多孔介质内汽液相变传递的非均匀性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质广泛存在于自然界,如土壤、矿石、动植物组织等,其中汽液相变传递过程更是常见的物理现象。温差作用下,水分发生相变和迁移,同时包括流动、传热、传质和相变,比单一动量、能量或质量传递复杂得多,又本质性地影响着实际应用。多孔介质内汽液相变传递过程的研究还远未完善,各种机理的认识和描述均不够清晰,包括基本宏观物性和微细观过程特征,所采用的一些假设和理论也还强烈地期盼有更为坚实的物理基础与实验事实支撑。
     本文提出从物质分布非均匀性的新视角重新审视和认识这一复杂传递过程。试图由唯象方程出发,按统一思路在数学上定义宏观和孔隙尺度非均匀性,阐明非均匀性产生、所引发的效应及它们作用于传递过程的机理。具体从宏观和孔隙尺度两个层次切入,探讨冷凝、蒸发和孔隙局部冷凝蒸发共存三种现象中水分分布、溶质分布和结构非均匀性效应。
     冷凝过程中,液体在孔隙内部铺展特性引发非均匀水分分布,形成特征复杂的冷凝前沿。在其附近,蒸汽扩散和导热有效通道面积都快速变化,引起物质和能量传递在此处明显起伏,表现出冷凝速率和温度梯度在空间上迅速变化。多孔介质内溶液表面蒸发过程的定向特点和多孔介质本身结构特点引起溶质向表面富集、析出并团簇状生长。这种非均匀分布使得干燥过程与纯净液体的干燥明显异同,干燥曲线上附加产生一个短暂的第一减速干燥段。溶质析出初期扩展了干燥表面积,后期形成溶质层阻碍干燥进行,尤其析出溶质的生长及形态对干燥过程产生重要影响。
     从孔隙尺度来看,宏观上的均匀孔隙有更细致的微观结构。孔隙中固液气复杂弯曲界面构成孔隙结构非均匀性,扭曲了物理量的分布,极大影响传递过程。非均匀性使得各相对传递(如导热)的贡献处在非对称位置上,引发一些非常规局部传递现象(如局部蒸发冷凝共存),结构对传递过程影响变得异常繁杂。本文引入定量描述孔隙尺度非均匀性的参数,简明、有效地分析阐明物理过程和机理,提供了认识复杂问题的新思路和技术手段。
Porous media widely exist in the natural world, including soil, ore and animal/plant tissues, and inside transport with liquid-vapor phase change is often encountered. With the presence of temperature gradient, water changes its phase and migrates together with convection, heat and mass transfer and phase change, which is much more complex than normal single-phase momentum, energy or mass transfer processes. There are many fundamental phenomena and scientific issues to understand, which substantially influences practical applications. The transport processes inside porous media with liquid-vapor phase change are far from being truly well-known, including the basic macro thermal properties and micro transport characteristics. Also, the currently wide accepted assumptions and theories are eagerly expected to be supported by more solid physical foundations and experiments.
     In the present study a new idea, nonuniformity of mass distribution, was proposed to explore and understand the fundamentals of complex transport processes. From the phenomological equations, macro and pore-scale nonuniformity were mathematically defined in an identical way to describe the characteristics of the nonuniformity, induced phenomena and its effects on inner transport processes. The nonuniformity effects of water distribution, solute distribution and pore structure were theoretically and experimentally explored at both the macro and micro scales during condensing, evaporating, and a special emphasis was addressed on investigating the transport phenomena, induced by the local coexistence of both condensation and evaporation happening in a same pore, which is one of important nonuniformity effects associated pore structure.
     For condensation occurring in porous media, liquid spreading induces significant nonuniformity in water distribution and a condensation front with complex fluid dynamic phenomena and phase interface. Near the condensation front, the effective area for vapor/gas diffusion, fluid flow and heat conduction varies greatly, causing significant fluctuation of mass and energy transfer there, with spatial sharp changes of condensation rate and temperature gradient.
     In an evaporation process of solution in porous media, both directional mass transfer and structure of porous media make the solute accumulate, precipitate and cluster near/on the surface. Such nonuniform distribution brings an additional short first falling-drying-rate period, compared with the drying of pure fluids. The precipitation enlarges evaporation surface in earlier stage, while the cluster layer may resist the evaporation in the later stage. Particularly, the growth and morphology of the precipited solute play important roles in the evaporation process.
