深部开采低渗透煤层预裂控制爆破增透机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤系地层普遍埋藏较深,赋存条件复杂,并且煤层瓦斯含量高,吸附性强,煤层松软,透气性较差,瓦斯抽采困难。随着我国对煤炭需求量的增加,开采强度不断增大,浅部资源日益减少,深部开采矿井数量逐渐增多。我国煤矿开采深度以每年8~12m的速度增加,可以预计在未来几年我国部分煤矿将进入1000m左右的深部开采。在进入深部开采以后,瓦斯治理将面临的关键问题主要有以下两个:(1)随着采深的增加,地应力增大,瓦斯压力迅速增加,致使煤与瓦斯突出矿井数量增多,在深部高应力作用下,煤岩体中积聚了大量的瓦斯气体能量和弹性应变能,受工程扰动的影响,煤体内的高压瓦斯气体和应变能急剧释放,导致煤岩结构瞬时破坏而产生煤与瓦斯突出。(2)由于地应力的增高,使得深部煤层开采面临的冲击地压频次和强度均有所增加。那么,如何解决深部开采条件下煤体的透气性和应力集中成为瓦斯治理的首要问题。
     矿井中浅部开采过程中,采用深孔预裂控制爆破技术进行煤与瓦斯突出及冲击地压的防治已取得了非常好的效果;同时,《煤矿井下深孔控制预裂爆破技术条件(MT1036-2007)》规范2007年已经发布,但根据中浅部埋深情况下,得出的爆破孔与控制孔的相关参数在矿井深部开采条件下是否能够有很好的适用性还有待通过实践来检验。采用理论分析、室内模型实验、数值模拟及现场工业试验相结合的方法,研究了深孔预裂控制爆破技术在矿井深部开采条件下,煤与瓦斯突出及冲击地压的防治方法。论文主要完成了以下工作:
     1.高应力低透气性煤层深孔预裂控制爆破增透的影响因素的确定
     通过对煤岩体爆破研究成果的总结分析,结合深部高应力低渗透煤层的赋存特点,确定了深部低渗透煤层深孔预裂控制爆破增透的影响因素为煤层地应力、煤层强度、煤层原始瓦斯压力、爆炸波和爆生气体的衰减规律等。
     2.高应力低透气性煤层深孔预裂控制爆破增透的理论分析
     综合应力波理论、煤岩体力学、爆破理论、断裂损伤力学的理论分析,描述了爆炸波(包括爆炸冲击波和爆炸应力波)在层状煤岩体介质中的传播规律;分析了控制孔的导向致裂机制;考虑高应力低透气性煤层深孔预裂控制爆破增透的上述主要因素的影响,推导了与时间相关的煤体深孔爆破裂纹尖端应力强度因子的积分表达式,同时给出了煤体深孔爆破裂纹扩展长度的计算公式,为煤层深孔预裂控制爆破工艺孔间距的确定提供了理论基础。
     3.含瓦斯煤体的深孔预裂控制爆破室内相似材料模型实验研究
     通过室内相似材料模型实验,系统地研究了地应力、瓦斯压力、煤的硬度三个主要影响因素与裂隙扩展的关系;研究了煤体爆破中的孔径、孔间距等布孔参数对爆破致裂效果的影响;为现场进行深孔预裂控制爆破参数设计提供依据,也为深孔预裂控制爆破理论分析提供验证。
     4.高应力低透气性煤层深孔预裂控制爆破增透的数值模拟研究
     采用FLAC3D通用软件,数值分析了爆炸波和爆生气体对煤体深孔爆破增透效果的影响;综合理论分析、相似材料模型实验、数值模拟的结果,系统地分析了上述影响因素对高应力煤层深孔爆破增透效果的影响,揭示了高应力煤层深孔预裂控制爆破增透的机理;并通过对比分析,指出了常规浅孔采掘爆破破岩机理和煤体深孔预裂控制爆破增透机理的不同。
     5.高应力低透气性煤层深孔预裂控制爆破增透的现场工程应用
     完善了深孔预裂控制爆破工艺相关设备,包括封孔设备、装药被筒材料,并研制了适应深部开采条件下高应力低透气性煤层打钻成孔的专用钻头;对两个典型的低渗透煤层进行现场工业试验及工业试验结果的分析,评价了深孔预裂控制爆破技术在深部开采低透气性高瓦斯煤层防突、防冲的效果及适用性。
Most of the coal seams in China are deeply buried which possessdistinctive features, such as abundant gas content with high pressure, weakstiffness, low permeability and so on. Along with the increasing energydemand and the decreasing coal reserves in shallow depth, it is undoubtly thedeep buried coal will be mined in the near future years. For the mining depthincreasing at8-12m/year, most of the coal mines will be mined at more than1000m depth during few years in our country. There are two main seriourspartential problems in deep mining which influence the safety production ofcoal mining. One is the gas outburst. Because the geostress and coal seam gaspressure are increasing with the buried depth, the strength and frequency of theoutbursts are extremely higher compared with the coal seam buried at shallowdepth. Another one is coal outburst. Therefore, the improvement of coal seampermeability is the key point to prevent outburst in mining deeply buried coalseam with low permeability and high gas pressure.
