孔隙尺度下聚合物驱油渗流规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱油作为一项成熟的提高采收率技术,已经在国内尤其是大庆油田实现了工业化应用,在油田稳产、高产中发挥着重要的作用。广大学者对聚合物溶液的渗流理论和驱油机理进行了广泛的研究,并取得了重要认识,但在微观渗流理论和驱油机理方面,现有研究多以室内实验作为主要技术手段。本文调研了大量国内外聚合物驱微观渗流和驱油机理研究成果,以前人工作为基础,用毛管束模型研究了孔隙尺度下非牛顿幂律流体和粘弹性流体的渗流规律,以及聚合物溶液驱油两相流渗流规律。通过亲油岩石壁面油膜受力平衡分析,探索了孔隙尺度下粘弹性聚合物溶液的驱油机理,分析了聚合物溶液驱替微观油膜所需宏观渗流速度。取得的研究成果如下:
     在幂律流体具有牛顿流体康脱洛维奇变分速度分布形式假设的基础上,通过变分法建立了幂律流体在三角形毛管和矩形毛管内的流量和压降关系式,与本文Matlab数值解和相关文献结果对比表明,变分法结果在较宽的毛管几何尺寸和流体流变参数内具有高精度解,所得流量和压降关系式可应用于孔隙尺度网络模拟和毛管束模型。以单根毛管内幂律流体流量-压降公式为基础,给出了单根毛管和毛管束幂律流体等效渗透率计算方法,计算表明,在截面积相等情况下,圆形毛管和毛管束的等效渗透率最大。
     应用机械能平衡原理,在Binding的工作基础上,以剪切粘度、拉伸粘度和第一法向应力差作为描述粘弹性聚合物溶液的流变参数,建立了聚合物溶液在收缩、收缩-扩张圆形管道和波纹管内的流量-压降公式。当渗流速度高于某一临界值后,由拉伸应力产生的附加压降将超过剪切压降。对本文研究的聚合物溶液,第一法向应力差对总压降的贡献很小,可以忽略。将多孔介质简化为波纹管组成的毛管束模型,建立了适用于描述粘弹性流体流动特性的渗流模型,与Koshiba等人的室内实验结果对比表明,本文提出的渗流模型可以很好地表征粘弹性聚合物溶液在多孔介质中流动时所表现出的拉伸特性。
     采用常规毛管束模型和Dong等人提出的Interacting毛管束模型,模拟了水湿条件下牛顿流体的驱油过程。常规毛管束模型由于忽略了渗流过程中的物理特性,在模拟水湿油藏渗流时存在不足,Interacting毛管束模型则很好地弥补了这一缺陷。本文将Dong等人的模型推广应用到非牛顿幂律流体驱油的油水两相流动,并采用阻尼最小二乘法对模型进行了求解,在获得2个以上时间步结果后,把外推线性插值作为下一步运算初值,大大加快了收敛速度。非牛顿幂律流体驱油条件下,幂律指数和稠度系数减小,使不同尺寸毛管中的前缘推进速度差距变大,驱替趋于不均匀,这与吴玉树等人建立的宏观模型在定性规律上是一致的。
     应用CIR-100界面流变仪,测定了聚合物溶液与原油界面的界面粘度、界面粘性模量和界面弹性模量,三者均随温度的增加先降低而后升高,随聚合物分子量和聚合物溶液浓度的增加而增大,随聚合物溶液矿化度的增加而降低。应用动量平衡原理,分析了界面特性参数对聚合物驱油过程的影响,结果表明,当界面张力低于临界界面张力时,在压力梯度不变的情况下,进一步降低界面张力,可以加快残余油的驱替速度,聚合物驱情况下,油水界面粘度增加,将引起孔隙内残余油驱替速度降低。
     聚合物驱后荧光分析结果表明,聚合物溶液可以大幅度降低油膜型剩余油。针对这种类型的剩余油,建立了处于油藏流场中,粘附于岩石表面油膜的动力学模型。油膜所受驱油动力为驱油剂流动作用于油膜上的剪切应力和法向应力在油膜表面的积分,所受阻力为油膜变形引起润湿滞后,岩石壁面对油膜的束缚力。在二者达到平衡条件下,给出了水驱和聚合物驱条件下微观油膜启动所需临界流速。分析表明,聚合物溶液由于具有高拉伸粘度,使其能产生高出剪切应力1~2个数量级的拉伸应力,从而更容易使油膜启动。而水驱油时,所产生的拉伸应力几乎可以忽略,剪切应力很难将油膜从岩石表面剥离。
Polymer flooding, as a mature technique of enhancing oil recovery, has been industrially used in China, especially in Daqing Oilfileds and has been playing an important role in the stable and high production of oil. Many scholars have made research and obtained significant knowledge in its percolation theory and mechanism of oil displacement. However, in the field of micro-percolation heory and the mechanism of oil displacement, the main technical approach of the current studies is through laboratory experiment. In this paper, through a great deal of research from home and abroad, research was made in the percolation law of non-Newtonian power law fluid and viscoelastic fluid as well as two-phase percolation rule of polymer flooding. Through analysing the stress blance of a single oil drop on the oil wet rock, the mechanism of polymer oil displacement agent was explored and the reason of how polymer fluid could enhanced oil recovery was discovered. The research findings showed as follows:
     Suppose that power law fluid had similar distribution of Contorovich variational velcoity. Through calculus of variations, the flow drawdown relation of power law fluid in the triangle and rectangle capillaries was established. The result through calculus of variations showed higher precision solution in the bigger capillaries and fluid rheological parameter, compared with Matlab numerical solution and correlated document. Besides, the flow drawdown relation could be used in pore scaling porosity network analog and capillary grouping modeling. On the basis of the flow drawdown relation of power law fluid in a single capillary, calculation methods of effective permeability in a single capillary and capillary grouping were given, which showed that the effective permeability in the circular capillary and tube bundle was among the top in the case of the same cross-section area.