     From pore-scale view, macroscopically uniform pores have more delicate sub-structures. The complex curved phase interface between solid, liquid and gas contributes to the pore-scale nonuniformity, which alters the distribution of physical quantities and has significant influence on transport processes. The nonuniformity places the contribution of different phases to transport (e.g., heat conduction) in asymmetrical positions and results in irregular local transport phenomena (e.g., local coexistence of condensation and evaporation). As a result, the influences of pore structure become notoriously complex. A simple parameter was introduced to quantitively describe the pore-scale nonuniformity for concise and effective clarifying the associated mechanisms. This actually provides a new idea and/or technical way to understand complicated phenomena.
引文
[1]吴学成,程乐鸣,王恩宇,等.多孔介质中的预混燃烧发展现状.电站系统工程, 2003, 19(1)37-40.
    [2] Hsu P F, Evans W D, Howell J R. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combust Science and Technology, 1993, 90:149-172.
    [3]王恩宇,程乐鸣,骆仲泱,等.渐变型多孔介质中预混燃烧温度分布试验.热科学与技术, 2003, 2(1):64-69,
    [4]王恩宇,程乐鸣,骆仲泱,等.天然气在渐变型多孔介质中的预混燃烧,热科学与技术, 10(1):1-6, 2004.
    [5]岑可法,程乐鸣,骆仲泱,等.往复式多孔介质燃烧高温空气发生系统及其方法:中国, 200510060836.1. 2006-03-01.
    [6]周昊,岑可法.利用多孔介质实现极少量油点火的煤粉点火燃烧器:中国, 200510062178.X. 2006-06-28.
    [7]岑可法,程乐鸣,骆仲泱,等.实用新型专利渐变型多孔介质燃烧器:中国, 01226080.0. 2002-02-03.
    [8] Kumar K P. Porous nanocomposites as catalyst supports Part I. second phase stabilization, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites. Applied Catalyst A - General, 1994, 119(1):163-183.
    [9] Nigam K D P, Iliuta I, Larachi F. Liquid back-mixing and mass transfer effects in trickle-bed reactors filled with porous catalyst particles. Chemical Engineering and Processing, 2002, 41 (4):365-371.
    [10] Capek P, Ehrhardt K. Dynamics of multicomponent mass transport with complex reaction in a porous catalyst. Applied Catalysis A - General, 2002, 224 (1-2): 255-269.
    [11]颜岩,孔隙内传递反应机理与循环流化床脱硫模拟[博士论文].北京:清华大学热能工程系, 2003.
    [12] Mota M, Teixeira JA, Bowen WR, et al. Interference of coarse and fine particles of different shape in mixed porous beds and filter cakes. Minerals Engineering, 2003, 16 (2): 135-144.
    [13] Grigoras K, Franssila S, Sikanen T, et al. Fabrication of porous membrane filter from p-type silicon. Physica Status SolidI A– Applications and Materials Science, 2005, 202 (8): 1624-1628.
    [14] Arens-Fischer R, Kruger M, Thonissen M, et al. Formation of porous silicon filterstructures with different properties on small areas. Journal of Porous Materials, 2000, 7 (1-3): 223-225.
    [15] Karunarathna S A S A, Lin P Z. Numerical simulation of wave damping over porous seabeds. Coastal Engineering, 2006, 53 (10):845-855.
    [16] Twu S W, Liu C C, Twu C W. Wave damping characteristics of vertically stratified porous structures under oblique wave action. Ocean Engineering, 2002, 29 (11): 1295-1311.
    [17] Blacher S, Maquet V, Schils F, et al. Image analysis of the axonal ingrowth into poly(d,l-lactide) porous scaffolds in relation to the 3-D porous structure. Biomaterials, 2003, 24 (6): 1033-1040.
    [18] Shi Q, Yu M, Zhou X. Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries. Journal of Power Sources, 2002, 103(2): 286-292.
    [19] Kaviany M., Principles of Heat Transfer in Porous Media. New York: Springer-Verlag Publishing Company, Inc.1991
    [20]薛定谔A E.多孔介质中的渗流物理.王鸿勋,张朝琛,孙书琛译.北京:石油工业出版社, 1974.
    [21] Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman, 1983.
    [22]陈永平,施明恒.基于分形理论的多孔介质导热系数研究.工程热物理学报, 1999, 20(5):608-612.
