有指导意义。
     我们用能量为5MeV剂量为1×1015 ions/cm2的C离子注入掺钠的铌酸钙钡6, Na:CBN)晶体。棱镜耦合测试结果显示波导在633nm波长下寻常光折射率(no)降低、异常光折射率(ne)增加。端页耦合测试结果显示该平面光波导在633nm波长下只能传输TM偏振的光波,形成了寻常光折射率降低的位垒型光波导。寻常光方向第一个导模有效折射率与衬底折射率之差为:△neff=-0.0103。异常光方向不能形成波导的原因,与CBN晶体本身对光波的透过率有偏振选择性有关。钛酸铋(BiTi12O20, BTO)晶体属于软铋矿结构,是性能优良的光折变晶体。我们利用4.5MeV的O和550keV的He离子注入BTO晶体,均制备出了平页光波导。退火后O离子注入波导的损耗较低为1.27dB/cm.实验结果表明离子注入后的退火处理可以显著降低光波导的传输损耗。测得Ar离子束刻蚀BTO晶体的刻蚀速率为21nm/min。
     我们用光刻技术结合多能氧离子注入的方式,在z切铌酸锂晶体上成功制备了1×2 Y分支功率分配器。设计的原型是传统的四分支波导,光在传输过程中一分二然后再二分四,这个设计的好处是在四个分支中光可以方便的实现均匀分配,四个分支中光强大体一致。设计参数:波导区为5μm,整个分支结构的宽度为75μm。用金相显微镜观测了分支波导端面,观测结果表明波导区的大小和整个分支波导的范围与我们设计的基本一致。用端面耦合的方式测量了分支波导的近场光强分布,在四个分支中得到了近似均匀的光功率输出,说明我们用光刻技术与离子注入技术相结合成功的制备了可以均匀分配光功率的分配器,数值计算的结果与实验结果基本相符。实验结果同时说明,我们的实验设计可以在光互连、波导开关、调制器等光子学器件制作中得到应用。
The twenty-first century is the era of information technology, optical has become the most advanced and important information carrier. With the expands of multimedia and Internet, the increasing demand has been presented for higher communication capacities and more quickly transmission speed, all optical communication has become the inevitable trend of communication development in future. As one of the most interesting branches of all-optical communication, the development potential of integrated optics is intriguing. It has become a mature subject; there are a wide range of related subjects, such as optics, optoelectronics, nonlinear optics, optical communications, and lasers. Optical waveguides, the basic elements of integrated photonic systems, have important research value which qualities are pivotal for the whole systems.
     Ion implantation is one of the most important techniques for modifying surface properties, and it has been widely used in many materials because it offers accurate control of both penetration depth and doping element by use of a particular species, as well as the energy of the ions. In addition ion implantation is not limited by the courier temperature of substrate materials. At present, a variety of waveguides can be obtained in many material systems, such as crystals with low curie temperatures, laser crystals, glasses, ceramic, polymer and semiconductors. It can fulfill selective implantation combined with mask technology and obtain many graph structure combined with other micro-processing method. As one of the dry etching technique, ion beam etching technique is a pure physics method so it could be applied to a wide range of optical materials. In both ion implantation and ion beam etching, the processing parameters can be accurately adjusted. Therefore, the fabrication process is highly reproducible, the relatively researches have potential application prospects.
     Optical waveguides are defined as high-refractive-index material surrounded by low-index layer. The refractive index profile (RIP) is very important for investigating the features of optical waveguides. It decides the waveguide properties such as guide mode and the nonlinear properties. For investigate the features of the waveguides, the precise index profile would be a basic problem. The relatively investigate will provide theory instruction for optical waveguide device.
     In this dissertation, we fabricate the planar, channel and ridge waveguide on the optical crystals by use of ion implantation combined with lithography and ion beam etching technique. The relative optical crystals include ferroelectric crystals (LiNbO3, Na:CBN), good nonlinear frequent doubling cystal (KTP), scintillators (ZnW04), laser crystals (Nd:SrGdGa3O7, Nd:YGG), sillenite crystal (BTO). The guided modes were detected using the prism coupling method. The RIP in the implanted waveguide region was reconstructed using the SRIM (the stopping and ranges of ions in matter) and RCM simulation packages. The formation mechanism of the waveguides was discussed. The propagation losses and near-field profiles of the light in the planar waveguide were measured by end-face coupling method. The FD-BPM was used to simulate the properties of waveguides and compared with the experiment results. The absorption and fluorescence spectrums of the part of the waveguide samples are investigated for obtain the relative information.