     On the basis of mechanical energy equilibrium principle and the work of Binding, shear viscosity, extension viscosity and the first direct stress difference were used to describe rheological parameter of viscoelastic polymer fluid. Flow drawdown formulas of polymer fluid in the convergent, convergent divergent circular and sinusoidual capillaries were established. When flow velocity was higher than a certain critical value, pressure drop caused by extensional stress was higher than that caused by shear stress. As to the polymer fluid in this paper, the effect caused by the first direct stress difference on the total pressure drop was too small to ignore.
     If porous media was considered as sinusoidal capillaries, the percolation model to describe the flow behavior of viscoelastic fluid is established. Compared with the laboratory experiment done by Koshiba, this paper revised the model so that it could better represent the extension character during the flow of viscoelastic polymer fluid in the porous media.
     Oil displacement process of Newtonian fluid under the water wet condition was simulated through conventional capillary bundle model and Interacting capillary bundle model raised by Dong. Conventional capillary bundle model negleted the physical characteristics during the course of percolation and had its defects when simulating flow in the water wet reservoir. However, Interacting capillary bundle model could well fill the gap. This paper spreaded the application of the model raised by Dong to oil/water two-phase flow of non-Newtonian power law fluid and damped least square method was used to get the solution. During the displacement of non-Newtonian power law fluid, power law exponent and consistency coefficient decreased, which made the gap of frontal velocity get bigger in different sizes of capillaries and made the displacement tend to non-uniform. This is qualitatively in accordance with the macroscopic model raised by Wu Yushu.
     Through interfacial rheometer CIR-100, interfacial viscosity, interfacial viscosity modulus and interfacial elasticity modulus could be measured. They all decreased and then increased as the temperature rose. Besides, they all increased as the polymer molecular weight and the concentration of polymer fluid rose. With the increasing salinity of polymer fluid, they decreased. Integral momentum balance equation proposed by Slattery is used to study effect of interfaical parameters on polymer flooding process, results shows that for values of interface tension less than the critical value the displacement veloctiy of residual oil will increase as the applied pressure gradient increases and since the increasing of interfacial viscosity in polymer flooding the displacement velocity of residual oil will decrease.
     Fluorescence analysis of poymer flooding showed that polymer fluid could greatly decrease the oil film remaining oil. As to this type of remaining oil, the dynamic model of a single oil film attaching to the surface of rocks was established in the reservoir flow field.
     The driving force of the oil film was the integration of shear stress and direct stress on the surface of the oil film when the oil displacement agent flowed through. And resistance force was the wettability hysteresis when the oil film got deformed and the binding force of the surface of rock to oil film. When the driving force was equal to resistance force, critical flow velocities at which the microscopic oil film started to move were given during the water flooding and polymer flooding. The analysis showed that the polymer fluid had high extension viscosity, which could produce extension stress that was higher than shear stress 1~2 order of magnitudes. It benefited the start of the oil film. However, during water flooding, the extension stress could be neglected and the shear stress could hardly exfoliate the oil film from the surface of the rock.