    [23] Yu B M, Cheng P. Fractal models for the effective thermal conductivity of bi-dispersed porous media. J. Thermalphysics and Heat Transfer, 2002, 16:22-29.
    [24] Yu B M, Cheng P. A fractal model for permeability of bi-dispersed porous media. Int. J. Heat and Mass transfer. 2002, 45(14): 2983-2993.
    [25] Yu B M, James L, Cao H Q. A fractal in-plane permeability model for fabrics. Polymer Composites, 2002, 110:378-384.
    [26] Dullien F A L. Porous media: fluid transport and pore structure (2nd edn.). California: Academic press, Inc. San Diego, 1992.
    [27] Whitaker S. The method of volume averaging. Dordrecht: Kluwer Academic Publishers, 1999.
    [28]林瑞泰.多孔介质传热传质引论.北京:科学出版社, 1995.
    [29] Darcy . Les Fontaines Publiques de la ville de Dijon. Dalment. Paris: J. Bear, 1856
    [30] J·贝尔.多孔介质流体动力学.李竞生,陈崇希,译.北京:中国建筑工业出版社, 1983.
    [31] Lage J L. The fundamental theory of flow through permeable media from Darcy to turbulence// Derek B. Ingham, Ioan Pop. Transport phenomena in porous media.Oxford: Pergamon press,1998.
    [32] Dana E, Skoczylas F. Experimental study of two-phase flow in three sandstones II.Capillary pressure curve measurement and relative permeability pore space capillary models. International Journal of Multiphase Flow, 2002, 28: 1965–1981.
    [33] Ergun S. Fluid Flow Through Packed Columns. Chem. Eng. Proc., 1952, 48:89-94.
    [34] Kozeny J.über kapillare Leitung des Wassers im Boden. Royal Academy of Science, Wien. 1927, 136(2a):271-306
    [35] Carman, P C. Fluid flow through a granular bed. Trans. Inst. Chem. Eng., 1937, 15:150-167.
    [36] Carman, P C . Determination of the specific surface of powders. Journal of the Society of Chemical Industries, 1938, 57: 225-234.
    [37] Udell K S. Heat Transfer in Porous Media Heated from above with Evaporation, Condensation, and Capillary Effects. Journal of Heat Transfer, 1983, 105(2): 485-492.
    [38] Udell K S. Heat transfer in porous media considering phase change and capillary-the heat pipe effect. Int J Heat Mass Transfer, 1985, 28:485-495.
    [39] Cheng P, Hsu C H. Heat conduction// Derek B. Ingham, Ioan Pop. Transport phenomena in porous media, Oxford: Pergamon press, 1998.
    [40] Zehner P, Schlunder E U. W?rmeleitf?higkeit von Schüttungen bei Massigen Temperaturen. Chemie-Ingr. Tech., 1970, 42:933-941.
    [41] Nam J H, Kaviany M. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. International Journal of Heat and Mass Transfer, 2003, 46:4595–4611.
    [42] Pedras M H J, de Lemos M J S. Macroscopic turbulence modeling for incompressible flow through undeformable porous media. International Journal of Heat and Mass Transfer, 2001, 44(6):1081-1093.
    [43] Pedras M H J, de Lemos M J S. On the definition of turbulent kinetic energy for flow in porous media. International Communications in Heat and Mass Transfer, 2000, 27(2):211-220.
    [44] Vadasz P, Olek S. Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transport in Porous Media, 1999, 37 (1): 69-91.
    [45] De Lemos M J S. Fundamentals of the double-decomposition concept for turbulent transport in permeable media. Materialwissenschaft und Werkstofftechnik, 2005, 36(10):586-593.
    [46] Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment. International Journal of Heat and Mass Transfer, 2001, 44 (22): 4287-4311.
    [47] Cieslinski J T. Nucleate pool boiling on porous metallic coatings. Experimental Thermal and Fluid Science, 2002, 25(7):557-564.
    [48] Najjari M, Ben Nasrallah S. Numerical study of boiling with mixed convection in a vertical porous layer. International Journal of Thermal Sciences, 2002, 41 (10): 913-925.
    [49] Brautsch A, Kew P A. Examination and visualisation of heat transfer processes during evaporation in capillary porous structures. Applied Thermal Engineering, 2002, 22: 815-824.