     The long-hole pre-splitting controlled blasting technology was presentedseveral years ago to enhance the permeability of low permeable coal seam andmeanwhile its criterion was also published in2007. Although the betterapplicability of the blasting method was gained in enhancing the coal seampermeability buried at medium depth and shallow depth, it is still deserve tostudy its effectiveness in improving the permeability of deeply buried coalseam. On the basis of previous research results, the mechanism andapplicability of long-hole pre-splitting controlled blasting method in enhancingpermeability of low permeable coal seam buried at depth are deeply studied bytheoretical analysis, laboratory model test, numerical simulation and practicalapplication.
     Main research works invlud as following:
     1、Analyzing the related influenced factors on improving the permeabilityof high stressed and low permeable coal seam buried at depth by long-holepre-splitting controlled blasting method.
     The related influenced factors are determined by analyzing the researchresults of former studies and considering the features of high stressed coalseam buried at depth. The related factors include such as geostress, stiffness,gas pressure of coal seam and the attenuation of blasting wave and explosiongas in coal seam.
     2、Theoretical study on the mechanism of enhancing permeability of highstressed coal seam using long-hole pre-splitting controlled blasting method.
     Base on the theoretical analysis such as stress wave theory, coal and rockmechanics, blasting theory, fracture and damage theory, firstly, the blastingwave attenuation in layered coal seam was studied; then, the crack guiding role of control hole is analyzed; finally, an time related integration formula wasderived to calculate the blasting induced crack length. Not only all the affectedfacors described above are considered, the attenuation of blasting wave in coalseam was also considered in presented integral equation. The formula could beused to compute the distance between blast hole and control hole in practicalengineering.
     3、Laboratory model test of long-hole pre-splitting controlled blasting inimproving permeability of high stressed coal seam containing high pressuregas.
     Laboratory model test on enhancement the permeability of low permeablecoal seam by the blasting method was conducted. The relationship betweenblasting induced fracture length and related factors described above are gainedthrough laboratory model test. The research results not only provide referencefor practical design, but also could be an envidence to the theoretical analysis.
     4、Numerical simulation study on the mechanism and effectiveness ofenhancing permeability of high stressed low permeable coal seam containinghigh pressure gas buried at depth by long-hole pre-splitting controlled blastingmethod.
     Firstly, the effectiveness of blasting wave and explosion gas on theimprovement of permeability of high stress low permeable coal seam werequatitatively studied respectively, by comparing the crack length sepatatelyinduced by them. Then, the permeablility improvement influenced by therelated factors presented above was studied by considering therotical analysis,labarotory test and numerical simulation results together. After that, theenhancing permeability mechanism of long-hole pre-splitting controlledblasting method was revealed. Finally, the difference of mechanism betweenlong-hole blasting and shallow blasting was presented by comparing thebehavior of blasting wave and explosion gas during the two blastingprocedures.
     5、Practical engineering application of long-hole pre-splitting controlledblast in improvement the permeability of high stressed coal seam buried atdepth.
     The long-hole pre-splitting controlled blasting techonology was improved.It included hole-sealing equipment and charging cylinder. A new drilling headwas also developed adapting to the deep coal mining. Two practical deepburied coal seam projects illustrated that the long-hole pre-splitting controlledblasting technology could be used to enhance the permeability of lowpermeable coal seam in deep coal mining and desirable effectiveness could beexpected.
引文
[1]白赞成.略论深孔松动爆破防止突出[J].中州煤业,1990,12(1):36-38.
    [2]蔡峰,刘泽功,张朝举,等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007,32(5):499-503.
    [3]蔡峰.高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究[D].淮南:安徽理工大学,2009,4.
    [4]蔡峰,刘泽功,林柏泉.高瓦斯煤层深孔预裂爆破增透数值模拟试验[J].辽宁工程技术大学学报(自然科学版),2009,28(4):513-516.