引文
1.王志武,刘恒,高树棠,等.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995
    2. W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991
    3. F.G.波特曼.二次和三次采油[M].北京:石油工业出版社,1984
    4.王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51
    5.夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65
    6.夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D].博士学位论文.安达:大庆石油学院,2001
    7.王德民,程杰成等.粘弹性流体平行于界面的力可以提高驱油效率[J].石油学报,2002,23(5):48-52
    8.张宏方.衰竭层效应和粘弹性效应对聚合物波及系数的作用研究[D].博士学位论文.大庆:大庆石油学院,2002
    9.王立军.聚合物溶液粘弹性对提高驱油效率的作用[D].博士学位论文.大庆:大庆石油学院,2003
    10.杨付林.聚合物驱油机理及高质量浓度聚合物驱油方法研究[D].博士学位论文.大庆:大庆石油学院,2004
    11.王德民.粘弹性流体的特殊性对油藏工程、地面工程及采油工程的影响[J].大庆石油学院学报,2001,25(3):46-52
    12.王德民,大庆油田“两三结合”的试验情况及扩大实施建议[J].大庆石油地质与开发,2004,23(1):18-23
    13. Bear J.,Dynamics of Fluid in Porous Media[M].Dover publications,INC,New York,1972
    14.沈平平,油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000
    15. M.R.Allen and D.J.Tildesley, Computer Simulation of Liquids[M].Clarendon press, Oxford,1987
    16. Metropolis,N.,Rosenbluth,A.W.and Rosenbluth,M.N.etc.,Equation of State Calcu- lations by Fast Computing Machines[J].Journal of Chemical Physics,1953,21 : 1087-1092
    17. Muhammad Sahimi, Barry. D. Hughes and L. E. Scriven etc. , Dispersion in Flow through Porous Media-I. One-phase Flow[J].Chemical Engineering Science,1986,41 (8):2103-2122
    18. Muhammad Sahimi,Adel.A.Heiba and H.Ted.Davis etc.,Dispersion in Flow throughPorous Media-II.Two-Phase Flow[J].Chemical Engineering Science,1986,41(8):2123 -2136
    19. K.S.Sorbie,P.J.Clifford The Inclusion of Molecular Diffusion Effects in the Network Modelling of Hydrodynamic Dispersion in Porous Media[J].Chemical Engineering Science,1991,46(10):2525-2542
    20.温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998
    21. L.A.Clark,G. T.Ye and A.Gupta,Diffusion Mechanisms of Normal Alkanes in Faujasite Zeolites[J].The Journal of Chemical Physics,1999,111(3):1209-1222
    22. E.J.Maginn,A.T.Bell,D.N.Theodorou,Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations[J].Journal Physical Chemistry, 1993,97:4173-4181
    23. M.J.Sanborn,R.Q.Snurr,Diffusion of Binary Mixtures of CF4 and n-alkanes in Faujasite[J].Separation and Purification Technologry, 2000,20(11):1-13
    24.陆小华,王俊和朱宇.分子动力学模拟研究流体微观结构和扩散性质[J].南京工业大学学报,2002,24(1):7-11
    25.刘迎春,王琦和吕玲.微孔中简单流体扩散行为的分子动力学模拟研究[J].高等学校化学学报,2004,25(5):900-903
    26.秦星,张秉坚,张晖,等.微孔中简单流体混合物扩散系数的分子动力学模拟与关联[J].化学物理学报,2003,16(6):467-471
    27.张晖,张秉坚,梁世强,等.微孔中简单流体粘度的分子动力学模拟及关联模型[J].物理化学学报,2003,19(4):352-355
    28.秦星,张秉坚和张晖.硅酸岩微孔中流体混合物扩散系数的分子动力学模拟[J].物理化学学报,2005,21(3):315-318
    29.王兴勇,Lattice Boltzmann方法的理论及其在水力计算中应用的研究[D].博士学位论文.南京:河海大学,2003
    30.许友生,用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征[D].博士学位论文.上海:华东师范大学,2006
    31. Gunstensen,A.K.and D.H.Rothman.Microscopic Modeling of Immiscible Fluids in Three Dimensions by a Lattice Boltzmann Method[J].Europhysics Letters,1992, 18(2):157-161
    32. Gunstensen,A.K.and D.H.Rothman.Lattice-Boltzmann Studies of Immiscible Two -phase Flow through Porous Media[J].Journal of Geophysical Research,1993,98(B4): 6431-6441
