飞秒激光微纳加工系统及功能器件工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的激光成型技术,飞秒激光双光子微细加工具有真三维,亚微米级分辨率,热效应小等技术特点,在微加工领域越来越受到重视。本文结合国家自然科学基金重点项目“飞秒激光功能微部件加工技术研究”(No.50335050)的主要研究内容,对现有的飞秒激光微加工系统进行了优化,介绍了飞秒激光与双光子材料的作用机理并建立理论模型,采用理论和实验相结合的方法优化了加工工艺参数,在此基础上加工了几种微光学、微机械功能器件。本文的主要研究工作及成果如下:
     1.介绍了自行搭建的飞秒激光系统的原理,组成,参数优化和性能特点。对飞秒激光微加工系统进行了性能优化和功能拓展,增加了BBO倍频光路,增加新移动平台加大扫描范围,升级了控制软件。
     2.深入研究了飞秒激光双光子微细加工工艺。基于双光子光聚合反应的自由基浓度理论建立模型,理论结合实验研究了加工系统的点、线、面工艺特点,优化扫描步距参数;建立了最大模型和最小模型进行仿真并结合实验优化加工面形结构的粗糙度,引入数学形态学的膨胀算法和腐蚀算法仿真并优化复杂微器件的加工工艺;提出变步距扫描方法保证微器件加工精度和效率。
     3.在功能微器件的加工方面,使用S-3负性胶加工了8层Log—pile结构光子晶体,并在红外波段测得带隙,其带隙位置与理论计算吻合;设计了环形变步距扫描方法,加工出2×2微透镜阵列和微fresnel透镜,并对其光学性能进行了初步测试。在微机械零件方面,使用逐点提升法,加工了可用于光驱动的万字型微转子。并加工了一组微齿轮和微齿轮轴,结合单臂微装配装置,成功组装成可自由转动的微齿轮传动装置。最后还对飞秒激光微切割细胞组织做了探索性研究。
     4.对Bowtie形状场增强纳米小孔的通光特性进行了实验研究,并对飞秒激光结合bowtie纳米小孔进行近场纳米加工的可行性进行了分析和展望。本论文的研究为飞秒激光双光子微纳米加工的深入发展和在MEMS功能微器件、微系统加工中的应用打下了良好的基础。
As a new type of laser based technology,femtosecond laser two-photon microfabrication has its unique technological advantages,like true three dimensional fabrication ability,sub-micron resolution and low heat effect et al.It becomes more important in microfabrication technology research field.In this thesis,supported by the key project of "Functional devices micro fabrication technology via femtosecond laser"(No.50335050) from NSFC,the femtosecond laser microfabrication system is modified and the mechanism of two photon polymerization induced by femtosecond laser is studied.The fabrication parameters are optimized through the method of combination of the theory and experiment research.As well,several functional micro devices are designed, fabricated and measured.The main research contents are listed as following:
     1.An introduction of the home-made femtosecond laser micro fabrication system is given.Some modification work are done like 400nm fabrication optical route,lager scanning range stage as well as the controlling software.
     2.A further study of femtosecond laser two photon micro fabrication techniques is given.Based on free radical theory of two photon polymerization,the fabrication resolution as well as the fabricated line and surface are studied theoretically and experimentally.Constructed the MAX and MIN model to reconstruct the pre designed device and control the fabrication roughness and precision.During the process of three dimensional complex devices,thc dilation and erosion algorithm of mathematical morphology are introduced to improve the precision.The variable scanning distance according to the different slope of the devices profile to increase the fabrication precision and efficiency.