    [5]昌孝存,王继仁,孙波,等.保护层开采与先抽后采的综采面瓦斯涌出规律[J].煤炭科学技术.2008,36(1):44-48
    [6]陈莉静,李宁,王俊奇.高能复合射孔爆生气体作用下预存裂缝起裂扩展研究[J].石油勘探与开发,2005,32(6):91-94.
    [7]陈莉静,李宁,王俊奇.油井爆生气体对岩石劈裂作用机制探索[J].岩石力学与工程学报,2006,25(11):2369-2372.
    [8]陈锐.煤和瓦斯突出防治技术讲座:第五讲-突出预防措施[J].矿业安全与环保,1989,16(1):5-26.
    [9]陈先容.提高矿井瓦斯抽放率的途径[J].煤矿设计.1994,23(9):19-24.
    [10]程远平,周德永,俞启香,等.我国煤矿瓦斯治理“先抽后采”的实践与作用[J].采矿与安全工程学报,2006,23(1):12-18.
    [11]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [12]褚怀保,杨小林,侯爱军,等.含瓦斯煤体爆破作用机理数值模拟研究[J].采矿与安全工程学报.2011,28(4):644-648.
    [13]褚怀保,杨小林,梁为民,等.煤体爆破损伤规律模拟试验研究[J].采矿与安全工程学报,2011,28(3):288-492.
    [14]褚怀保,杨小林,梁为民,等.煤体爆破作用机理模拟试验研究[J].煤炭学报,2011,36(9):1451-1456.
    [15]戴广龙,宋贤生.高瓦斯低透性煤层深孔松动爆破卸压增透影响参数的数值模拟[J].建井技术,2003,24(6):14-17.
    [16]戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报(自然科学版),2001,20(2):144-147.
    [17]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [18]冯长根,王亚军.2005年中国安全生产事故与自然灾害状况[J].安全与环境学报,2007,7(5):146-160.
    [19]高尔新,杨仁树,杨小林.爆破工程[M].徐州:中国矿业大学出版社,1999.
    [20]宫世文,张荪茗,孙震,等.深孔预裂爆破强制放顶技术的应用[J].煤矿安全,2007,33(1):21-22.
    [21]龚敏,黄毅华,王德胜,等.松软煤层深孔预裂爆破力学特性的数值分析[J].岩石力学与工程学报,2008,27(8):1674-1681.
    [22]郭德勇,裴海波,宋建成,等.煤层深孔聚能爆破致裂增透机研究[J].煤炭学报,2008,33(12):1381-1385.
    [23]郭德勇,杨摇雄,单智勇,等.煤层深孔聚能爆破封孔技术[J].北京科技大学学报,2011,32(7):785-789.
    [24]郭德勇,吕鹏飞,裴海波,单智勇.煤层深孔聚能爆破裂隙扩展数值模拟[J].煤炭学报,2012,37(2):274-278.
    [25]郭进平,聂兴信.新编爆破工程实用技术大全[M].北京:光明日报出版社,2002.
    [26]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [27]国家安全生产监督管理总局.AQ1026-2006煤矿瓦斯抽采基本指标[S].北京:煤炭工业出版社,2007.
    [28]国务院安全生产委员会办公室.关于进一步加强煤矿瓦斯治理工作的指导意见(安委办(2008)17号)[S].2008.
    [29]何晓东等.应用深孔控制预裂爆破技术提高煤层瓦斯抽放率[J].煤矿安全,2005,12.
    [30]李鸿宽,吴继园.深孔预裂爆破强化抽放低透气性特厚煤层瓦斯的实践[J].煤矿安全,2003,7(10):42-49.
    [31]李虎民,傅鉴源.深孔预裂爆破技术在综采顶板管理中的应用[J].煤炭科学技术,2003,31(7):10-12.
    [32]李会良,邢昭芳.深孔控制卸压爆破机理和防突试验[J].煤矿安全,1990,21(10):1-9.
    [33]李会良,刘志忠.深孔控制卸压爆破的防突机理和防突效果考察[J].煤矿安全,1993,24(6):27-34.
    [34]李会良.深孔控制卸压爆破防突措施理论探讨[J].煤矿安全,1995,26(6):22-25,27.
    [35]李济堂.深孔松动爆破在防治煤与瓦斯突出中的应用[J].煤矿安全,1991,22(11):1-7.