     Lithium niobate is a versatile material for its unique electro-optic, acousto-optic, photoelastic, photorefractive and nonlinear optic properties. LiNbO3 crystal waveguides are widely used in a variety of integrated optics devices, including switches, amplifiers, modulators and communications. A lot of research has been done on planar waveguides fabricated in LiNbO3 crystals by ion implantation and it has been relatively matured. The samples used in our work were z-cut congruent LiNbO3 wafers. The planar and channel waveguides were fabricated in z-cut CLN crystal by multiply energy and low dose ((2.2+1.8+1.6) MeV at a dose of dose of (3+2+1)×1014 ions/cm2) oxygen ion implantation. The photoresist mask consisted of narrow strips with a width of 5μm and a separation of 45μm or 6μm separately between adjacent channels. The end face of the channel waveguide was optically polished, and a microscope was used to observe the end face of the channel waveguide. We performed the end-face coupling measurement to obtain the near field optical intensity distribute of planar and channel waveguide. The FD-BPM (beam propagation method based on the finite difference method) was used to simulate the optical intensity distribution and used to contrast the results of end face coupling. The experiment results prove that the coupling effect is apparent in an array channel waveguide with a period of 11μm and this array can carry three FB bands. It also proves that the array channel waveguide can be made with lithography techniques and ion implantation. The results also imply that this design may be useful for discrete soliton-managed devices. Single crystals of z-cut LiNbO3 were implanted at room temperature using 3 MeV oxygen ions at a fluence of 5×1014 ions/cm2, the guided mode for waveguides experiencing different annealing conditions (as-implanted, 200℃,300℃,400℃, and 500℃for 30 min in air) were detected using the prism-coupling method; damage formation was investigated by the Rutherford backscattering spectrometry/channeling (RBS/C) method. The propagation losses and near-field profiles of the light in the planar waveguide were measured with an end-face coupling system.
     A new fabrication method for lithium niobate ridge waveguides is reported. Lithium niobate ridge waveguide with a smooth surface was fabricated by O+ ions implanted combined with Ar ion beam etching. The samples were implanted with 3MeV O+at a dose of 6×1014 ions/cm2. Ar ion beam sputtering with an energy of 500eV was used to etch the unshielded area of the planar waveguide for 3 hours. In the etching process, the ion beam, with an intensity of 25 mA/cm2 tilted 30°off the sample's normal direction and along the channels. To investigate the complete damage profile of the ion-implanted waveguide, the Ar ion beam etching method was used for mechanical stripping. The damage behaviour of the samples with different etching depths was studied using the RBS/C technique and we obtained the damage profile. For the ridge waveguide, the height of the ridge is measured through the use of Atomic Force Microscopy and a microscope with a reflected polarized light was also used to investigate the surface and end face. For the planar waveguide structure, the TM (transverse magnetic) guided mode before and after annealing at 633 nm was probed through prism-coupling measurements and the near field image was measured using an end-face coupling investigative method. The FD-BPM (Finite Difference BPM) was used to investigate the guided modes of the planar waveguide for comparison with the experiments results. The loss value of the ridge waveguide is about 2dB/cm. This method will used in fabricating integrated optics devices.
     Potassium titanyl phosphate (KTiOPO4, KTP) is one of the attractive nonlinear optical crystals for the frequency doubling. The double modes planar waveguide was formed by 2.4 MeV He ion implantation with the dose of 1.5×1016 ions/cm2. The optical properties were investigated by prism coupling and end-face coupling method. We fabricate the planar and ridge waveguide combined ion implantation with ion beam etching method at the implantation condition:6MeV Si ion at the fluence of 6×1014 ions/cm2. We made a series of annealing treatment from 250℃~550℃for investigate the annealing properties of KTP planar waveguide. The planar waveguide can propagation the light of 633nm after proper annealing treatment. This indicates that annealing treatment will discover part of lattice damage and reduce propagation loss for this planar waveguide. For the ridge waveguide, the height of ridge was measured by a Stylus Profiler. Our method will provide a new way to fabricate ridge waveguide on KTP crystal.