     3.Several functional micro devices are designed,fabricated and measured.A new resin,S-3,is used to fabricate high quality three-dimensional(3D) log-pile photonic crystal with good performance in the IR region.The fabrication of micro lens using an alternative annular scanning mode with continuous variable layer thickness by two photon polymerization is reported and their optical performances are also tested.Micro-rotors which can be used in laser driving experiments are fabricated by using z-incensement scanning method.Micro gear chain is successfully achieved by two photo micro fabrication assistant with micro assembling technique.Finally, femtosecond laser micro cutting cells are also experimentally researched.
     4.High transmission nanoscale ridge apertures like bowtie antenna aperture are fabricated and its optical property is measured.What is more,the feasibility of femtosecond laser assistant with nano aperture to realize nano fabrication is discussed.
     All these experimental and theoretical results will be helpful and give improvement in this research area especially for the three dimensional and complexity micro MEMS and its development along the direction of function and integration.
引文
吴强,郭光灿.2003.光学[M].合肥:中国科学技术大学出版社,442-450.
    Anderson,R.J.,Holtom,G.R.,Mcclain,W.M.et al.1979.Two-photon absorptivities of the all trans α,ω-diphenylpolyenes from stilbene to diphenyloctatetraene via three wave mixing [J].J.Chem.Phys.70,4310.
    Arahira,S.,Matsui,Y.and Ogawa,Y.,1996.Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes[J].IEEE J.Quantum Electron.32,1211-1224
    Baida,F.I.and Van Labeke,D.2002.Light transmission by subwavelength annular aperture arrays in metallic films[J].Optics Communications.209:17-22.
    Berland,K.M.,So,P.T.,Gratton,E.1995.Two photon fluorescence correlation spectroscopy:method and application to the intracellular environment[J].J.Biophys.68:694-701
    Bethe,H.A.1944.Theory of Diffraction by Small Holes[J].Phys.Rev.,66:163-182.
    Bhardwaj,V.R.,Corknm,P.B.,Rayner,D.M.et al.2004.Stress in femtosecond-laser-written waveguides in fused silica[J].Opt.Lett.29:1312.
    Bhawalkar,J.D.,Kumar,N.D.,Zhao,C.F.et al.1997.Two-photon photodynamic therapy[J].J Clin Laser Med Surg.15(5):201-4.
    Brabec,T.,Spielmann,Ch.,Curley,P.F.,and Krausz,F..1992.Kerr lens mode locking[J].Opt.Lett.17(18),1292-1294
    Brunner,F.et al.,2004.Powerful RGB laser source pumped with a mode-locked thin-disk laser[J].Opt.Lett.29(16),1921-1923
    Calleja,M.,Anguita,J.,Garcia,R.et al.1999.Nanometer-Scale Oxidation of Silicon Surfaces by
    Dynamic Force Microscopy:Reproducibility,Kinetics,and Nanofabrication[J].Nanotechnology.10:34-38.
    Chang,F.I.,Yeh,R.,Lin,G.et al.1995.Gas-phase silicon micromachining with xenon difluoride[C].Proc.SPIE.2641:117
    Chimmalgi,A.,Choi,T.Y.,Grigoropoulos,C.P..2003.Femtosecond Laser Apertureless Near-Field Nanomachining of Metals Assisted by Scanning Probe Microscopy[J].Appl.Phys.Lett.,82:1146-1148.
    Chou, S.Y., Krauss, P.R., Renstrom, P.J., 1995.Imprint of Sub-25nm Vias and Trenches in Polymers[J].Appl. Phys. Lett. 67:3114-3116.
    