    [36]李建新,林柏泉,李国旗,等.深孔松动控制爆破卸压增透理论与实践[J].煤矿安全,2010,40(11):52-54.
    [37]李宁,陈莉静,张平.爆生气体驱动岩石裂缝动态扩展分析[J].岩土工程学报,2006,28(4):460-463.
    [38]李伟,程久龙,王延国,等.利用超前断裂爆破防治冲击地压技术研究[J].中国矿业,2008,17(4):95-97.
    [39]李润求,施式亮,念其锋,等.近10年我国煤矿瓦斯灾害事故规律研究[J].中国安全科学学报,2011,21(9):143-151.
    [40]林柏泉.深孔控制卸压爆破及其防突作用机理的实验研究[J].阜新矿业学院学报(自然科学版),1995,14(3):16-21.
    [41]林柏泉,李子文,翟成,等.高压脉动水力压裂卸压增透技术及应用[J].采矿与安全工程学报,2011,28(3):452-455.
    [42]刘春旺.预裂控制爆破消突技术在高突掘进工作面的应用[J].煤矿安全,2011,37(4):102-104.
    [43]刘健,刘泽功,石必明.低透气性突出煤层巷道快速掘进的试验研究[J].煤炭学报,2007,32(8):827-831.
    [44]刘健.低透气煤层深孔预裂爆破增透技术研究及应用[D].淮南:安徽理工大学,2008.
    [45]刘健,刘泽功,蔡峰.石门揭煤深孔预裂爆破增透效果试验研究[J].煤炭科学技术,2011,39(6):30-33.
    [46]刘圣贤,胡清祥,张勇.爆生裂缝扩展长度的理论研究[J].1998,5(2):17-19.
    [47]刘泽功等,松软低透气性高瓦斯突出煤层定向爆破增透技术[R].安徽理工大学“十五”科技攻关项目研究报告,2006.
    [48]卢平,袁亮,程桦,等.低透气性煤层群高瓦斯采煤工作面强化抽采卸压瓦斯机理及试验[J].煤炭学报,2010,35(4):580-585.
    [49]卢文波,陶振宇.预裂爆破中炮孔压力变化历程的理论分析[J].爆炸与冲击,1994,14(2):140-147.
    [50]卢文波,陶振宁.爆生气体驱动裂纹扩展速度研究[J].爆炸与冲击,1994,14(3):264-268.
    [51]罗勇,沈兆武.聚能药包在岩石定向断裂爆破中的应用研究[J].爆炸与冲击,2006,26(3):250-255.
    [52]罗勇,沈兆武.深孔控制卸压爆破机理和防突试验研究[J].力学季刊,2006,27(3):469-475.
    [53]吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用[J].重庆大学学报,2010,33(7):102-107.
    [54]欧阳振华,齐庆新,张寅,等.水压致裂预防冲击地压的机理与试验[J].煤炭学报,2011,36(S):321-324.
    [55]潘峰.基于穿层控制爆破技术的瓦斯抽放效果分析[J].煤炭科学技术,2010,38(8):70-73.
    [56]彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,2008:1-11.
    [57]彭伟,余岩,叶丽萍,等.高瓦斯低透气性煤层增透防突措施探究[J].煤炭技术,2011,30(6):244-246.
    [58]齐庆新,雷毅,李宏艳,等.深孔断顶爆破防治冲击地压的理论与实践[J].岩石力学与工程学报,2007,26(S1):3522-3527.
    [59]齐庆新.煤的直接单轴拉伸特性的试验研究[J].煤矿开采,2001,46(4):15-20.
    [60]秦刚伟,秦法秋.深孔预裂爆破增透技术在三软煤层中的应用与实践[J].煤炭科技,2008,27(11):132-134.
    [61]深孔预裂爆破在石门揭煤中的应用[J].矿业安全与环保,2009,36(6):69-72.
    [62]石必明,俞启香.低透气性煤层深孔预裂控制松动爆破防突作用分析[J].建井技术,2002,23(5):27-30.
    [63]四川矿业学院.国外研究煤和瓦斯突出近况[J].矿业安全与环保,1973,2(Z1):43-59.
    [64]四川矿业学院.国外煤和瓦斯突出机理综述[J].矿业安全与环保,1976,5(S1):1-19.
    [65]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社,1989.
    [66]宋贤生,戴广龙,童云飞,等.高瓦斯低透气性煤层深孔松动增透爆破研究[J].矿业安全与环保,2003,30(2):1-2,5.
