爆炸载荷下控制孔作用机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆破技术广泛应用在国民经济建设和资源的开采中,爆破参数的设计与爆破的效果密切相关。随着煤矿行业的快速发展,煤炭开采面临着严峻的挑战,科学解决生产中所遇到的问题是保证煤矿安全高效开采的前提。煤矿深孔爆破技术逐渐应用于解决深部复杂问题和深部灾害的治理,控制孔在深孔爆破中起着重要的作用,对改善爆破效果具有重要的意义。
     本文通过模型实验分析了控制孔与装药孔间的距离对爆破效果的影响。实验采用的装药孔直径为4mm,控制孔的直径为6mm,装药质量为1.0g,装药高度约l00mm,控制孔与装药孔之间的距离为d。当d=30mm时,控制孔在爆炸作用区的裂隙区,爆炸产生的爆生气体使两孔间的介质产生裂隙,裂纹扩展迅速,爆生气体从控制孔溢出,减小了破岩的能量,岩石不断裂;当d=60mm时,控制孔在爆炸作用区的塑性破坏区,控制孔使周围的岩石应力集中,达到岩石的断裂极限,岩石沿控制孔与装药孔的连线方向断裂,控制孔起到定向致裂的作用。当d≥90mm时,控制孔处于弹性区,岩石不沿控制孔与装药孔的连线方向破裂,控制孔的应力集中达不到岩石的破裂极限,岩石根据自身的损伤裂隙分布情况随机断裂,基本不受控制孔的影响。通过实验现象分析,得出控制孔所在爆炸作用区的位置对岩石的破裂至关重要,通过对应力波的分析,控制孔改变了孔周围岩石的应力状态,对控制岩石的破裂起到了重要的作用。
     本文结合某煤矿深孔爆破弱化坚硬煤层顶板的试验,阐述了控制孔在深孔爆破中的应用。由于深部岩石的破坏没有足够的空间来满足裂隙的扩展,在爆破设计时,采用控制孔来补偿爆炸荷载作用区域介质产生位移所需空间,同时也能起到定向致裂的作用。试验结果表明:控制孔对实际工程的效果明显,有效的降低了岩体的整体性,使难冒顶板变为可冒顶板,从而大大降低了工作面支架的承载压力,同时也降低了生产成本,提高了开采效率。
     控制孔为特殊条件下的工程爆破提供了解决问题的途径,合理设计控制孔参数对改善爆破效果、提高经济效益具有显著的作用。
Blasting technology is widely used in national economic construction and resource exploitation, and the result of blasting is closely related to the design of blasting parameters.With the rapid development of coal industy,coal exploitation is facing serious challenges.Solving the problem encounted in production scientificaly is the foundation of safely and efficiency exploitation.The deephole blasting technology apply to solve the difficulty problem underground and control deep hazards. Control hole plays an important role in deephole blasting. It is extremely significant for improving the blasting effect.
     The model experiment is used for analysis the relationship of the distance between control hole and blasting hole to the blasting effect in this paper.In the experiment, the diameter of blasting hole and control hole are4mm and6mm, respectively. The mass of charge is1.0g, and the height of charge is about100mm. The distance between control hole and blasting hole is d.When d=3mm, control hole is located at crush zone. Under the action of explosion gas,the rock medium between the two holes was destory. The crack grew quickly and the explosion gas released from the control hole. The rock can not split due to energy of rock breaking was reduced. When d=6mm, control hole is located at crack zone. The stress concentrated and the value reach the fracture limit. The rock split along the line that joins the two holes. The control hole plays an important role in diractional fracturing. When d≥9mm, control hole is located at elastic zone. The rock split but not along the line that joins the two holes. The stress concentrated but not achieve the fracture limit. The rock split at random according to the damage crack distribute. From the experimental phenomenon,we may drew the conclusion that where the control hole located in the blasting acted zone is important for the rock split In hard rock roof weaken,there is not enough space to meet the demand of crack growth in view of the destory character of deep rock. In blasting design,the control hole is used for compensation the space that the rock medium in the blasting acted zone needed for replace.
     Take the deephole blasting in rock roof weaken for example,the paper state the application of deephole blasting in coalmine.There is no enough space for the crack growth underground. The control hole is used to provided enough space for the crack growth. It also plays an important role in directional splite. From the application of control hole in the hard roof weaken,the effect is apperantly. The load of workface support reduced greatly because the completeness of rock is decreased. The roof rock was altered from hard to weak.
     Control hole provided a way to solve the problem of engineering blasting in special conditions. The parameters of control hole is important for improving blasting result and increase the economic evenue.
引文
[1]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1),91-99.
    [2]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16),2803-2813.
    [3]CHEN Qiuyu,HUANG Wenyao. Research on loosen blasting technology for fully-mechanized mining face crossing fault[A]. WANG Xuguang.New Development on Engineering Blasting[C]. Beijing:Metallurgical Industry Press,2011,262-264.