    33. E.Aharonov and D.Rothman.Non-Newtonian Flow through Porous Media:A Lattice Boltzmann Method[J].Geophysics Res.Lett.,1993,20,679
    34. Ahmed Al-Futaisi and Tad W Patzek.Secondary Imbibition in NAPL-invaded Mixed-wetSediments[J].Journal of Contaminant Hydrology,2004,74(1-4):61-81
    35. Lucy L.B.A Numerical Approach to the Testing of the Fission Hypothesis[J].The Astron Journal, 1977, 82:1013-1024
    36. Gingold R A, Monghan J.Smoothed Particle Hydrodynamic Theory and Application to Non-spherical Stars[J].Monthly Notices of Royal Astrononical Society,1977,181
    37. Liu G.R.and Liu M.B.,Smoothed Particle Hydrodynamics:A Meshfree Particle Method[J].World Scientific,2003
    38.邓方刚.柱坐标系下光滑粒子流体动力学数值模拟[D].硕士学位论文.长沙:国防科学技术大学,2002
    39. Yi Zhu.A Pore-Scale Study of Flow and Transport through Porous Media[D]. PhD.Thesis, State of Indiana:Purdue University,1999
    40. I.Fatt.The Network Model of Porous Media:I.Capillary Pressure Characteristics[J]. Petroleum transactions,AIME,1956,207:144-159
    41. I.Fatt.The Network Model of Porous Media:II.Dynamic Properties of a Singe Size Tube Network[J].Petroleum transactions,AIME,1956,207:160-163
    42. I.Fatt.The Network Model of Porous Media:III.Dynamic Properties of Networks with tube Radius Distribution[J].Petroleum transactions,AIME,1956,207:164-181
    43. C.G..Dodds,O.G..Kiel.Evaluation of Monte-Carlo Methods in Studying Fluid-fluid Displacement and Wet Ability in Porous Rock[J]. J.Phys.Chem.1959,63:1646-1632
    44. A.K.Singhal,W.H.Somertron.Network model for the study of multiphase flow behavior in porous media[R].SPE 2906,1967
    45. RALPH SIMON,F.J.KELSEY.The Use of Capillary Tube Networks in Reservoir Performance Studies:I.Equal viscosity miscible displacements[J].SPE Journal,1971:99-112
    46. RALPH SIMON,F.J.KELSEY.The Use of Capillary Tube Networks in Reservoir Performance Studies:II.Effect of Heterogeneity and Mobility on Miscible Displacement Efficiency[R].SPE 3482,1972
    47. E.L.Claridge.Discussion of the Use of Capillary Tube Networks in Reservoir Performance Studies[J].SPE Journal,1972:352-361
    48. F.A.L.Dullien,I.Chatzis,M.S.El Sayed.Modelling Transport Phenomena in Porous Media by Networks consisting of Non - Uniform Capillaries[R].SPE 6191,1976
    49. K.Mohanty and S.J.Salter.Multiphase Flow in Porous Media:II.pore-level modeling [R].SPE 11018,1982
    50. G.R.Jerauld and S.J.Salter.The Effect of Pore-structure on Hysteresis in Relative Permeability and Capillary Pressure:Pore-level Modeling[J].Transport in Porous media, 1990,5:103
    51. M.J.Blunt and P.King.Relative Permeabilities from Two and Three Dimensional Pore Scale Network Modelling[J].Transport in Porous Media,1991,6:407
    52. K.Mohanty and S.J.Salter.Multiphase Flow in Porous Media:III.Oil Mobilization. Transverse Dispersion and Wettability[R].SPE 12127,1983
    53. Martin J.Blunt.Effects of Heterogeneity and Wetting on Relative Permeability Using Pore Level Modeling[J].SPE Journal, Vol 2, Number 1, March, 70-87.