    [67]王礼立.应力波基础[M].北京:国防工业大学出版社,1985.
    [68]王力,谢友友,张连军,等.穿层控制爆破的卸压、增透作用分析及数值模拟[J].矿业安全与环保,2009,36(2):4-8.
    [69]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984.
    [70]吴国代,桑树勋,杨志刚,等.地应力影响煤层气勘探开发的研究现状与展望[J].中国煤炭地质,2009,21(4):32-33.
    [71]吴亮,卢文波,宗琦.岩石中柱状装药爆炸能量分布[J].岩土力学,2006,27(5):735-739.
    [72]夏致晰,张生余,涂建刚.爆炸应力波在层状岩体中的传播与衰减[J].河南科学,2007,25(5):727-730.
    [73]谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):36-37.
    [74]谢友友,张连军,林柏泉,等.穿层深孔控制爆破有效影响半径的确定[J].煤矿安全,2008,39(11):11-14.
    [75]邢书仁,肖力,张锦鹏.煤层预裂爆破复合型宏观裂纹扩展的断裂理论分析[J].中国煤炭,2010,15(10):107-111.
    [76]邢昭芳,阎永利,李会良.深孔控制卸压爆破防突机理和效果考察[J].煤炭学报,1991,16(2):1-9.
    [77]徐颖,孟益平,宗琦.断层带爆炸裂隙区范围及裂纹扩展长度的研究[J].岩土力学,2002,23(1):81-84.
    [78]许英威,杜子健.用长钻孔控制松动爆破防治综采工作面煤与瓦斯突出[J].矿业安全与环保,1997,22(5):1-4.
    [79]杨圣奇,温森.不同直径煤样强度参数确定方法的探讨[J].岩土工程学报,2010,32(6):881-891.
    [80]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [81]杨小林,孙博,褚怀保.爆生气体在煤体爆破过程中的作用分析[J].金属矿山,2011,40(11):65-68.
    [82]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    [83]余永强,邱贤德,杨小林.层状岩体爆破损伤断裂机理分析[J].煤炭学报,2004,29(4):409-412.
    [84]余永强,杨小林,梁为民,等.控制爆破致裂提高矿井瓦斯抽放率试验研究[J].煤炭学报,2007,32(4):377-381.
    [85]袁亮.淮南矿区瓦斯治理技术与实践[J].煤炭科学技术.2000,28(1):7-12.
    [86]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [87]袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报,2008,27(7):1370-1379.
    [88]袁亮,薛俊华.中国煤矿瓦斯治理理论与技术[J].安徽煤炭,2011(专刊):3-16.
    [89]翟华.大倾角上行穿层钻孔聚能爆破增透卸压技术试验研究[J].煤矿安全,2010,36(4):86-89.
    [90]张春华,刘泽功,徐涛.石门对掘揭开急倾斜煤层突出与爆破增透消突技术[J].煤炭学报,2010,35(1):85-88.
    [91]张国华,刘先新,毕业武,等.高压注水中水对瓦斯解吸影响试验研究[J].中国安全科学学报,2011,21(3):101-104.
    [92]张奇.岩石爆破的粉碎区及其空腔膨胀[J].爆炸与冲击,1990,10(1):68-75.
    [93]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [94]张铁岗.矿井瓦斯综合治理示范工程[M].北京:煤炭工业出版社,2004.
    [95]张兴华.利用深孔预裂控制爆破强化瓦斯抽放消除回采工作面突出危险性[J].煤矿安全,2006,37(2):22-24.
    [96]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石力学与工程学报,2011,30(3):547-555.
    [97]赵铮,陶钢,杜长星.爆轰产物JWL状态方程应用研究[J].高压物理学报,2009,23(4):277-284.
    [98]郑福良.深孔预裂爆破对煤层透气性影响的试验研究[J].煤矿安全,1995,26(12):9-12.
    [99]郑福良.深孔预裂爆破技术在煤矿井下的应用[J].爆破.1997,14(4):58-61.
    [100]郑福良.含瓦斯煤体爆破裂隙发展规律的探讨[J].煤矿安全,1997,25(2):23-26
    [101]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1988.
    [102]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995.
    [103]重庆煤炭科学研究所.国内外防治煤和瓦斯突出措施的现状和动态[J].矿业安全与环保,1976,5(S1):30-48.
    [104]宗琦,曹光保,付菊根.爆生气体作用裂纹传播长度计算[J].阜新矿业学院学报(自然科学版),1994,13(3):18-21.
