圆端形桥墩周围水流紊动特性及紊流宽度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在一些通航河流上,由于桥墩的存在恶化了通航条件,导致船舶碰撞桥墩事件时有发生。墩柱周围由于水流情况复杂,为航行的不安全区。目前桥墩周围不安全区宽度的界定多数依据桥墩周围水流流态变化,通过有无桥墩水流紊动特性变化来分析不安全区宽度还较少。开展桥墩周围水流紊动特性和紊流宽度的试验研究,进一步分析桥墩周围水流情况,有利于确定桥墩周围危害行船安全的水流宽度范围,有重要的工程实践意义。
     采用理论分析和试验研究的方法,就圆端形桥墩周围的水流紊动特性和紊流宽度开展试验研究。在概化水槽试验中,采用ADV流速仪对桥墩周围水流流速进行测量,采用数据处理软件进行数据分析计算,得到圆端形桥墩周围流场及紊动变化情况,给出了圆端形桥墩周围三维的流速矢量图和各断面的二维流速矢量图及不同水深平面二维流速矢量图。
     桥墩周围垂线上紊流强度最大位置在0~0.2h与0.8h~h两个区间非均匀分布,在0.2h~0.8h间紊流强度大小分布较均匀。选用0.883h位置紊流强度横向分布情况为研究对象,发现桥墩存在对紊流强度的变化影响存在极值,极值大小和出现位置离桥墩的距离随着流速增大而增大。据极值出现位置离桥墩距离确定紊流宽度,给出了桥墩紊流宽度与弗汝德数的关系。
     桥墩周围许许多多大小不等涡体相互掺混是桥墩周围紊流形成的根本原因。涡体在靠近槽壁处大量存在和在接近水面处的大量富集是桥墩周围垂线上紊流强度最大点在0-0.2h、0.8h-1h两个区间非均匀分布重要原因。随着断面平均流速增大,涡体密集点外移且流速的脉动更为剧烈,这便是桥墩存在对水流紊流强度影响极值变大且出现位置离桥墩距离更远的主要原因。提出船舶经过通航桥孔时遇到的险流实际上是船行波、水流、桥墩等共同作用的结果。
In some rivers for navigation, boats hit the piers event frequently occur because the existence of the pier worsens the condition of the navigation. The area of turbulence eddy around the pier becomes an insecurity area for navigation. Presently, the computation formulas of unsafe areas around pier emphasize particularly on analyzing the change of current . So there is a few studies that analyze the width by the change of the characteristic of turbulence. Therefore, it will have important project practice meaning to carry on experimental study to research the characteristic of turbulence around a pier and turbulent width and analyze the flow condition which is propitious to ascertain the flow width of endangering the safe of a boat around a pier.
     The method of theoretical analysis and experimental study is used in this article. The characteristic and its width of the turbulence around the round-ended pier have been studied. The speedometer ADV is used to measure the velocity of the flow around the pier in the conceptual flume. The data of the experiment is computed and analyzed by the data processing software, and the flow field around the pier is found. The three-dimensional charts of the velocity vector around the pier, the two-dimensional charts of the velocity vector of cross sections and different vertical sections are drawn. The location of the maximum of the turbulence intensity on the perpendicular line is to present an inhomogeneous distribution from 0 to 0.2h and from 0.8h to 1h but to present a homogeneous distribution relatively from 0.2 to 0.8h. The horizontal distribution of turbulence intensity of 0.883h is chosen to study. the influence to the turbulence intensity of the pier can come to a maximum, and the value of the maximum and the distance from the location where the maximum occurs to the pier both increases along with the increase of the flow velocity is found. Based on the distance, the relation between the width of turbulence with pier and the Froude number has been presented.
     Many kinds of vortex at different size mixing mutually around each pier is the fundamental reason for the formation of Turbulence. There are a lot of vortex enrich in the surface and wall of flume is important reason for the location of the maximum of the turbulence intensity on the perpendicular line is to present at 0 to 0.2h or from 0.8h to 1h. Intensive point of vortex move out and flow pulse more intensely, which is main reason as the average velocity of the cross-section increases, the existence of pier effects of flow turbulence intensity become larger and appears farther location distant from the pier. Bringing forward the dangerous stream comes into being when the boat and ship comes across navigability bridge opening is the combined action result of wave , streams , pier and so on in fact.
引文
[1]卢中一,高正荣,吴丽华,等.南京长江三桥桥墩基础的局部冲刷[J].人民长江,2005,36(10):48-50.
    [2]王慧东.桥梁墩台与基础工程[M]中国铁道出版社. 2005.
    [3]孟广文,赵卫国等.简明公路桥涵设计实用指南[M]人民交通出版社2005.
    [4]王开,傅旭东,王光谦.桥墩壅水的计算方法较[J]南水北调与水利科技2006,4(6):53-55
    [5]朱军政,曹颖.潮汐河口多座桥梁行洪影响的分析[J].水动力学研究与进展,2006,21(5):592-598.
