高动态条件下伪码相关特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载体高动态运动条件下,卫星导航接收机接收信号与本地信号之间不但存在载波频偏,还存在伪码频偏。现有研究多针对载波频偏,伪码频偏的影响缺乏系统的理论研究,高动态接收机的设计效率和设计性能均存在较大提升空间。载体静止条件下,卫星运动对精度要求优于0.5ns的高精度定轨/测量型接收机伪距测量精度的影响也不可忽略。基于这两大背景,本文理论与实际相结合,着重研究伪码频偏的影响,内容分为四大部分:
     第一部分研究动态条件下的伪码信号相关函数。动态条件下码率偏移使伪码相关函数发生动态效应。现有研究仅限于一阶动态即码率偏移恒定的情形,且相关积分长度内码率偏移引起的相对相位滑动不超过1码元。方法上多采用数值计算,仅Unjieng Cheng采用逐码元求和法推导了相关函数及其均值的表达式。
     本文首先将逐码元求和法推广到积分时间任意长和二阶动态即码率偏移变化率恒定的情形,推导并仿真验证了伪码相关函数及其均值、方差的表达式,并给出了方差上限。逐码元求和法结果准确,但表达式繁琐,不利于高动态伪码相关函数特点分析与实际应用。为此,本文提出了平稳随机过程积分法,推导并仿真验证了一阶、二阶动态条件下任意长积分时间伪码相关函数及其均值表达式;分析了一阶、二阶动态伪码相关函数特点,结果表明,动态条件下伪码相关函数不再是三角形,发生了主瓣展宽、峰值移位和损耗三种动态效应,二阶动态条件下伪码相关函数还失去了对称性;基于相关峰损耗表达式的二阶动态与一阶动态比较研究得出结论:二阶动态因素码率偏移变化率可引起dB量级的相关峰损耗或增益,并给出了二阶动态简化为一阶动态的判决条件和方法。与逐码元求和法相比,平稳随机过程积分法所得表达式更为简单、实用,当伪随机序列周期L>>1时具有相当高的精度。
     第二部分研究高动态对扩频信号捕获的影响。目前研究多集中于载波频偏对捕获的影响,对伪码频偏影响的分析甚少,同时考虑载波和伪码频偏的理论研究尚未见诸文献。本文基于平稳随机过程积分法推导了同时存在恒定载波和伪码频偏条件下的伪码相关输出和载波-伪码多普勒联合损耗表达式,研究表明忽略伪码频偏导致的信噪比计算误差可达dB甚至10dB量级;在此基础上优化设计了常见的“分段相关.视频积”伪码捕获系统的中频积时间,与忽略伪码频偏仅考虑载波频偏的比较研究表明,忽略伪码频偏引起的优化设计性能损耗甚微,因此可仅基于载波频偏优化设计。
     第三部分研究动态条件下伪码捕获和跟踪阶段的伪码相位测量方法。基于动态条件下的伪码相关函数表达式,研究了捕获和跟踪阶段的一阶、二阶动态伪码相位测量方法及误差,提出了两种动态条件下伪码捕获相位测量方法和两种一阶动态、三种二阶动态伪码跟踪相位测量方法。其中伪码捕获相位测量方法可基本消除常规方法10ns甚至100ns量级的相位测量误差,降低跟踪电路的负担;伪码跟踪相位测量方法可基本消除常规方法0.001m~1m量级的一阶、二阶动态伪距测量误差,提高伪距测量精度。
     第四部分研究高动态定位解算中的滞后效应。指出发射机运动条件下观测伪距对发射机运动状态的反映存在滞后效应。在倒GPS遥外测综合测量系统中,观测伪距的动态滞后效应可导致m级的定位误差,其校正方法是统一各测站观测伪距的发射时间。
     本文研究成果为高动态条件下扩频信号同步的分析与设计提供了理论依据,为高精度伪码测距以及如何避免主动定位系统动态滞后误差提供了方法上的指导。
In the satellite navigation receiver, there is not only carrier frequency offset but also code frequency offset between the received and the local signals when the host vehicle is in high dynamic motion. The precious studies mostly aimed at carrier frequency offset, while there were very few systemic theoretical studies on the influences of code frequency offset. There is still large space for improving the efficiencies and performance in the designing of high dynamic receivers. Moreover, the influence of satellites' motion on the metering precision of pseudo range in high precision receivers with the precision demand of 0.5ns is yet not neglectable when the host vehicle is static. Based on these two applications, this thesis focuses on the influence of code frequency offset. It contains four sections:
     In sectionⅠ, the correlation function of PN codes under dynamic conditions is studied. Under dynamic conditions code frequency offset makes the code correlation function deformed. The precious study was limited to first-order dynamic, i.e., constant code frequency offset and the integration time interval during which the chip slipping due to code frequency offset is less than one chip. And mostly the numerical calculation method was used, except that Unjeng Cheng derived the expressions of correlation function and its mean value.