    [105]宗琦.岩石爆破的扩腔作用及能量消耗[J].煤炭学报,1997,22(4):392-396.
    [106]宗琦.岩石炮孔预切槽爆破断裂成缝机理研究[J].岩土工程学报,1998,20(1):30-33.
    [107]宗琦,陆鹏举,罗强.光面爆破空气垫层装药轴向不耦合系数理论研究[J].岩石力学与工程学报,2005,24(6):1047-1051.
    [108]ABAQUS.Inc.ABAQUS/StandardVersion6.6. ABAQUS Theory Manual. ABAQUSInc, Providence, RI,2006.
    [109]Badal R. Controlled Blasting in Jointed Rocks[J]. Int J Rock Mech Min SciGeomech Abstr,1994,31(1):79-84.
    [110]Badal R. Controlled Blasting in Jointed Rocks[J]. Int J Rock Mech Min SciGeomech Abstr,1994,31(1):79-84.
    [111]Chen S.G, ZHAO J. A study of UDEC modeling for blast wave propagation injointed rock masses[J]. International Journal of Rock Mechanics and MiningSciences,1998,35(1):93-100.
    [112]Cho S H, Nakamura Y, Kaneko K. Dynamic fracture process analysis of rocksubjected to stress wave and gas pressurization[J]. Int J Rock Mech Min Sci,2004,41(3):1-8.
    [113]Daehnke A,Rossmanith HP,Schatz J F.On dynamic gas pressure induced fracturing[J].International Journal of Blasting and Fmgmentation,1997(1):73-97.
    [114]Daehnke A,Rossmanith HP, Napier J A L.Gas pressurisation of blast induced conicalcracks[J].Int J Rock Mech Min Sci Geomech Abstr,1997,34(3-4):No.263.
    [115]Daehnke A,Rossmanith HP, Napier J A L. Gas pressurization of blast induced conicalcracks[J].Int J Rock Mech Min Sci,1997,34(3-4):263e1-263e17.
    [116]Donzé F V,Bouchez J,Magnier S A. Modeling Fracture in rock blasting[J].Int J RockMech Min Sci.1997,34(8):1153-1163.
    [117]Evert Hoek.Pratical rockengineering[M].2007ed:http://www.rocscience.com/hoek/corner/Practical Rock Engineering.pdf
    [118]Liu Liqing, Katsabanis P.D.A numerical study of the effects of accurate timing onrock fragmentation[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(5):817-835.
    [119]Medhurst T.P,Brown E.T.A study of the mechanical behavior of coal for pillardesign[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(8):1087-1105.
    [120]Mohammadi S, Pooladi A. A two-mesh coupled gas flow solid interaction model for2D blast analysis in fractured media[J]. Finite Elements in Analysis and Design,2012,50(1):48-69.
    [121]Mohammadi S, Pooladi A. Non-uniform isentropic gas flowanalysis of explosion infractured solid media[J].Finite Elements in Analysis and Design,2007,43(6-7):478-493.
    [122]Nilson R H, Proffer W J, Duff R E. Modelling of gas driven fractures inducedbypropellant combustion within a borehole[J]. International Journal for Numericaland Analytical Methods in Geomechanics,1985,22(1):3-19.
    [123]Nilson R H. An integral method for predicting hydraulic fracture propagation drivenby gases or liquids[J]. International Journal for Numerical and Analytical Methods inGeomechanics,1986,10(1):191-211.
    [124]Paine A S, Please C R. An improved model of fracture propagation by gas duringrock blasting-some analytical results[J]. Int J Rock Mech Min Sci Geomech Abstr,1994,31(6):699-706.
    [125]Rocscience,2007. RocLab User’s Guide, Rocscience Inc., Toronto,2-25, Availablefree from www.rocscience.com.
    [126]S.Okubo, K.Fukui, Qi Qingxin. Uniaxial compression and tension tests of anthraciteand loading rate dependence of peak strength[J]. International Journal of CoalGeology,2006,68(3-4):196-204.
    [127]Sanchidrián J A, Segarra P, López L M. Energy components in rock blasting[J]. Int JRock Mech Min Sci,2007,44(1):130-147.
    [128]Smith P D, Hetherington J G. Blast and ballistic loading of structures[M]. Oxford:Butterworth Heinemann Ltd,1994.
    [129]Wei X.Y, Zhao Z.Y, Gu J. Numerical simulations of rock mass damage induced byunderground explosion[J]. I International Journal of Rock Mechanics and MiningSciences,2009,46(7):1206-1213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700