     ZnW04 crystal is a kind of scintillators. We report on the optical properties of ZnWO4 planar waveguides created by ion implantation, and the effect annealing has on these structures. Planar optical waveguides in ZnWO4 crystals are fabricated by 5.0 MeV carbon ion implantation with a fluence of 1×1015 ions/cm2 or 500 keV helium ion implantation with the a fluence of 1×1016 ions/cm2. The thermal stability was investigated by 60 minute annealing cycles at different temperatures ranging from 260℃to 550℃in air. The reconstructed RIP includes a non-leaky guiding region which can confine the light efficiently. The near-field profiles of the TM mode for the samples were obtained, and they show good agreement between experimental and theoretical results. We obtained a single-mode ZnWO4 waveguide with a raised index at a wavelength of 1539 nm for the carbon implanted waveguide. The absorption spectra show that the implantation processes have almost no influence on the visible band absorption. The maximum value ofΔna(Δna=0.0128 for a wavelength of 633 nm) was obtained by use of carbon ion implantation and proper annealing treatment. The annealing treatment results show that the planar waveguide formed by C ion implantation has a high thermal stability. Our data show that this waveguide fabrication technique could be of particular interest for optical waveguide devices on ZnWO4 crystals.
     Nd:SGG and Nd:YGG crystals have been identified as excellent laser materials. We report the formation of a planar waveguide in these laser crystals. The optical properties are measured by the prism coupling and end-face coupling methods. The propagation loss of Nd:SGG planar waveguide formed by C ion implantation is 0.84 dB/cm measured by back-reflected method, this result indicates that our waveguide has potential application value. The implantation processes had almost no influence on the absorption properties at the wavelength scale of w> 550 nm on account of the absorption spectrum for Nd:YGG waveguide. The microluminescence investigation reveals that, in the Nd:SGG and Nd:YGG waveguide, the fluorescence properties of the Nd3+ ions and the energy transfer efficiency were not deteriorated by the implantation process. Thus, the planar waveguides formed by the ion implantation method is a promising candidate in waveguide lasers.
     We implanted C ions into the x-cut Na:CBN crystal at the energy of 5MeV with the fluence of 1×105 ions/cm2 to obtain the planar waveguide. The results of prism coupling method indicate that the ne increased and no decreased waveguide structure was constructed. We performed end-face coupling arrangement and observed that it can propagate TM mode only. The barrier type waveguide was formed for no. The transmission ratio of CBN crystal is related to the polarization direction and this may correspondence to this phenomenon.
     Bi12TiO20 (BTO) crystals belong to a group of sillenites crystal. We report on the fabrication and characterization of optical-planar waveguides in Bi12TiO20 (BTO) crystals by O and He ion implantation.The loss value of the oxygen-implanted planar waveguide is reduced to 1.24 dB/cm after annealing at 260℃for 30 min. The guided-mode profiles are successfully modelled through numerical simulations. The etch ratio of BTO crystal is 21 nm/min.
     We introduces a novel 1×4 branch optical splitter that was fabricated using multi-energy O+ ion implantation with standard lithography on a lithium niobate crystal. The design is of a cascade Y branch waveguide structure that equally distributes the input power between four output waveguides. The mask plate has a uniform main line, and all of the branches have a width of 5μm to simplify the fabrication process. The width of the structure after the 4 branches are completely divided is 75μm. The end-face of the four-branch waveguide was imaged by a microscope with reflected polarized light (Olympus BX51M, Japan). The results of the end-face coupling tests demonstrated that we successfully fabricated the power splitter, and the experiments agreed with the BPM simulations. The results also imply that potential photonic applications, such as optical interconnections, waveguide switches, and modulators, may be realized by using this design.