    54. Lin,Cheng-Yuan.Three-dimensional,Randomized,Network Model for Two-phase Flow through Porous Media[R].SPE 9803,1981
    55. M.M.Dias,A.C.Payatakes.Network Models for Two Phase Flow in Porous Media:I. Immiscible Micro Displacement of Non-wetting Fluid[J].Journal of Fluid Mechanics, 1986,164:305-306
    56. M. M.Dias,A.C.Payatakes.Network Models for Two Phase Flow in Porous Media:II. Motion of Oil Ganglia[J].Journal of Fluid Mechanics,1986,164:337-358
    57. W.J.Cannella,C.Huh and R.S.Seright.Prediction of Xanthan Rheology in Porous Media[R].SPE 18089,1988
    58. K.S.Sorbie,Network Modeling of Xanthan Rheology in Porous Media in the Presence of Depleted Layer Effects[R].SPE 19651,1989
    59. P.C.Reeves and M.A.Celia.A Functional Relationship Between Capillary Pressure, Saturation, and Interfacial Area as Revealed by a Pore-scale Network Model[J].Water Resources Res.,1996,32,2345
    60. P.E.Oren,S.Bakke and O.J.Arntzen.Extending Predictive Capabilities to Network Models[R].SPE 38880,1997
    61. Xavier Lopez, Per H.Valvatne and Martin J.Blunt.Predictive Network Modeling of Single-phase Non-Newtonian Flow in porous media[J].Journal of Colloid and Interface Science,2003,264:256-265
    62.胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4):46-51
    63.王金勋,吴晓东,杨普华.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003,23 (3):8-11
    64.王金勋,吴晓东和潘新伟.孔隙网络模型法计算水相滞留对气体渗流的影响[J].石油勘探与开发,2003,30(5):113-115
    65. J.T.Bartley,D.W.Ruth.Relative Permeability Analysis of Tube Bundle Models[J]. Transport in Porous Media,1999,36:161-187
    66. Mingzhe Dong,F.A.Dullien and Liming Dai etc..Immiscible Displacement in the interacting capillary bundle model Part I. Development of interacting capillary bundle model[J].Transport in Porous Media,2005,59:1-18
    67. J.T.Bartley,D.W.Ruth. Relative Permeability Analysis of Tube Bundle Models,Including Capillary Pressure[J].Transport in Porous Media,2001,45:447-480
    68. Mingzhe Dong, F.A.Dullien and Liming Dai etc..Immiscible Displacement in the Interacting Capillary Bundle Model Part II.Applications of Model and Comparison of Interacting and Non-interacting Capillary Bundle Models[J].Transport in Porous Media, 2006, 63:289-304
    69. W.R.Purcell.Capillary Pressures-Their Measurement using Mercury and Calculation of Permeability Therefrom[R].SPE 949039,1949
    70. A.E.薛定谔著.王鸿勋,张朝琛,孙书琛译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982
    71. http://www.columbia.edu/~rl268/ChESite/E3110/Handout_15.pdf
    72. W.B.Gogarty.Rheological Properties of Pseudoplastic Fluids in Porous Media[J]. Society of Petroleum Engineers Journal,1967,(2):149-159
    73. J.G..Savins.Non-Newtonian Flow through Porous Media[J].Industrial and Engineer Chemistry,1969,10:18-47
    74.王新海,赵郭平.幂律流体在多孔介质中的剪切速率[J].新疆石油地质,1998,19(4):312-314
    75. Yoshihiro Masuda,Ke-Chin Tang,Masashi Miyaxawa etc..1D Simulation Polymer Flooding Including the Viscoelastic Effect of Polymer Solution[J].SPE RE,1992,2: 247-252
    76. S.Chakrabarti,B.Seidl and J.Vorwerk etc..Correlations Between Porous Medium Flow Data and Turbulent Tube Flow Results for Aqueous Hydroxyporpylguar Solutions(Part 2)[J].Rheologica Acta,1991,30:124-130