     In the thesis, first the PN code correlation function, its mean and variance are derived by the method of summing chip by chip, with the correlation time interval extended to arbitrary length and the dynamic condition extended to the case of second-order, i.e., constant code frequency offset rate. And also the upper bound of variance is given. This method is accurate. But its shortcoming of very complicated expression disables it from being used to analyze the characteristic of PN code correlation and guide the analyses and devising of code synchronization. So we present a method which is referred to as stationary random process integrating. The PN code correlation function and its mean with arbitrary integration time interval under first-order and second-order dynamic are derived and verified by simulations. The characteristics of PN code correlation function under first-order and second-order dynamic are analyzed. The result shows that under dynamic conditions the code correlation function is no longer triangular and three dynamic effects of main-lobe spreading, correlation peak shifting and decreasing take place, and moreover the code correlation function loses its symmetry under second-order dynamic. By comparison between second-order and first-order dynamic based on the peak value loss expressions it is concluded that the second-order dynamic factor code frequency offset rate can induce loss or gain in the order of dB, and the conditions when second-order dynamic can be simplified to first-order dynamic and the method how to decision are given. Compared with the method of summing chip by chip, the method of stationary random process integrating is simpler and more practical. And its precision is high when the PN code period length L >>1.
     In sectionⅡ, the influences of high dynamic on acquisition are investigated. The precious study focused on the influence of carrier frequency offset on acquisition. The influence of code frequency offset has been seldom analyzed, and the theoretical study with both carrier and code frequency offset taking into account has not been seen in the literature. In this thesis the PN code correlation function with both constant carrier and code frequency offset and also carrier Doppler-code Doppler joint loss are derived. The study shows that ignoring the code frequency offset will induce errors in the order of dB or 10dB. Based on it the IF integration time of the common acquisition system called segment correlation-video integration is optimized, the comparison study shows that optimizing with the code frequency offset ignored brings little performance loss, so the IF integration time can be optimized according to the carrier frequency offset only.
     In sectionⅢ, the code phase metering methods for code acquisition and tracking under dynamic conditions are investigated. Based on the expressions for code correlation function under dynamic conditions, the phase metering methods and their errors for code acquisition and tracking under first-order and second-order dynamic are studied. Two code phase metering methods for code acquisition under dynamic, two code phase metering methods for first-order dynamic tracking and three code phase metering methods for second-order dynamic tracking are proposed. The presented metering methods for code acquisition can almost remove the common-used method's error of the order of 10ns to 100ns, so that can reduce the burden of code tracking circuit. And the presented code phase metering methods for code acquisition can almost remove the common-used method's error of the order of 0.001m~0.1m, so that can improve the precision of PN code ranging.
     In sectionⅣ, the dynamic delay effect in positioning solution under high dynamic is studied. It is pointed out that when the transmitter is moving, there is a delay effect in the reflection of the observed pseudo range on the transmitter motion state. In the telemetry and tracking integrated system with inverse GPS principle, the dynamic delay effect of pseudo range can induce positioning error in the order of m. The revising method is to align the transmitting time of the observed pseudo range at all the observation stations.
     The thesis provides with theoretical guidance for the analysis and designing of dynamic spread spectrum code synchronization, and provides with methods for (a) high precision PN code ranging under dynamic conditions and (b) pseudo range observation in the positive positioning systems in order to avoid the dynamic delay errors.