    [50] Chen Z Q, Cheng P, Zhao T S. An experimental study of two phase flow and boiling heat transfer in bi-dispersed porous channels, International Communications in Heat and Mass Transfer, 2000, 27(3):293-302.
    [51] Pasaogullari U, Wang C Y. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electro Chimica Acta, 2004, 49 (25): 4359-4369.
    [52] Knackstedt M A, Sheppard A P, Sahimi M. Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity. Advances in Water Resources, 2001, Sp. Iss.24 (3-4):257-277.
    [53] Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resources Research, 2004, 40 (1): Art. No. W01501.
    [54] Gray W G. Macroscale equilibrium conditions for two-phase flow in porous media. International Journal of Multiphase Flow, 2000, 26(3):467-501.
    [55] Binder K, Landau D P. Capillary condensation in the lattice gas-model-a Monte-Carlo study. Journal of chemical physics, 1992, 96:1444-1454.
    [56] Bocquet L, Charlaix E, Ciliberto S, et al. Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature, 1998, 396:735-737.
    [57] Neimark A V, Ravikovitch P I. Capillary condensation in MMS and pore structure characterization. Microporous and mesoporous materials, 2001, 44:697-707.
    [58] Al-Nimr M A, Alkam M K. Film condensation on a vertical plate imbedded in a pourous medium. Applied Energy, 1997, 56:47-57.
    [59] Mosaad M. Natural convection in a porous medium coupled across an impermeable vertical wall with film condensation. Heat and Mass Transfer, 1999, 35:177-183.
    [60] Char M I, Lin J D. Conjugate film condensation and natural convection between two porous media separated by a vertical plate. Acta Mechanica, 2001, 148:1-15.
    [61] Char M I, Lin J D, Chen H T. Conjugate mixed convection laminar non-Darcy film condensation along a vertical plate in a porous medium. International Journal of Engineering Science, 2001, 39:897-912.
    [62] Zhao T S. Coupled heat and mass transfer of a stagnation point flow in a heated porous bed with liquid film evaporation. International Journal of Heat and Mass Transfer, 1999, 42:861-872.
    [63] Wang J L, Catton I. Enhanced evaporation heat transfer in triangular grooves coverd with athin porous layer. Applied Thermal Engineering 2001, 21:1721-1737.
    [64]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社, 2006.
    [65] Lewis W K. The Rate of Drying Solid Materials. IEC, 1921, 13:427-432.
    [66] Sherwood T K. The Drying of Solid-1. IEC, 1929, 21:12-16.
    [67] Sherwood T K. The Drying of Solid-2. IEC, 1929, 21:876-980.
    [68] Sherwood T K. The Drying of Solid-3. IEC, 1930, 22:132-136.
    [69] Sherwood T K. Application of Theoretical Diffusion Equations to the Drying of Solid. Trans. AIChE, 1931,27:190-202.
    [70] Ceaglske N H, Hougen O A. Drying Granular Solids. IEC, 1937, 29:805-815.
    [71] Hougen C A, McCauley H J, Marshall W R Jr. Limitations of Diffusion Equations in Drying. Trans. AIChE, 1940, 36:183-210.
    [72] Van Arsdel W B. Approximate Diffusion Calculation For The Falling-Rate Phase Of Drying, Trans. AIChE, 1947, 43(1):13-24
    [73] Henry P S H. Diffusion in absorbing media. Proc. R. Soc. London, A, 1939, 171:215:241.
    [74] Philip J R, de Vries D A. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union, 1957, 38:222-232.
    [75] de Vries D A. Simultaneous transfer of heat and moisture in porous media. Trans. Am. Geophys. Union, 1958, 39:909-916.
    [76] de Vries D A. The theory of heat and moisture transport in porous media revisited. Int. J. Heat Mass Transfer, 1987, 30:1343-1350.
    [77] Horton R, Wierenga P J. The effect of column wetting on soil thermal conductivity. Soil Science, 1977, 138:102-108.
    [78] Daian J F. Condensation and isothermal water transfer in cement mortar. Part 1-Pore size distribution, water condensation and imbibition. Transport in Porous Media, 1988, 3 :563-589.
    [79] Daian J F. Condensation and isothermal water transfer in cement mortar. Part 2-Transient condensation of water vapor. Transport in Porous Media, 1989, 4:1-12.