    [4]X.Y.Wei, Z.Y.Zhao, J.Gu. Numerical simulations of rock mass damage induced by underground explosion[J]. International Journal of Rock Machanics & Mining Science,46(2009),1206-1213.
    [5]Zheming Zhu, Bibhu Mohanty, Heping Xie. Numerical investigation of blasting-induced crack initiation and propagation[J]. International Journal of Rock Mechanics & Mining Sciences 44(2007)412-424.
    [6]宋永津.注水压裂弱化控制煤层坚硬难冒顶板技术[M].北京:煤炭工业出版社,2001.
    [7]赵建平.近中区瞬时爆炸波识别及其作用规律研究[D].长沙:中南大学资源与安全工程学院,2009.
    [8]赵建平,徐国元.爆炸波信号识别及其动力学过程的实验研究[J].岩土工程学报,2009,31(5),732-737.
    [9]胡刚,郝传波,景河海.爆炸作用下岩石介质应力波传播规律研究[J].煤炭学报,1997,2001,26(3):270-273.
    [10]王占江,李孝兰,戈琳,等.装药不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,2003,22(11):1827-1831.
    [11]韩秀凤,严楠,蔡瑞娇.雷管输出冲击波在有机玻璃中传播衰减的实验研究[J].含能材料,2004,12(6):293-332.
    [12]何翔,吴祥云,李永池,等.石灰岩中爆炸成坑和地冲击传播规律的试验研究[J].岩石力学与工程学报,2004,23(5):725-729.
    [13]宗琦,罗强.炮孔水耦合装药爆破应力分布特性试验研究[J].实验力学,2006,21(3):393-398.
    [14]巫绪涛,胡实胜,田杰PVDF应力测量技术及在混凝土冲击实验中的应用[J].爆炸与冲击,2007,27(5):165-168.
    [15]高祥涛.炸药破碎岩石能量分布研究[D].淮南:安徽理工大学化学工程学院,2010.
    [16]岳中文,杨仁树,郭东明.爆炸作用下空孔周围应力场变化的模型实验[J].煤炭学报,2009, 34(5),624-628.
    [17]Sang Ho Cho, Yuji Ogata, Katsuhiko Kaneko. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics & mining sciences,40(2003)763-777.
    [18]罗勇,沈兆武.深孔控制卸压爆破机理和防突试验研究[J].力学季刊,2006,27(3),469-475.
    [19]郑祥滨,璩世杰,范利华,等.单螺旋空孔直眼掏槽成腔过程数值模拟研究[J].岩土力学,2008,29(9):2589-2594.
    [20]张奇,杨永琦,员永峰,等.直眼掏槽爆破效果的影响因素分析[J].岩土力学,2001,22(2):144-147.
    [21]龚敏,王德胜,黄毅华.突出煤层深孔控制爆破时控制孔的作用[J].爆炸与冲击,2008,28(4),310-315.
    [22]曹树刚,徐阿猛,沈大富.顺层深孔预裂爆破瓦斯预抽的试验研究[J].中国矿业,2007,16(7):69-73.
    [23]刘健.低透气煤层深孔预裂爆破增透技术研究及应用[D].淮南:安徽理工大学能源与安全学院,2008.
    [24]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值分析[M].北京:科学出版社,1999.
    [25]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [26]戚承志,钱七虎.岩体动力变形与破坏的基本问题[M].北京:科学出版社,2009.
    [27]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [28]陈秋宇,黄文尧,袁胜芳,等.煤矿深孔预裂爆破技术应用研究[J].工程爆破,2011,17(2):37-39.
    [29]K.RAVI-CHANDAR, B.YANG. The role of microcracks in the dynamic fracture of brittle materials[J]. J.Mech.Phys.Solids,1997,45(4),535-563.
    [30]张志呈.定向断裂控制爆破[J].重庆:重庆出版社,2000.
    [31]高全臣.爆破测试技术[M].北京:煤炭工业出版社,1996.
    [32]孟吉复,惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992.
    [33]王丽琼.二硝基重氮酚的爆速与密度的关系[J].煤炭科技,1984,3:1-4.
    [34]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006,35(3),301-305.
    [35]郝朝瑜,王继仁,万清生,等.煤层深孔控制预裂爆破的可拓工程设计方法及应用[J].煤炭学报,2010,35(增),72-75.
    [36]康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002,27(1),16-23.
    [37]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社(第2版),2010.
    [38]齐庆新,雷毅,李宏艳,等.深孔断顶爆破防治冲击地压的理论与实践[J].岩石力学与[程学报, 2007,26(增1),3522-3527.
    [39]Li Chun-rui, Kang Li-jun&Qi Qing-xing. The numerical analysis of borehole blasting and application in coal mine roof-weaken[J]. Procedia Earth and Planetary Since 1(2009)451-456.
    [40]国家安全生产监督管理总局.煤矿安全规程[M].北京:煤炭工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700