    [6]卢金友,徐海涛,姚仕明.天然感潮河道水流紊动特性分析[J].海洋工程,2005,23(3):70-77
    [7]卢金友,徐海涛,姚仕明.天然河道水流紊动特性分析[J].水利学报,2005,36(9):1029-1034
    [8]刘艾明,徐海涛,卢金友.矩形水槽紊动特性分析[J].长江科学院院报,2006,23(1):12-15.
    [9]朱红钧,赵振兴.明渠河道紊流特性实验研究[J].中国农村水利水电,2007,(9):12-15.
    [10]杨克君,刘兴年,曹叔尤,等.植被作用下的复式河槽漫滩水流紊动特性[J].水利学报,2005,36(10):1263-1268.
    [11]焦志洋,拾兵,朱玉伟,等.复式河道滩地植物对水流紊动结构影响的试验研究[J].海洋湖沼通报,2006,(1):28-36.
    [12]吕升奇,唐洪武,闫静.有无植物条件下明渠水流紊动特性对[J].水利水电科技进展,2007,27(6):64-68.
    [13] 50139—2004,内河通航标准[S].
    [14]英爱文,陈松生,原金勇.桥上测流的技术方法和精度研究[J].水文,1997(4):32-35.
    [15] GAODongguang,LILIANPasada,CARLNordin.Pier Scour Equations Usedin the People's Republic of China [R]. Review and Summary, Federal Highway Ad-ministration,Publication No. EHWA-SA-93-076.1993.3.
    [16] Subrata K Chakrabarti,Mark McBride. Model Tests on Current Forces on a Large Bridge Pier Near an Existing Pier[J]. Journal of Offshore Mechanics and Arctic Engineering,2005,127(3):212-219.
    [17] Subhasish Dey,Rajkumar V. Raikar. Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers[J]. Journal of Hydraulic Engineering,2007,133(4):399-412.
    [18] Gokhan Kirkil,George Constantinescu,Robert Ettema,The Horseshoe Vortex System Around a Circular Bridge Pier on Equilibrium Scoured Bed [R] EWRI. 2005.
    [19] Michael A. Stevens,MohamedM. Gasser,Mohamed B. A. M. Saad. Wake Vortex Scour At Bridge Piers[J]. Journal Of Hydraulic Engineering,1991,117(7):891-904.
    [20] Jennifer G. Duan.Two-dimensional Model Simulation of Flow Field Around Bridge Piers[R]. EWRI. 2005.
    [21]田发美,沈波,张新燕,等.圆柱桥墩绕流试验研究[J].人民长江, 2007,38(11);174-175.
    [22] Nobuhisa Nagata , Takashi Hosoda , Tatsuaki Nakato. Three-Dimensional Numerical Model for Flow and Bed Deformation around River Hydraulic Structures[J]. J.of Hydraulic Eng.,2005,131(12):1074-1087
    [23]何国建,方红卫,府仁寿.桥墩群对河道水流影响的三维数值分析[J].水动力学研究与进展,2007,22(3):345-351.
    [24]张兰丁.桥墩群体绕流的复变函数理论解[J].水利水电科技进展,2005,25(1):14-16.
    [25]田伟平,沈波.圆柱桥墩绕流特性理论研究[J].长安大学学报(自然科学版),2003,23(1):54-57.
    [26]胡旭跃,沈小雄,程永舟,等.墩柱周围水流表层涡旋区宽度的试验研究[J].长沙理工大学学报,2004,1(1): 39-42.
    [27]陈健强,许足怀,胡旭跃,等.益阳资江三桥桥梁建设与桥区航道的综合规划方法[J].长沙交通学院学报,2003,19 (2) :45-48.
    [28]程永舟,胡旭跃,沈小雄.桃源沅水大桥碍航问题试验研究[J].长沙交通学院学报,2001,17 (2) :62-65.
    [29]庞启秀,李孟国,麦苗.桥墩对周围海域水动力环境影响研究[J].中国港湾建设,2008(6):32-35.
    [30]赵志舟.鹅公岩大桥通航条件试验研究[J].重庆交通学院学报,2003,21(1):112-115.
    [31]甘浪雄.船舶在桥区安全航行可靠性分析[J].武汉理工大学学报(交通科学与工程版),2003,27(4)455-458.
    [32]沈小雄,程永舟,胡旭跃,等.航道边线与桥墩之间安全距离的研究[J].水运工程,2004,(11):85-88.
    [33]马殿光.跨河桥梁通航的论证方法[J].水运工程,2006,(11):63-65. 14
    [34]胡旭跃,欧阳飞,沈小雄,等.通航问题及对策研究综述[J].水道港口,2005,26(3):167-171.
    [35]胡旭跃,陈健强,等.桥位河段的航道整治工程[M].中南大学出版社,2006.