引文
1. 陈雪:无源光网络技术,北京邮电学院出版社,2006
    2.张宝富:全光网络,人民邮电出版社,2002
    3.原荣:光纤通信,电子工业出版社,2006
    4.杨淑雯:全光光纤通信网,科学出版社,2008
    5.[美]Amnon Yariv:现代通信光电子学,电子工业出版社,2004
    6.[美]塔米尔:集成光学,科学出版社,1982
    7. [英]卡萨普:光电子学与光子学的原理及应用,电子工业出版社,2003
    8.陈益新:集成光学,上海交通大学出版社,1985
    9.[日]西原浩:集成光路,科学出版社,2004
    10.李玉权,崔敏:光波导理论与技术,人民邮电出版社,2002
    11.朱京平:光电子技术基础,科学出版社,2008
    12. F. Chen, X. L. Wang, and K. M. Wang, Opt. Mater.29,1523 (2007)
    13. J. Olivares. A. Garcia-Navarro, A. Mendez, F. Agullo-Lopez, G. Garcia, A. Garcia-Cabanes, and M. Carrascosa, Nucl. Instrum. Meth. B:257,765 (2007)
    14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge,1994)
    15. G. Destefanis, P. D. Townsend, and J. Gailliard, Appl. Phys. Lett.,32 (1978) 293
    16. D. Jaque, and F. Chen, Appl. Phys. Lett.94, 011109 (2009)
    17. D. Fluck, P. Gunter, M. Fleuster, and C. Buchal, J. Appl. Phys.72,1671 (1992)
    18. X. L. Wang, F. Chen, L. Wang, and Y. Jiao, J. Appl. Phys.100,056106 (2006)
    19. Y. Tan, and F. Chen, J. Phys. D:Appl. Phys.43,075105 (2010)
    20.孔艳霞:山东大学硕士学位论文,离子注入YAG激光晶体光波导2010
    21.工磊:山东大学博士学位论文,离子注入平页与条形光波导的优化条件研究2007
    22. Y. Tan and F. Chen, Opt. Express 18,11444 (2010)
    23. P. Rabiei, and W. H. Steier, Appl. Phys. Lett.86,161115 (2005)
    24. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, J. Vac. Sci. Technol.A24,1012(2006)
    25. L. Wang, J. H. Zhao, and G. Fu, J. Lightw. Technol.28,1344 (2010)
    26. J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, J. Lightw. Technol.28, 1913(2010)
    27. D. M. Gill, D. Jacobson, C. A. White, C. D. W. Jones, Y. Shi, W. J. Minford, and A. Harris, J. Lightw. Technol.22,887-894 (2004)
    28. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Appl. Phys.103, 034109 (2008)
    29. P. D. Townsend, Vacuum 51,301 (1998).
    30.曹庄琪:导波光学,科学出版社,2007
    31. D. Kip, Appl. Phys. B 67,131 (1998)
    32. J. I. Mackenzie, IEEE J. Sel. Top. Quantum Electron.13,626 (2007)
    33. L. M. Johnson and F. J. Leonberger, Opt. Lett.8,111 (1983)
    34. M. Haruna and J. Koyama, J. Lightw. Technol.1,223, (1983)
    35. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, Appl. Phys. Lett.83,3659 (2003)
    36. A. Majkic, M. Koechlin, G. Poberaj, and P. Gunter, Opt. Express 16,8769 (2008)
    37.赵圣之:非线性光学,山东大学出版社,2007
    38.张克从,王希敏:非线性光学晶体材料科学,科学出版社,1996
    39.孔勇发,许京军,张光寅:多功能光电材料:铌酸锂晶体,科学出版社,2005
    40. M. Masuda, and G. L. Yip, Appl. Phys. Lett.37,20 (1980)
    41. Y. Chen, W. T. Joines, Opt. Commun.228 319 (2003)
    42. V. Delisle, U. Trutschel, M. A. Duguay, F. Lederer, L. Leine, Opt. Commun.113 389(1995)
    43. D. Barbie:Erbium-Doped Waveguide Amplifiers Promote Optical-Networking Evolution, PennWell Corp.,2000
    44. I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, A. Greiner, K. Schafer, J. Sochtig, W. Sohler and R. Wessel, IEEE J. Quantum Electron.2,355 (1996)
    45. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, H. Suche, IEEE J. Quantum Electron.302356(1994)
    46. K. Hattori, T. Kitagawa, M. Oguma, M. Wada, J. Temmyo, M. Horiguchi, Electron. Lett.29,357 (1993)
    47. S. F. Wong, E. Y. B. Pun, P. S. Chung, Photonics Tech. Lett.14,80 (2002)
    48. P.A.Franken, A.E.Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett.7,118 (1961)
    49. M. Yamada, N. Nada, M. Saitoh and K. Watanabe, Appl. Phys. Lett.62,435 (1993)
    50. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, Opt. Lett.35,3276(2010)
    51. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett.92,111103(2008)
    52. M. Domenech, G. V. Vazquez, E. Flores-Romero, E. Cantelar, and G. Lifante, Appl. Phys. Lett.86,151108 (2005)