    Cumpston B.H., Marder S.R., et al. 1999.Two-Photon Polymerization initiators for three dimensional optical Data Storage and Microfabrication[J]. Nature, 398:51
    
    Denk, W, Strickler J., Webb W. (1990). Two-photon laser scanning fluorescence microscopy[J].Science 248 (4951): 73-76.
    
    Fork ,R. L., Greene, B. I., and Shank, C. V. 1981. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Applied Physics Letters, 38: 671-672.
    
    Fork, R.L. Martinez, O. E., Gordon, J.P. 1984. Negative dispersion using pairs of prisms [J]. Opt.Lett., 9:150-152.
    
    Galajda, P. and Ormos, P.2002. Rotation of microscopic propellers in laser tweezers[J]. J.Opt.B,4(2):s78-81,2002.
    
    Geusic, J.E., Marcos, H.M, and Van Uitert, L.G. 1964. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J]. Applied Physics Letters 4:182-184
    
    Goppert-Mayer, M. 1931. Elementary processes with two quantum jumps[J]. Ann. Phys. 9: 273.
    
    Haus, H.A., Fujimoto, J.G. and Ippen, E.P. 1991.Structures for additive pulse mode locking[J].J.Opt. Soc. Am. B,8:2068-2076
    
    He, M., Yuan, X. C, Ngo, N. Q. et al.2004. Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling[J]. J. Opt. A: Pure Appl.Opt. 6:94.
    
    Hecht, B., Sick, B., Wild, U.P.et al.2000.Scanning near-field optical microscopy with aperture probes: Fundamentals and applications[J].J. Chem. Phys. 18:112
    
    Helszajn, J., 2000, Ridge Waveguides and Passive Microwave Components[C], IEE, London.PP1-12
    
    Higurashi, E., Ukita, H., Tanaka, H.et al.1994. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining[J]. Applied Physics Letters, 64(17):2209-2210.
    
    Ho, P. T., Glasser, L. A., Ippen, E. P., and Haus, H. A., 1978 . Picosecond pulse generation with a cw GaAlAs laser diode[J].Appl. Phys. Lett. 33 (3), 241
    
    Huang, S.M., Hong, M.H., Luk'yanchuk, B.S.et al. 2002. Sub-50 nm Nanopatterning of Metallic Layers by Green Pulsed Laser Combined with Atomic Force Microscopy [J]. J. Vac Sci.Tech. B.20(3): 1118-1125.
    Hunziker, M., Leyden, R.. 1992.Basic Polymer Chemistry, Charpter2, P. F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography[M], SME,.P29-32
    
    Jersch, J., Demming, F., Dickmann, K., 1996. Nanostructuring with Laser Radiation in the Near Field of a Tip from a Scanning Force Microscope[J]. App. Phys. A, 64: 29-32.
    
    Jia, T.Q., Chen, H.X., Huang, M. et al. 2005. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Phys.Rev.B.72:125429
    
    Jiang, Z.W., Zhou, Y.J., Yuan, D.J. et al. 2003 A Two-Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage [J] Chin. Phys. Lett. 20: 2126
    
    Jin, E.X., and Xu, X., 2005. Radiation transfer through nanoscale apertures[J]. J. of Quantitative Spectroscopy and Radiative Transfer. 93:163-173.
    
    Jin, E. X. and Xu, X.2006.Enhanced optical near field from a bowtie aperture[J].Appl. Phys. Lett.88:153110
    
    Kaiser and Garret,C.G.B.1961. Two-Photon Excitation in CaF_2: Eu~(2+)[J]. Physical Review Letters.7: 229-232
    
    Kato, J., Takeyasu, N., Adachi, Y., Sun, H. B. et al.2005.Multiple-spot parallel processing for laser micronanofabrication[J].Appl. Phys. Lett. 86:044102
    
    Kawata, S., Sun, H. B., Tanaka, T. et al.2001. Finer features for functional micro devices[J].Nature.412:697-698.
    
    Keller, U., Weingarten, K.J., Kartner, F.X et.al., 1996.Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers[J], IEEE J.Sel. Top. Quantum Electron. 2,435-453
    
    Killi, A. and Morgner, U. 2004. Diode-pumped femtosecond laser oscillator with cavity dumping[J]. OPTICS LETTERS. 29:1288-1290
    
    Lin,T.C., Chung, S.J., Kim, K.S.,et al.2003. Organics and Polymers with High Two-Photon Activities and their Applications[J]. Advances in Polymer Science. 161: 157-193.
    
    Martineau, C., Anemian, R., Andraud, et al.2002. Efficient initiators for two-photon induced polymerization in the visible range[J]. Chem. Phys. Lett., 362,291-295.
    
    Maruo, S, Nakamura, O., Kawata, S.1997. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters. 22:132-134.
    
    Maruo, S. and Inoue, H. 2006. Optically driven micropump produced by three-dimensional two-photon microfabrication[J]. Appl. Phys. Lett. 89: 144101.
    Maxwell, I., Chung, S. and Mazur, E. 2005.Nanoprocessing of subcellular targets using femtosecond laser pulses[J]. Med. Laser Appl., 20:193-200.
    