    77. J.Vorwerk,P.O.Brunn.Porous Medium Flow of the Fluid A1:Effects of Shear and Elongation[J].Journal of Non-Newtonian Fluid Mechanics,1991,41:119-131
    78.张玉亮,李彩虹,王晓明,等.多孔介质中聚合物溶液粘弹性效应[J].大庆石油学院学报,1994,18(2):139-143
    79.汪伟英.孔隙介质中聚合物的粘弹性及流变性[J].江汉石油学院学报,1994,16(4):54-57
    80.汪伟英.聚合物驱最佳驱油速度的选择[J].石油钻采工艺,1996,18(1):66-75
    81.佟曼丽.聚合物稀溶液在多孔介质中的粘弹效应[J].天然气工业,1987,7(1):64-71
    82.佟曼丽,郭小莉.聚合物稀溶液流经多孔介质时的粘弹效应及其表征[J].油田化学,1992,9(2):145-150
    83.韩显卿.孔隙介质中滞留聚合物分子的粘弹效应系数[J].西南石油学院学报,1988,10(4):59-66
    84.韩显卿,蒲万芬.多孔介质中滞留聚合物分子的粘弹效应模型[J].西南石油学院学报,1989,11(2):50-56
    85.韩显卿,高有瑞.孔隙介质中滞留聚合物粘弹性的测定方法研究[J].西南石油学院学报,1992,14(1):8-17
    86.郑晓松.聚合物溶液的弹性粘度理论及应用[D].博士学位论文.大庆:大庆石油学院,2004
    87. F.N.Cogswell.Converging Flow of Polymer Melts in Extrusions Dies[J].Polymer Enhgineering and Sciecne,1972,12(1):64-73
    88. Hongjun Yin, Demin Wang, Huiying Zhong.Study of Flow Behavior of Viscoelastic Polymer Solution in Micropore with Dead End[R].SPE 101950,2006
    89. Z.Kemblowski and M.Michniewicz.A New Look at the Laminar Flow of Power Law Fluids through Grannular Beds[J].Rheological Acra,1979,18(6):730-739
    90. Rajendra P.Chhabra,Jacques Comiti,Ivan Machac.Flow of Non-Newtonian Fluids in Fixed and Fluidised Beds[J].Chemical Engineering Science,2001,56:1-27
    91. Chhabra,R.P.Bubbles,Drops,and Particles in Non-newtonian Fluids[M].Boca Raton:CRC Press,1993
    92. S.Rodriguez,C.R.Mero and M.L.Sargenti etc.Flow of Polymer Solution through Porous Media[J].Journal of Non-newtonian Fluid Mechanics,1993,49:63-85
    93.杨二龙,宋考平.大庆油田三类油层聚合物驱注入速度研究[J].石油钻采工艺,2006,28(3):45-49
    94. W.Kozicki and C.Tiu.A Unified Model for Non-newtonian Flow in Packed Beds and Porous media[J].Rheological Acta,1988,27(1):31-38
    95.梁基照.粘弹性流体的入口收敛流动[J].力学进展,1993,23(2),234-247
    96. A.G.GIBSON and G.A.WILLIAMSON.Shear and Extensional Flow of Reinforced Plastics in Injection Molding II.Effects of Die Angle and Bore Diameter on Entry Pressure with Bulk Molding Compound[J].Polymer Engineering and Sciecne,1985,25(15):980-985
    97. T.H.KWON,S.F.SHEN and K.K.WANG.Pressure Drop of Polymeric Melts in Conical Converging Flow:Experiments and Predictions[J].Polymer Engineering and Sciecne,1986,26(3):214-224
    98.梁基照.聚合物材料入口收敛流动的定量描述[J].特种橡胶制品,2004,25(3):29-32
    99.梁基照.非牛顿流体入口收敛流动分析[J].力学学报,1990,22(1):79-85
    100.郑融.毛细管进出口流动中聚合物熔体粘弹行为的唯象研究[D].硕士学位论文.广州:华南工学院,1984
    101.赵良知.聚合物熔体在圆锥短口模的挤出胀大唯象研究[J].博士学位论文.广州:华南理工大学,2003
    102.Alfred Chatenever and John C.Calhoun.Visual Examinations of Fluid Behavior in Porous Media-Part1[R].SPE 135,1952
    103.诺曼R.莫罗著,鄢捷年,曾利容,陈志刚译.石油开采中的界面现象[M].北京:石油工业出版社,1994
    104.兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006,27(1):64-68
    105.李宜强,隋新光,李洁.纵向非均质大型平面模型聚合物驱油波及系数室内实验研究[J].石油学报,2005,26(3):77-79,84
    106.李宜强.聚合物驱大平面模型物理模拟实验研究[D].博士学位论文.万庄:中国科学院研究生院(渗流流体力学研究所),2006
    107.Christos D.Tsakiroglou.Correlation of the Two-phase Fow Coefficients of Porous Media With the Rheology of Shear-thinning Fluids[J].Journal of Non-Newtonian Fluid Mechanics.2004,117:1-23