    53. Y. Tan, F. Chen, J. R. V. de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, Appl. Phys. Lett.97,031119 (2010)
    54. A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, S. Tascu, G. Aka, J. Opt. Soc. Am. B.22,2192 (2005)
    55. L. Zhang, P.J. Chandler, P.D. Townsend, Z.T. Alwahabi, S.L. Pityana, A.J. Mccaffery, J. Appl. Phys.73,2695 (1993)
    56.李伟:山东大学博士学位论文,离子注入波导的倍频及光学薄膜的制备,1998
    57. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, J. Vac. Sci. Technol. B 28,316(2010)
    58. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, Nat. Photon.3,206 (2009)
    59. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett.77,3787 (1996)
    60. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, uuml, T. nner, M. Kamp, A. Forchel, and P. Lodahl, Phys. Rev. Lett.101,113903 (2008)
    61. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett.14,291 (1969)
    62. M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, Appl.Phys. Lett.69,2977 (1996)
    63. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Giinter, Opt. Mater.31,1054(2009)
    64. S. Iraj Najafi, T. Touam, R. Sara, M.P. Andrews, and M.A. Fardad, J. Lightw. Technol.16,1640(1998)
    65. Z.Y. Yin, B.K. Garside, Appl. Opt.21,4324 (1982)
    66. T. Yamashiki, K. Tsuda, Opt. Lett.28,316 (2003)
    67. K.M. Wang, B.R. Shi, N. Cue, Y.Y. Zhu, F.R. Xiao, F. Lu, W. Li, Y.G. Liu, Appl. Phys. Lett.73,1020(1998)
    68. F. Bruno, M. Guidice, R. Recca, F. Testa, Appl. Opt.30,4560 (1991)
    69.王凤翔:山东大学博士学位论文,薄膜光波导的PLD制备及波导特性研究,1999
    70. L. L. Wang, K. M. Wang, F. Lu, B. R. Shi, X. L. Wang, L. Wang, and Q. M. Lu, J. Appl. Phys.104,063115 (2008)
    71. R. Ramponi, M. Malangoni, R. Osellame, Appl. Phys. Lett.78,2098 (2001).
    72. G. L. Yip, J. Albert, Opt. Lett.10,151 (1985)
    73.王亮玲:山东大学博士学位论文,离子注入与离子交换平面和条形光波导的制备及其特性研究,2008
    74. J. Hukriede, D. Kip, E. Kratzig, Appl. Phys. B 72,749 (2001)
    75. R. V. Schmidt and I. R. Kaminow, Appl. Phys. Lett.25,458 (1974)
    76. W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, J. Appl. Phys.50,6175 (1979)
    77. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, Photonics Tech. Lett.19, 417(2007)
    78. W. F. Silva, C. Jacinto, A. Benayas, J. R. V. de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, Opt. Lett.35,916 (2010)
    79. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett.92,111103(2008)
    80. D. Jaque, N. D. Psaila, R. R. Thomson, F. Chen, L. M. Maestro, A. Rodenas, D. T. Reid, and A. K. Kar, Appl. Phys. Lett.96,191104 (2010)
    81. J. Olivares, A. Garcia-Navarro, G. Garcia, A. Mendez, F. Agullo-Lopez, A. Garcia-Cabanes, M. Carrascosa, and O. Caballero, Opt. Lett.32,2587 (2007)
    82.戴达煌,周克菘,袁镇海:现代材料表面技术科学,冶金工业出版社,2004
    83. M. Qurik and J. Serda:Semiconductor Manufacturing Technology, Publishing House of Electronic Industry,2004
    84. T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, J. Lightw. Technol.24,3803 (2006)
    85. X. L. Wang, K. M. Wang, G. Fu, S. L. Li, D. Y. Shen, H. J. Ma, and R. Nie, Opt. Express 12,4675 (2004)
    86. S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, Appl. Phys. Lett.90,121136 (2007)
    87. I. Banyasz, M. Fried, Cs. Ducso and Z. Vertesy, Appl. Phys. Lett.79,3755 (2001)
    88. Y. Tan, F. Chen, L. L. Hu, P. F. Xing, Y. X. Chen, X. L. Wang, and K. M. Wang, J. Phys. D:Appl. Phys.40,6545 (2007)
    89. F. Chen, K. M. Wang, X. L. Wang, X. S. Li, Q. M. Lu, D. Y. Shen, and R. Nie, J. Appl. Phys.92,2959 (2002)
    90. G. M. Davis, L. Zhang, P. J. Chandler, and P. D. Townsend, J. Appl. Phys.79, 2863 (1996)
    91.陈峰:山东大学博士学位论文,离子注入光电晶体光波导的折射率分布研究,2002
    92.付刚:山东大学博士学位论文,离子注入光电晶体平面和条形波导的研究2005