    McClung, F.J. and Hellwarth, R.W. 1962. Giant optical pulsations from ruby [J]. J. Appl. Phys. 33,828.
    
    Mears, R. J., Reekie, L., Jauncey, M., and Payne, D. N., 1987. Low-noise erbium-doped fiber amplifier operating at 1.54 μm[J]. Electron. Lett. 23(19): 1026-1028
    
    Mendonca, C. R., Shih, T. and Mazur, E. 2008.Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores[J]. Opt. Express, 16:200-206.
    
    Mertz, J., Xu, C. and Webb, W. W. 1995. Single-molecule detection by two-photon-excited fiuorescence[J]. Opt. Lett., 20: 2532-2534
    
    Moulton, P. F. 1986. Spectroscopic and laser characteristics of Ti:A12O3[J] J. Opt. Soc. B,3:125-133.
    
    Murphy-DuBay, N., Wang, L., Kinzel, E. C.et al.2008.Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture [J].Optics Express, 16:2584-2589.
    
    Nussbaum, P., V(?)lkel, R., Herzig, H. P. et al.1997.Design, fabrication and testing of microlens arrays for sensors and Microsystems[J]. Pure Appl. Opt. 6: 617.
    
    Park, S. H., Lee, S. H., and Yang, D. Y.2005. Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization[J]. Appl. Phys.Lett. 87:154108.
    
    Parthenopoulos, D. A. and Rentzepis, P. M. 1989. Three-Dimensional Optical Storage Memory[J].Science. 245: 843.
    
    Patel, C. K. N. 1964. Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO_2[J]. Physical Review 136 (5A): A1187-A1193
    
    Perry, M.D., Stuart, B.C., Banks, P.S. et al. 1999.Ultrashort-pulse laser maching of dielectric materials[J]. J Appl. Phys. 85(9):6803-6810
    
    Serbin, J., Egbert, A., Ostendorf, A. et al.2003.Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics[J]. Opt.Lett. 28, 301-303.
    
    Serbin, I., Ovsianikov, A., and Chichkov, B. et al.2004. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties[J].Optics Express. 12:5221-5228
    Serbin, J., Gu, M.2006. Experimental Evidence for Superprism Effects in Three-Dimensional Polymer Photonic Crystals[J]. Advanced Materials, 18:221-224.
    
    Sendur, K., Challener, W., 2003.Near-Field Radiation of Bowtie Antennas and Apertures at Optical Frequencies[J]. J. of Microscopy, 210, pp. 279-283.
    
    Shank, C.V. and Ippen, E.P. 1974. Subpicosecond Kilowatt Pulses from a Mode-Locked CW Dye Laser[J]. App. Phys. Lett., 24,373-375.
    
    Sheik-bahae, M., Said, A. A., and Van Stryland, E. W.. 1989. High-sensitivity, single-beam n2 measurements[J].Opt. Lett. 14 (17): 955-957
    
    Sheik-Bahae, M.,Said, A.A.,Wei, T.-H.,et al. 1990.Sensitive measurement of optical nonlinearities using a single beam[J].IEEE J. Quantum Electron. 26: 760-769
    
    Shen, M.Y., Crouch, C.H., Carey, J.E. et al.2004.Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Appl. Phys. Lett. 85(23):5694-5696
    
    Shi, X., Hesselink, L., 2002. Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage[J]. Jpn. J. Appl. Phys., 41:1632-1635.
    
    Spence, D. E., Kean, P. N., and Sibbett, W., 1991. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser.[J] Opt. Lett. 16:42-44
    
    Srisungsitthisunti, P., Ersoy, O.K., and Xu, X., 2007. Laser Direct Writing of Volume Modified Fresnel Zone Plates[J]. J. Opt. Sco. Am. B. 24:2090-2096.
    
    Straub, M. and Gu, M. 2002. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization[J]. Opt. Lett. 27:1824
    
    Strickler, J., Webb, W.1991. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters. 16:1780-1782.
    