    [36]欧阳飞.桥墩周围紊流区宽度及桥梁通航孔净宽研究[D].长沙:长沙理工大学,2005.
    [37]何小花,陈立,王鑫,等.桥墩紊流宽度的实验研究[J]水利水运工程学报,2006,(3):49-53.
    [38]许保华.桥墩周围通航宽度影响研究[D].河海大学,2007.
    [39]刘怀汉,茆长胜,袁达全.跨河建筑物通航净宽、净高专题研究报告[R].武汉:长江航道规划设计研究院. 2006.
    [40] ZHUANG Yuan,LIU Zuyuan. Experimental study on the width of the turbulent area around bridge pier [J] Journal of Marine Science and Application,2007, 6 (1) : 53-57.
    [41] ZHUANG Yuan . Experimental study on turbulent width around bridge piers [J]. Journal of Southwest Jiao Tong University (English Edition)Jan. 2007, 15 (1) : 45-48.
    [42]庄元,刘祖源.桥墩紊流宽度的试验研究[J].中国航海.2007,(3):5-9.
    [43]薛小华,刘怀汉,茆长胜.桥墩扰流对通航净宽尺度影响的试验研究。水运工程,2008,(1):78-81,86
    [44] S.E,van Manen.Ship Collisions due to the Presence of Bridges [R] Brussels: PIANC General Secretariat, 2001
    [45] O.D Larsen. Ship Collision with Bridges (Z).Denmark:IABSE, 1993
    [46] S. E. van Manen. Ship Collisions due to the Presence of Bridges [R] Brussels: PIANC General Secretariat, 2001
    [47]戴彤宇,聂武,刘伟力.长江干线船撞桥事故分析.中国航海,2002, 4 (53) : 44-47
    [48]戴彤宇,刘伟力,聂武.船撞桥概率分析与预报.哈尔滨工程大学学报,2003, (1):23-29.
    [49] O.D Larsen. Ship Collision with Bridges (Z).Denmark: IABSE, 1993
    [50] P. T. Pedersen,S. Zhang. The Mechanics of Ship Impacts against Bridge [A]. Proceedings of Int.symposium advances on ship collision analysis.Copenhagen 1998,41-52
    [51] Fujii Y. Some factors Affecting the Frequency of Accidents in MarineTraffic [J].Journal of Navigation,1974,27(2);235-252
    [52]戴彤宇,聂武,刘伟力长江干线船撞桥事故分析[J]..中国航海,2002,4 (53) : 44-47.
    [53]吕习道.桥区涌航论证与研究[D].武汉:武汉理工大学. 2005.
    [54] Rosignoli. M. Serio River Bridge:creep and incremental launch. Proceedings of the Institution of Civil Engineers,Structures and Buildings.
    [55]谭箭.弯窄航道通航单船最大平面尺度的确定方法初探[J].水运科技信息,1998(6):9-10
    [56]陈明栋,王多银.探讨跨江桥梁通航净空尺度和通航安全保障措施[J].水运工程.2001(4):42-43.
    [57]李一兵,王育林,等.弯曲航道过河建筑物跨度的计算方法探讨[J].水道港口,1997(4):16-23。
    [58]胡旭跃,沈小雄,等.分汉河道分流区航道内斜流的整治方法研究[J].长江科学院院报,2002(3).
    [59]杨志军,万政.具有弯曲特性河道上桥梁通航宽度的探讨[J]水运工程.2007(3):65-67,77.
    [60]钟敏雄,谢永彰.通航桥孔跨度的计算方法探讨[J].中南公路工程,2005, 185-187.
    [61]薛小华.桥墩冲刷的试验研究[J]武汉大学硕士论文2005
    [62] Shiono k and Knight D W. Turbulent open channel flows with variable depth across the channel. J Fluid Mech,1991,222:617-646
    [63]吴持恭主编.水力学[M]上册.北京:高等教育出版社,2004.
    [64]田伟平,沈波.圆柱桥墩绕流特性理论研究[J].长安大学学报(自然科学版),2003,23(1):54-57.
    [65]孙东坡,杨慧丽,张晓松.等,桥墩冲刷坑的三维流场测量与数值模拟[J].水科学进展.2007,18(5):711-715.
    [66]周玉利,王亚玲.桥墩局部冲刷深度的预测[J].西安公路交通大学学报. 1999. 19(4):48-50.
    [67]焦爱萍,张耀先.桥墩局部冲刷分析及防护对策[J].人民黄河.2003.25(7) : 21-22.
    [68]詹义正,王军,谈广鸣,等.桥墩局部冲刷的试验研究[J].武汉大学学报(工学版).2006,39(5):1-4.
    [69]卢金友,徐海涛,姚仕明.天然感潮河道水流紊动特性分析[J].海洋工程,2005,23(3):70-77.
    [70] Breusers H N C ,Raudkivi A J . Scouring[M]. Netherlands :A A Balkema 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700