    93.姜毅:山东大学博士学位论文,离子注入光电晶体损伤诱导折射率改变及波导导模特性研究,2006
    94.焦扬:山东大学博士学位论文,离子注入与离子束刻蚀制备平面及条形光波导的研究2007
    95.王雪林:山东大学博士学位论文,MeV重离子注入光电晶体光波导的制备和特性研究,2004
    96. J. H. Zhao, T. Liu, S. S. Guo, J. Guan, and X. L. Wang, Opt. Express 18,18989 (2010)
    97. F. Chen, Y. Tan, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, J. Appl. Phys.103,083123(2008)
    98. S. S. Guo, T. Liu, J. H. Zhao, J. Guan, and X. L. Wang, Appl. Opt.49,6039 (2010)
    99. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. Zhang, J. Wang, and Q. Lu, Opt. Express 18,16258(2010)
    100. Y. Y. Ren, F. Chen, Q. M. Lu, and H. J. Ma, Appl. Opt.49,2085 (2010)
    101.T. Yang, C. Feng, W. Lei, and L. Q. Ming, Phys. Stat. Sol. (a) 204,3170 (2007)
    102.X. L. Wang, K. M. Wang, G. Fu, S. L. Li, F. Chen, F. Lu, H. J. Zhang, H. K. Kong, J. Y. Wang, and X. G. Xu, Opt. Express 13,675 (2005)
    103. D. Kip, S. Aulkemeyer, and P. Moretti, Opt. Lett.20,1256 (1995)
    104. Y. Tan, F. Chen, and D. Kip, Appl. Phys. B 94,467 (2009)
    105.J. H. Zhao, X. L. Wang, G. Fu, X. H. Liu, Q. Huang, and P. Liu, Nucl. Instrum. Meth.B 268,3434(2010)
    106. F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, Appl. Phys. Lett.89, 191102(2006)
    107.X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, J. Phys. D:Appl. Phys.42, 165303(2009)
    108.C. Wang, A. Mandelis, J. Tolev, B. Burchard, and J. Meijer, J. Appl. Phys.101, 123109(2007)
    109. A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Gunter, Opt. Express 14,2344 (2006)
    110.E. J. Teo, A. A. Bettiol, M. B. Breese, P. Yang, G. Z. Mashanovich, W. R. Headley, G. T. Reed, and D. J. Blackwood, Opt. Express 16,573 (2008)
    111. R. S. Weis, and T. K. Gaylord, Appl. Phys. A 37,191 (1985)
    112.杨春晖:光折变非线性光学材料:铌酸锂晶体,科学出版社,2009
    113.Zumsteg, J. D. Bierlain, and T. E. Gier, J. Appl. Phys.47,4980 (1976)
    114. W. P. Risk, S. D. Lau, R. Fontana, L. Lane, C. Nadler, Appl. Phys. Lett.33,1301 (1993)
    115. A. Feldman, J. W. S. Brower, and D. Horowitz, Appl. Phys. Lett.16,201 (1970).
    116. A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, J. Mater. Sci.35,4879 (2000)
    117. F. A. Kroger, Some Aspects of the Luminescence of Solids (Elsevier, New York 1948)
    118. T. Oi, K. Takagi, and T. Fukazawa, Appl. Phys. Lett.36,278 (1980)
    119. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, X. Zhang, and M. Jiang, Opt. Lett.35,1801 (2010)
    120. F. Hanson, D. Dick, H. R. Verdun, and M. Kokta, J. Opt. Soc. Am. B 8,1668 (1991)
    121.高文兰:山东大学博士学位论文,弛豫铁电铌酸钙钡系列晶体生长与性能研究,2010
    1. Gines Lifante, Integrated photonics:fundamentals, (Wiley,2003)
    2. Kenji Kawano, Tsutomu Kitoh, Introduction to optical waveguide analysis: solving Maxwell's equation and the Schrodinger equation, (Wiley,2001).
    3. Rsoft Design Group, Computer software BEAMPROP, http://www.rsoftdesign.com.
    4. J. F. Ziegler, computer code SRIM. http://www.srim.org
    5. P. J. Chandler, and F. L. Lama, Opt. Acta 33,127 (1986).
    6. P.D. Townsend, P.J. Chandler and L. Zhang:Optical effects of ion implantation, (Cambridge University,1994)
    7. W. Hong, H. Woo, H. Choi, Y. Kim and G. Kim, Appl. Surf. Sci.169,428 (2001)
    8. D. Fluck, D.H. Jundt and P. Gunter, J. Appl. Phys.74, (1993) 6023
    9. J. Rams, J. Olivares, P. J. Chandler and P.D. Townsend, J. Appl. Phys.87,3199 (2000)
    10. M. Domenech, G. V. Vazquez, E. Flores-Romero, E. Cantelar, and G. Lifante, Appl. Phys. Lett.86,151108 (2005).
    11. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, Appl. Opt.40, 3759(2001)
    12. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, and Y. Jiao, Phys. Rev. B 75,195101 (2007).