    [80] Shepherd R, Wiltshire R J. An analytical approach to coupled heat and moisture transport in soil. Transport in Porous Media, 1995, 20:281-304.
    [81] Reshetin O L, Orlov S Y. Theory of heat and moisture transfer in a capillary-porous body. Technical physics, 1998, 43:263-264.
    [82] Larbi S, Bacon G, Bories S A. Humid air diffusion with water vapor condensation in porous media. Int. J. Heat Mass Transfer, 1995, 38:2411-2426.
    [83] Luikov A V. Heat and Mass Transfer in Capillary-porous Bodies//Irvine T F. Advances in Heat Transfer, Vol.1. New York: Academic Press, 1964.
    [84] Luikov A V. Heat and Mass Transfer in Capillary-porous Bodies. Oxford: Permagon, 1966.
    [85] Luikov A. V. Systems of Differential Equations of Heat and Mass Transfer in Capillary -porous Bodies (Reviews). Int. J. Heat Mass Transfer, 1975,18:1-14.
    [86] Whitaker S. The Role of Irreversible Thermodynamics and the Onsager Relations in the Analysis of Drying Phenomena. Proceeding of the Sixth International Drying Symposium, IDS’88, Versailles, 1988.
    [87] Waananen K M. Analysis of Mass Transfer Mechanisms of Extruded Durum Semolina. Proceeding of the Fifth International Congress on Engineering and Food, Cologne, Germany, 1989.
    [88] Whitaker S. Diffusion and dispersion in porous media. AICHE J., 1967, 13:420-427.
    [89] Whitaker S. Advance in theory of fluid motion in porous media. Ind. Eng. Chem., 1969, 61:14-28.
    [90] Whitaker S. The transport equations for multi-phase system. Chem. Eng. Sci., 1973, 28:139:147.
    [91] Whitaker S. Heat and Mass Transfer in Granular Porous Media. Adv. Drying, 1980,1:23-61.
    [92] Hanamura K, Kaviany M. Propagation of condensation front in steam injection into dry porous media. Int. J. Heat Mass Transfer, 1995, 38:1377-1386.
    [93] Wijeysundera N E, Zheng B F, Iqbal M. Numerical simulation of the transient moisture transfer through porous insulation. Int. J. Heat Mass Tansfer, 1996, 39:995-1004.
    [94] Bouddour A, Auriault J L, Mhamdi-Alaoui M, et al. Heat and mass transfer in wet porous media in presence of evaporation-condensation. Int. J. Heat Mass Transfer, 1998, 41: 2263-2277.
    [95] Li Y, Zhu Q Y. A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity. Numerical Heat Transfer, Part A, 2003, 43:501-523.
    [96] Choudhary M K, Karki K C, Patankar S V. Mathematical modeling of heat transfer, condensation, and capillary flow in porous insulation on a cold pipe. Int. J. Heat Mass Transfer, 2004, 47:5629-5638.
    [97] Yazbek W, Delebarre A. Modeling of volatile organic compounds condensation in fluidized bed. Chemical Engineering Science,2004, 59:283-297.
    [98]范爱武,刘伟,刘炳成.作物生长的土壤中氧气浓度场的稳态数值模拟.工程热物理学报, 2003, 24(1):97-99.
    [99]刘炳成,刘伟.自然环境下湿分分层土壤中热湿传递迁移规律的研究.太阳能学报, 2004, 25(3):299-304.
    [100] Ilic M, Turner I W. Convective Drying of a Consolidated Slab of Wet Porous Material. Int. J. Heat Mass Transfer, 1989,32:2351-2362.
    [101]雷树业,郑贯宇.含湿多孔介质传热传质三参数渗流模型研究方法.清华大学学报, 1997, 37(2):86-90.
    [102] Lei S Y, Wang B X, Lu T J. Investigation of the Transient Heat and Mass Transfer Process in Unsaturated Porous Media around a Buried Pipe, ASME 94-WA/HT-13, Chicago USA, 1994.
    [103] Lei S Y, Xia C M, Yang R G, et al. Numerical Simulation and Analysis of Process in Unsaturated Porous Media for Measuring Thermal Conductivity with Transient Heat Probe. 5th Asian Thermal Property Conference, Seoul, Korea, 1998,.
    [104]卢太金.对含湿多孔介质冻融过程热质迁移的模拟研究[博士学位论文].北京:清华大学热能工程系, 1996.