引文
[1]袁俊,远程攻击导弹的发展特点及趋势,中国航天,1998,(8):38-43
    [2]邱致和,导航军事引用发展,军事电子信息系统专题技术文选,第十一分册-空中交通管制/管理系统,2001:249-253
    [3]孙智信GPS导航系统的电子攻防对抗研究综述,军事电子信息系统专题技术文选,第十一分册-空中交通管制/管理系统,2001:263-269
    [4]S.Hinedi and J.I.Stateman,High dynamic GPS tracking,Final Rep.,JPL Publication 88-85,1988:7
    [5]G.B.Green,P.Axelrad,Space applicationofGPS,Navigation,1989,36(3):239-251
    [6]R.Landry,L.Lestarquit,J.L.Issler,A.Benhallam,Studies on acquisition and tracking threshold's reduction for GPS spaceborne and aeronautical receivers,ION GPS-98,1998:619-625
    [7]A.Van Leeuwen,E.Rosen and L.Cartier,The global positioning system and its application in spacecraft navigation,Navigation,1979,26(2):118-135
    [8]Carl E.Hoefener,Lawrence Wells,Utilizing GPS for ultra-high dynamic vehicle tracking in space,Proceeding of the International Telemetering Conference,1986:771-773
    [9]W.J.Hurd,J.I.Statman,V.A.Vilnaotter,High dynamic GPS receiver using maximum likelihood estimation and frequency tracking,IEEE Trans on Aerospace and Electronic Systems,1987,AES-23(4):425-436
    [10]W.J.Hurd,J.I.Stateman and V.A.Vilnrotter,High dynamic GPS receiver validation demonstration,Final Rep.,JPL Publication 85-74,Oct.31,1985,JPL,Pasadena,CA
    [11]Vardoulias G.A.,Povey G.J.R.,Dripps J.H.,On the Doppler probability density function within a low Earth orbit satellite spot beam and its application to the code acquisition procedure,IEEE 50th Vehicular Technology Conference,1999,5:2711-2715
    [12]Syang-Myau Hwang;Mao Yu;Lin Yang,A low complexity carrier recovery and frequency estimation algorithm for Iridium handset system,1999 IEEE Wireless Communications and Networking Conference,3:1208-1211
    [13]Szu-Lin Su,Nan-Yang Yen and Sheng-Cheng Hsieh,Code acquisition of direct-sequence spread spectrum communication with Doppler shift,1995 IEEE International Conference on Communications,1995,3:1663-1667
    [14]Povey G.J.R.,Talvitie J.,Doppler compensation and code acquisition techniques for LEO satellite mobile radio communications,5th International Conference on Satellite Systems for Mobile Communications and Navigation,1996:16-19
    [15]Glisic.S.G.etc,New PN code acquisition schemes for CDMA networks with low signal-to-noise ratios,IEEE Trans.on Comm.,1999,47(2):300-309
    [16]Glisic.S.G,Poutanen.T.,Wu.W.W,New PN code acquisition schemes for low Earth orbit satellites,IEEE Third International Symposium on Spread Spectrum Techniques and Applications,1994,2:608-613
    [17]李小民,张其善,一种基于DSP技术的CA码高动态GPS接收机设计,电子技术应用,1998,(11):37-62
    [18]王忠,刘晓玲,任苏萍,高动态GPS接收机的设计,导航,1999,(4):53-62
    [19]孙东志,韦其宁,张力余,高动态高码率解扩接收机的设计,遥测遥控,1996,17(6):14-21
    [20]田明坤等,高动态GPS接收机的一种设计方案,遥测遥控,2002,23(3):15-20
    [21]许斌,江修富,程乃平,高动态高码率全数字化解扩接收机的设计.指挥技术学院学报,2001,12(2):80-83
    [22]李署坚,任俊涛,王丹志,邵定蓉,基于GPS的高动态数字解扩接收机的研究.航空学报,1999,22(增刊):s84-s87
    [23]程乃平等,高动态GPS C/A码的快速捕获与跟踪技术,装备指挥技术学院学报,2002,13(4):70-73
    [24]R.F.Ormondroyd and V.E.Comley,Limits on the search rate of a sliding correlator synchroniser duo to the effects of self-noise and decorrelation,IEE Proceedings,Part F,1984,131(7):742-750
    [25]Alfred W.Fuxjaeger and Ronald A.Iltis,Acquisition of timing and Doppler-shift in a direct-sequence spread-spectrum system,IEEE trans on Commun,1994,42(10):2870-2880
    [26]K.V.Ravi and R.F.Ormondroyd,Simulation performance of a quantized log-likelihood sequential detector for PN code acquisition in the presence of data modulation and Doppler shift,IEEE MILCOM'91,1991:798-803
    [27]Dr.Ing.Petr Bezucha,Mean acquisition times of serial spread spectrum PN acquisition system in the presence of code Doppler,IEEE 7th Int.Sym.On Spread-Spectrum Tech.& App.,Prague,Sept.2-5,2002:750-755
    [28]Unjeng Cheng,William J.Hurd and J.I.Statman,Spread-spectrum code acquisition in the presence of Doppler shift and Data Modulation,IEEE Trans.on Commun,38(2),1990:241-250