    13.孔艳霞:山东大学硕士学位论文,离子注入YAG激光晶体光波导2010
    14. X. L. Wang, K. M. Wang, G. Fu, S. L. Li, D. Y. Shen, H. J. Ma, and R. Nie, Opt. Express 12,4675 (2004).
    15. F. Chen, X. L. Wang, and K. M. Wang, Opt. Mater.29,1523 (2007).
    16. F. Chen, J. Appl. Phys.106,081101 (2009).
    17. Q. Huang, J. H. Zhao, P. Liu, J. Guan, and X.L. Wang, J. Appl. Phys.108,093103 (2010).
    1. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett.14,291 (1969)
    2.[日]西原浩:集成光路,科学出版社,2004
    3. H. Geiger, and E. Marsden, Phil. Mag.25,606 (1913)
    4. 朱唯干:背散射分析技术,原子能出版社,1978
    5.[美]K.A.杰克逊:半导体工艺,科学出版社,1999
    6.崔铮:微纳米加工技术及其应用,高等教育出版社,2005
    7.赵玉清:电子束离子束技术,西安交通大学出版社,2002
    8.[美]S.弗兰西拉:微加工导论,科学出版社,2006
    1. R. S. Weis, and T. K. Gaylord, Appl. Phys. A 37,191 (1985)
    2. D. M. Gill, D. Jacobson, C. A. White, C. D. W. Jones, Y. Shi, W. J. Minford, and A. Harris, J. Lightw. Technol.22,887 (2004)
    3. F. Chen, J. Appl. Phys.106,081101 (2009)
    4. N. N. Dong, F. Chen, and D. Jaque, Opt. Express 18,5951 (2010)
    5. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, J. Appl. Phys.96,242 (2004)
    6. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett.81,3383 (1998)
    7. D. N. Christodoulides and R. I. Joseph, Opt. Lett.13,794 (1988)
    8. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.61,118 (1971)
    9. F. Chen, M. Stepic, C. E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, Opt. Express 13,4314 (2005)
    10. P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am.67,423 (1977)
    11. R. Ramponi, R. Osellame, and M. Marangoni, Rev. Sci. Instrum.73,1117 (2002)
    12. R. Regener, and W. Sohler, Appl. Phys. B 36,143 (1985)
    13. R. Ramponi, R. Osellame, and M. Marangoni, Rev. Sci. Instrum.73,1117 (2002)
    14. R. Regener, and W. Sohler, Appl. Phys. B 36,143 (1985)
    1. R.W. Boyd, Nonlinear Optics (Academic Press, Boston,1992)
    2. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett.90,253902 (2003)
    3. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti and J. S. Aitchison, Phys. Rev. Lett.90,053902 (2003)
    4. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett.81,3383 (1998)
    5. D. N. Christodoulides and R. I. Joseph, Opt. Lett.13,794 (1988)
    6. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.61,118 (1971)
    7. F. Chen, M. Stepic, C. E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, Opt. Express 13,4314 (2005)
    8. P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am.67,423 (1977)
    9. P. St. J. Russell, Appl. Phys. B 39,231 (1986)
    10. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, Appl. Phys. Lett.83,3659, (2003)
    11. P. Rabiei and W. H. Steier, Appl. Phys. Lett.86,161115, (2005)
    12. J. G. Scott, A. J. Boyland, S. Mailis, C. Grivas, O. Wagner, S. Lagoutte, and R. W. Eason, Appl. Surf. Sci.230,138 (2004)
    13. N. Mitsugi, H. Nagata, K. Shima, and M. Tamai, J. Vac. Sci Technol. A 16,2245 (1998)
    14. L. Wang, K. M. Wang, X. L. Wang, F. Chen, Y. Jiang, C. L. Jia, Y. Jiao, F. Lu, D. Y. Shen, H. J. Ma, and R. Nie, Surf. Coat. Technol.201,5081 (2007)
    15. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, J. Vac. Sci Technol. A 24,1012(2006)
    16. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, J. Lightw. Technol.13,1164 (1995)
    17. T. Pliska, D. Fluck, P. Gunter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, Appl. Phys. Lett.72,2364 (1998)