    Suleskiand, T. J. and TeKolste, R. D.2005. Fabrication Trends for Free-Space Microoptics[J]. J.Lightwave Technol.23:633.
    
    Sun, H. B., Matsuo, S. and Misawa, H. 1999. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Appi.Phys. Lett.74:786
    
    Sun, H. B., Tanaka, T. and Kawata, S. 2002. Three-dimensional focal spots related to two-photon excitation[J]. App. Phys. Lett., 2002, 80:3673.
    
    Sundaram, S. K., Schaffer, C. B. and Mazur, E.2003.Microexplosions in Tellurite glasses[J]. Appl.Phys. A, 76:379-384.
    Sugiyama, S., Khumpuang, S. and Kawaguchi, G.2004. Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications[J]. J. Micromech. Microeng.14:1399.
    
    Synge, E.H.1928.A suggested method for extending the microscopic resolution into the ultramicroscopic region[J]. Phil. Mag. 6:356.
    
    Szipocs, R., Ferencz, K., Spielmann, C., et al. 1994.Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers[J]. Opt. Lett. 19 (3): 201
    
    Takada, K., Sun, H. B., Kawata, S.2005. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting[J].Appl. Phys. Lett. 86, 071122
    
    Takeshima, N., Narita, Y., Tanaka, S. et al.2005. Fabrication of high-efficiency diffraction gratings in glass[J]. Opt.Lett. 30:352
    
    Tang, D. Y. and Zhao, L. M., 2007.Generation of 47-fs pulses directly from an erbium-doped fiber laser[J]. Opt. Lett. 32 (1):41-43
    
    Tarun, A., Daza, M.R., Hayazawa, N. et al.2002. Apertureless Optical Near-Field Fabrication Using an Atomic Force Microscope on Photoresists[J]. Appl. Phys. Lett. 80 : 3400-3402.
    
    Taylor, N. 2000. LASER: The inventor, the Nobel laureate, and the thirty-year patent war [M].New York: Simon & Schuster. p. 93.
    
    Treacy, E., 1969.0ptical pulse compression with diffraction gratings[J], IEEE J. Quantum Electron. 5: 454-458.
    
    Vanderwerf, D. F.1990.Ghost-image analysis of Fresnel lens doublet in Stray Radiation in Optical Systems[C], Robert P. Breault, eds. Proc. SPIE 1331, 143-157.
    
    Venkatakrishnan, K., Ngoi, B. K. A., Stanley, P. 2002. Laser writing techniques for photomask fabrication using a femtosecond laser[J]. Appl, Phys. A, 74:493-496.
    
    Vorobyev, A.Y., Guo, C. 2005.Enhanced absorptance of gold following multipulse femtosecond laser ablation [J]. Phys.Rev.B. 72:195422
    
    Vieu, C, Carcenac, F., Pepin, A. et al. 2000. Electron-beam lithography: resolution and its applications[J]. App. Sur. Sci., 164:111-117.
    
    Wang, L., Uppuluri, S. M.V., Jin, E.X. et al.2006.Nanolithography using High Transmission Nanoscale Ridge Apertures[J], Nanoletters. 6:361-364
    
    Wang, L, and Xu, X.2008.Numerical Study of Optical Nanolithography using Nanoscale Bowtie-shaped Nano-apertures[J]. J. Microscopy. 229: 483-489.
    Wu, E. S., Strickler, J., Harrel, R. et al.1992. Two-photon lithography for microelectronic application[C]. SPIE Proc. 1674: 776.
    
    Wu, A. Q., Xu, X. and Venkatasubramanian, R. 2008.Ultrafast dynamics of photoexcited coherent phonon in Bi2Te3 thin films[J]. Appl. Phys. Lett. 92: 011108.
    
    Yao, J., Cui, Z., Gao, F. et al.2001. Refractive micro lens array made of dichromate gelatin with gray-tone photolithography[J]. Microelectron. Eng. 57-58: 729.
    
    Zhou, W., Kuebler, S.M., Braun, K.L. et al.2002. An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication [J]. Science, 296; 1106-1109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700