    [105] Fan J T, Luo Z X, Li Y. Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation, Int. J. Heat Mass Transfer, 2000, 43-2989-3000.
    [106] Luo Z X, Li F Z, Liu Y X, et al. Effect of the environmental atmosphere on heat, water, and gas transfer with hygroscopic fabrics. Journal of Computational and Applied Mathematics, 2004, 163:199-210.
    [107] Wang Z, Li Y, Zhu Q Y, et al. Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials. Journal of Applied Polymer Science, 2003, 89-2780-2790.
    [108] Scotter D R, Raats P A C. Movement of salt and water near crystalline salt in relatively dry soil. Soil Science, 1970: 109 (3): 170-178.
    [109] Parlange J Y. Movement of salt and water in relatively dry soil. Soil Science, 1973: 116 (4): 249-255.
    [110] Scotter D R. Salt and water movement in relatively dry soil. Australian Journal of Soil Research,1974, 12 (1):27-35.
    [111] Kelly S F, Selker J S. Osmotically Driven Water Vapor Transport in unsaturated Soils. Soil Sci. Soc. Am. J., 2001, 65:1634-1641.
    [112] Lee M T. On the mechanism of evaporation of water from a nonhygroscopic porous media. Int. Comm. Heat Mass Transfer, 1996, 23(7):939-946.
    [113] Eiichi S, Ryuma Y, Ichiro T. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation. Journal of Hydrology, 1996, 178:109-136.
    [114] McCabe W L, Smith J C, Harriott P. Unit Operations of Chemical Engineering. 5th Ed; McGraw-Hill: New York, 1993.
    [115] Chen, J B, Peng X F, Tao T, et al. Thermal drying of wastewater sludge with crack formation. Water Science and Technology, 2004, 50:177–182.
    [116] Tao T, Peng X F, Lee D J. Thermal drying of wastewater sludge: Volume shrinkage andcrack development. Drying Technology, 2005, 23, 669–682.
    [117] Tao T, Peng X F, Lee, D J. Structure of crack in thermally dried sludge cake. Drying Technology, 2006, 24, 1555-1568.
    [118] Tao T, Peng X F, Lee DJ. Crack dynamics of thermally dried cake. Journal of the Chinese Institute of Chemical Engineers, 2006, 36, 511–516.
    [119] Tao T, Peng X F, Lee D J. Skin layer on thermally dried cake. Drying Technology, 2006, 24, 1047-1052.
    [120] Hadas A. Evaluation of Theoretically Predicted Thermal Conductivities of Soils Under Field and Laboratory Conditions. Soil Sci. Soc. Am. J., 1977, 41:460-466.
    [121] Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids. New York: McGraw-Hill, 1987, 407.
    [122] Turns S R. An introduction to combustion-concepts and applications, 2nd ed.. Singapore: McGraw-Hill, 2000.
    [123] Conte I, Peng X F, Zhang Y. Experimental investigations of transport properties of natural thermal insulation materials. International Journal of Design and Nature, 2007, 2: 233-246
    [124] Bachmann J, Horton R, van der Ploeg R R. Isothermal and Nonisothermal evaporation from Four Sandy Soils of Different Water Repellency. Soil Sci. Soc. Am. J., 2001, 65:1599-1607.
    [125] Walton J C, Bin-Shafique S, Smith R W, et al. Role of carbonation in transient leaching of cemetitious wastforms. Environmental Science & Technolog, 1997, 3(8):2345-2349.
    [126] Bin-Shafique S, Walton J C, Gutierrez N, et al. Influence of carbonation on leaching of cementious wasteforms. Journal of Environmental Engineering, 1998, 124(5): 463-467.
    [127] Bertos M F, Li X, Simons S J R, et al. Investigation of accelerated carbonation for the stabilization of MSW incineration ashes and sequestration of CO2. Green Chem., 2004, 6:428-436.
    [128] Pel L, Huinink H, Kopinga K. Salt transport and crystallization in porous building materials. Magnetic Resonance Imaging, 2003, 21 :317-320.
    [129] Gibbard H F Jr., Scatchard G, Rousseau R A, et al. Liquid-vapor equilibrium of aqueous sodium chloride, from 298 to373K and from 1 to 6 mokkg-1, and related properties. Journal of Chemical and Engineering Data, 1974, 19(3)385:394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700