    18.蔡伯荣:集成光学.电子科技大学出版社1990
    19. K. Song, Y. Fan, and Y. H. Zhang, Microwave and Optical Tech. Lett.49,595 (2007)
    20. C. H. Chang, and W. S. Wang, Opt. Quant. Electron.28,1371 (1996)
    21. M. Masuda, and G. L. Yip, Appl. Phys. Lett.37,20 (1980)
    22. J. Garnet and G. Pandraud, IEEE Photon. Technol. Lett.16,2060, (2004)
    23. H. C. Song, T. W. Oh, S. Y. Shin, S. Y. Yi, W. H. Jang, and T. H. Rhee, IEEE Photon. Technol. Lett.10,1760 (1998)
    24. C. C. Huang, C. Y. Chang, and W. S. Wang, Microwave and Optical Tech. Lett. 38,337 (2003)
    25. Y. S. Yong, A. L. Y. Low, S. F. Chien, A. H. You, H. Y. Wong, and Y. K. Chan, IEEE Quant. Electron.41,1181 (2005)
    26. M. Haruna and J. Koyama, J. Lightw. Tech.1,223 (1983)
    27. A. Klekamp, P. Kersten, and W. Rehm, J. Lightw. Technol.14,2684 (1996)
    28. Y. Sakamaki, T. Saida, T. Shibata, Y. Hida, T. Hashimoto, M. Tamura, and H. Takahashi, IEEE Photon. Technol. Lett.18,817 (2006)
    29. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, J. Appl. Phys.101,053112 (2007)
    30. R. Regener and W. Sohler, Appl. Phys. B 36,143 (1985)
    1. Y. S. Liu, D. Dentz, and R. Belt, Opt. Lett.9,76 (1984)
    2. Zumsteg, J. D. Bierlain, and T. E. Gier, J. Appl. Phys.47,4980 (1976)
    3. W. P. Risk, Appl. Phys. Lett.58,19 (1991)
    4. W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, Appl. Phys. Lett.33, 1301(1993)
    5. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, Opt. Lett.24,205 (1999)
    6. Y. Fan, H. Li, and L. Zhao, Mater. Charact.59,407 (2008)
    7. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, J. Appl. Phys.101,053112 (2007)
    8. L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, Appl. Phys. B 94,295 (2009)
    1. T. Oi, K. Takagi, and T. Fukazawa, Appl. Phys. Lett.36,278 (1980)
    2. H. Grassmann, H. G. Moser, and E. Lorenz, J. Lumin.33,109 (1985)
    3. F. A. Kroger, Some Aspects of the Luminescence of Solids (Elsevier, New York 1948)
    4. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, Appl. Phys. Lett.4,182 (1964)
    5. Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, Opt. Lett.34,3316 (2009)
    6. A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov, A. M. Kevorkov, and M. M. Gritsenko, Phys. Stat. Sol. (a) 38,409 (1976)
    7. P. A. Giesting, and A. M. Hofmeister, Phys. Rev. B 65,144305 (2002)
    8. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, X. Zhang, and M. Jiang, Opt. Lett.35,1801 (2010)
    9. F. Hanson, D. Dick, H. R. Verdun, and M. Kokta, J. Opt. Soc. Am. B 8,1668 (1991)
    10. W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, W. A. Pisarski, M. Berkowski, and J. Fink-Finowicki, Spectrochim. Acta, Part A 54,2071 (1998)
    11.高文兰:山东大学博士学位论文,弛豫铁电铌酸钙钡系列晶体生长与性能研究,2010
    12. P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater.29,462 (2007).
    13. Y. Tan, and F. Chen, J. Phys. D:Appl. Phys.43,075105 (2010)
    14. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, Opt. Lett.35,3276(2010)
    15. Y. X. Kong, F. Chen, D. Jaque, Q. M. Lu, and H. J. Ma, Appl. Opt.48,4514 (2009)
    16. W. F. Silva, C. Jacinto, A:Benayas, J. R. V. de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, Opt. Lett.35,916 (2010)
    17. L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, Nucl. Instrum. Meth. B 251,104 (2006)
    18.毕文婕:山东大学硕士学位论文,钨青铜结构晶体Ca0.28Ba0.72Nb2O6(?)结构与物性机理研究,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700