    108.P.Fast,L.Kondic and M.J.Shelley etc..Pattern Formation in Non-Newtonian Hele- Shaw Flow[J].Phys. Fluids,2000,13:1191-1212
    109.Ju-Pian Tian,Kai-Lun Yao.Immiscible Displacements of Two Phase Non-newtonian Fluids in Porous Media[J].Physics Letters A,1999,261:174-178
    110.J.T.Patton,K.H.Coats and G.T.Colegrove.Prediction of Polymer Flood Performance [R].SPE 2546,1971
    111.Gray A.Pope.The Application of Fractional Flow Theory to Enhanced Oil Recovery[R]. SPE 7660,1980
    112.R.S.Jones,G.A.Pope and H.J.Ford etc..A predictive Model for Water and Polymer Flooding[R].SPE 12653,1984
    113.Y.S.Wu,K.Pruess and A.P.Witherspoon.Displacement of a Newtonian Fluid by A Non-newtonian Fluid in a Porous Medium[J].Transport in Porous Media,1991,6:115-142
    114.Yu-Shu Wu and Karsten Pruess.A Numerical Method for Simulating Non-newtonian Fluid Flow and Displacement in Porous Media[J].Advances in Water Resources,1998, 21:351-362
    115.宋考平,陈锐,邓庆军,等.聚合物驱产量和含水率变化规律的预测[J].大庆石油学院学报,2002,26(1):97-100
    116.A.A.Garrocuh and R.B.Gharbi.A Novel Model for Viscoelastic Fluid Flow in Porous Media[R].SPE 102015,2006
    117.G.A.Zeito.Three Dimensional Numerical Simulation of Polymer Flooding in Homo- geneous and Heterogeneous Systems[R].SPE 2186,1968
    118.P.L.Bodor,G.J.Hirasaki and M.J.Tham etc..Mathematical Simulation of Polymer Flooding in Complex Reservoirs[R].SPE 3524,1971
    119.J.Lecourtier,R.Revenq and P.Delaplace.An Innovative Polymer Flooding Simulator Based on Advanced Concepts in Polymer Physics[R]. SPE 24150,1992
    120.侯健,王玉斗,陈月明.聚合物驱数学模型的流线方法求解[J].水动力学研究与进展A辑,2002,17(3):343-352
    121.程林松,张姝玉,李春兰.聚合物驱粘弹效应影响因素的数值模拟研究[J].西安石油学院学报(自然科学版),2002,17(6):25-27
    122.F.H.波特曼等.提高采收率技术[M].北京:石油工业出版社,1985
    123.赵永胜,魏国章,陆会民,等.聚合物驱能否提高驱油效率的几点认识[J],石油学报,2001,22(3):43-46
    124.郭尚平.中国石油天然气公司院士文集[M],北京:中国大百科全书出版社,1997
    125.郭尚平,黄延章,周娟,等.物理化学渗流-微观机理[M].北京:科学出版社,1990
    126.黄延章,于大森.微观渗流实验力学[M].北京:石油工业出版社,2001
    127.兰玉波.化学驱波及系数和驱油效率的研究[D].博士学位论文.大庆:大庆石油学院,2006
    128.拜佳著,张贵孝译.聚合物在多孔介质中的流动[M].北京:石油工业出版社,1996
    129.沈平平,俞稼镛.大幅度提高石油采收率的基础研究[M].北京:石油工业出版社,2001
    130.翁蕊.聚合物的滞留类型及相应的测定方法[M].油气采收率技术,1998,5(1):51-55
    131.翁蕊,梅佑黔.孔隙结构对聚合物捕集滞留量的影响[J].石油勘探与开发,1992,( 6)
    132.黄延章,等.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    133.马尔哈辛著,李殿文译.油层物理化学机理[M].北京:石油工业出版社,1987
    134.张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85
    135.Joseph J.Taber.Research on Enhanced Oil Recovery:Past,Present and Future[J].Pure & Applied Chemistry,1980,52:1323-1347
    136.F.A.L.Dullien著,范玉平,赵东伟等译.现代渗流物理学[M].北京:石油工业出版社,2001
    137.叶仲斌.疏水缔合聚合物与表面活性剂二元驱油体系界面流变性研究[D].博士学位论文.南充:西南石油学院,2002
    138.刘卫东,童正新,李明远,等.化学驱油体系的油水界面粘度[J].油田化学,2000,17(2):337-339
    139.曹绪龙,李阳,蒋生样,等.驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J].石油大学学报(自然科学版),2005,29(2):70-72
    140.杨二龙,宋考平,谢远洋,等.聚合物溶液与原油界面的流变性实验[J].大庆石油学院学报,2006,30(2):35-37
    141.T.J.Stoodt and J.C.Slattery.Effect of the Interfacial Viscosities upon Displacement[J]. AIChE Journal,1984,30(4):564-568
    142.R.M.Giordano and J.C.Slattery.Effect of Interfacial Viscosities upon Displacement in Sinusoidal Capillaries[J].AIChE Journal,1987, 33(10):1592-1602
    143.R.M.Giordano and J.C.Slattery.Effect of Interfacial Viscosities upon Displacement in Capillaries with Special Application to Tertiary Oil Recovery[J].AIChE Journal,1983, 29(3):483-492
    144.John C.Slattery.Interfacial Transport Phenomena[M].Springer-Verlag NewYork Berlin Heidelberg,1990
    145.张承丽.聚合物-油界面特性对驱替的影响[D].硕士学位论文.大庆:大庆石油学院,2006
    146. Z.塔德莫尔,耿校正,阎琦,许澍华译.聚合物加工原理[M].北京:化学工业出版社,1990
    147.唐志玉.塑料膜流变学设计[M].北京:国防工业出版社,1991
    148.祝世兴,王致清.任意顶角三角形管道中的层流[J].佳木斯工学院学报,1990,8(2):215-221,241
    149.冯贤桂.矩形截面管流动的康脱洛维奇解法[J].重庆工业高等专科学校学报,2004,
    19(3):17-18
    150.徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003
    151.Seppo Syrjala.Finite-element Analysis of Fully Developed Laminar Flow of Power-law Non-Newtonian Fluid in a Rectangular Duct[J].Int.Comm.Heat Mass Transfer,1995, 22(4):549-557
    152.Robert S.Schechter. On the Steady Flow of a Non-Newtonian Fluid in Cylinder Ducts[J].AICHE Journal,1961:445-448
    153.S.Gh.Etemad, A.S.Mujumdar and R.Nassef.Simultaneously Developing Flow and Heat Transfer of Non-Newtonian Fluids in Equilateral Triangular Duct[J].Applied Mathematical Modelling.1996,Number 12:898-908
    154.R.Byron Bird,Warren E.Stewart,Edwin N.Lightfoot.Transport in Porous Media[M].第二版,化学工业出版社,2002
    155.Nobuo Mitsuishi,Yoshifumi Kitayama,Yoshiki Aoyagi.Non-Newtonian Flow in Non-Circular Duct,Chemical Engineering,Japan,1966,31(6):570-577
    156.D.M.Binding.An Approximate Analysis for Contraction and Converging Flows[J]. Journal of Non-Newtonian Fluid Mechanics,1988,27:173-189
    157.Christopher J.S.Petrie.One Hundred Years of Extensional Flow[J].Journal of Non- Newtonian Fluid Mechanics.2006,137:1-14
    158.Christopher J.S.Petrie.Extensional viscosity:A Critical Discussion[J].Journal of Non-Newtonian Fluid Mechanics.2006,137:15-23
    159.D.M.Jones and K.Walters.The Behaviour of Polymer Solutions in Extension- dominated Flows,with Applications to Enhanced Oil Recovery[J].Rheologica Acta,1989,28:482-498
    160.顾培韵,潘勤敏,孙建中,等.粘弹性流体流变特性的研究[J].浙江大学学报(自然科学版),1994,28(1):88-92
    161.D.M.Binding.Further Considerations of Axismmetric Contraction Flows[J].Journal of Non-newtonian Fluid Mechanics,1991,41:27-42
    162.费定晖,周学圣.吉米多维奇数学分析习题集题解(三)[M].济南:山东科学技术出版社,2001
    163.J.A.Deiber,W.R.Schowalter.Flow through Tubes with Sinusoidal Axial Variations in Diameter[J].AICHE Journal,1979,25(4):638-644
    164.Mingzhe Dong.Characterization of Water Flood Saturation Profile Histories by the‘Complete’Capillary Number[J]. Transportin Porous Media,1998,31:213-237
    165.吴迪祥,张继芬,李虎君.油层物理[M].北京:石油工业出版社
    166.郑宝玉.通信工程中的最优化方法[M].北京:北京邮电大学出版社,1996
    167.段秋者.沥青在石英砂上的吸附、润湿性以及微观驱替动态和机理[D].博士学位论文.南充:西南石油学院,2001
    168.宋考平,李世军,方伟,等.用荧光分析方法研究聚合物驱后微观剩余油变化[J].石油学报,2005,26(2):92-95
    169.Suddhasatwa Basu,K.Nandakumar and Jacob H.Masliyah.A Model for Detachment of a Partially Wetting Drop from a Solid Surface by Shear Flow[J].Journal of Colloid and Interface Science,1997,190:253-257
    170.C.W.EXTRAND and A.N.GENT.Retention of Liquid Drops by Solid Surfaces[J]. Journal of Colloid and Interface Science,1990,138(2):431-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700