    [29]Masanobu MIZUTANI,Masaaki KATAYAMA etc.A new code acquisition scheme using devided matched filter for a DS/SS signal with frequency offset.ICCS'94,1994,Singapore,1994:379-383
    [30]张倩,高动态DS/FH混合扩频系统实现长伪码快速捕获的一种方法,遥测遥控,2004,25(2):28-31
    [31]徐晓艳等 高动态环境下扩频通信系统信号快速捕获的研究,遥测遥控,2005,26(2):22-27
    [32]Candida L Spillard etc,A serial-parallel FFT correlator for PN code acquisition from LEO satellites,ISSSTA 1998,Sun City,South Africa,Sep.1998:446-448
    [33]R.A.Stirling-Gallacher etc,A fast acquisition technique for a direct sequence spread spectrum signal in the presence of a large Doppler shift,IEEE 4th International Symposium on Spread Spectrum technique & Application,1996,1:156-160
    [34]P.M.Grant etc,Doppler estimation for fast acquisition in spread spectrum communication systems,IEEE 5th International Symposium on Spread Spectrum technique & Application,1998:106-110
    [35]胡建波,一种基于FFT的高动态扩频信号的快速捕获方法,遥测遥控2004,25(6):19-24
    [36]D.J.R.Van Nee,A.J.R.M.Coenen,New fast GPS code acquisition technique using FFT,Electronics Letters,1991,27(2):158-160
    [37]Polydoros A.& Weber C.L,A unified approach to serial search acquisition-part Ⅱ:A matched-filter receiver,IEEE Trans.on Commun.,1984,32(5):550-560
    [38]Gordon J R Povey & Jaakko Talvitie,Doppler compensation and code acquisition techniques for LEO satellite mobile radio communications,IEE 1996 Satellite systems for mobile communications and navigations conference,1996:16-19
    [39]Candida L Spillard,Sascha M Spangenberg,Gordon J R Povey,A serial-parallel FFT correlator for PN code acquisition from LEO satellites,IEEE ISSSTA 1998,1998:446-448
    [40]Mark L.Psiaki,Block acquisition of weak GPS signals in a software receiver,ION GPS 2001,2001:1-13
    [41]S.Hinedi and J.I.Stateman,High dynamic GPS tracking,Final Rep.,JPL Publication 88-85,Dec.15,1988,JPL,Pasadena,CA
    [42]W.J.Hurd,High dynamic GPS receiver using maximum likelihood estimation and frequency tracking,IEEE Trans.on AES.,1987,vol AES-23,No.4:425-436
    [43]V.A.Vilnrtter,Frequency estimation techniques for high dynamic trajectories,IEEE Trans.on AES.,1989,vol.AES-25,No.4:559-575
    [44]V.A.Vilnrotter,S.Hinedi.& R.Kumar,A comparison of frequency estimation techniques for high dynamic trajectories,JPL Publication 88-21:30-42
    [45]S.Hinedi,An extended Kalman filter based automatic frequency control loop,DTA progress Report 42-95,1988:219-228
    [46]S.Aguirre,S.Hinedi,Two novel automatic frequency control loops,IEEE Trans.on AES,1989,vol.25,No.5:425-436
    [47]S.Aguirre,An Automatic frequency control loop using overlapping DFTs,DTA progress Report 42-94,1988:222-231
    [48]R.Kumar,Fast Frequency Acquisition via Adaptive least-squares algorithm,IEE Proceedings,1989,Vol.136,Pt.F,No.4:155-160
    [49]R.Kumar,Efficient detection and signal parameter estimation with applications to high dynamic GPS receivers,ICC'90 Conference on Communications,Including Supercomm Technical Sessions,1990:358-364.
    [50]R.Kumar,Efficient sampling for fast frequency acquisition via adaptive least-squares algorithm,Proceedings of the International Telemetering Conference,1987:191-199
    [51]R.Kumar,A novel multistage estimation of signal parameters,IEEE Trans.on AES.,1990,vol.AES-26,No.4:181-194
    [52]秦振华,频率及频率变化率的快速最大似然估计,遥测遥控,2003,24(2):1-8
    [53]Yu T.Su,Ru-Chwen Wu,Frequency acquisition and tracking in high dynamic environments,IEEE Trans on Vehicle Technology,2000,49(6):2419-2428
    [54]Elliott D.Kalplan,Understanding GPS principle and application,1996:132-134,128-132.
    [55]Dan Simon,Hossny El-Sherief,Fuzzy phase-locked loops,IEEE proceedings of PLANS,1994:252-259
    [56]Shu-Ming Eseng,Yibin Zheng,Fuzzy two-stage carrier synchronization,Fuzzy sets and systems,1999:212-219
    [57]李小民等,一种高动态环境GPS信号的跟踪方法及实现,遥测遥控,1999,20(3):9-15
    [58]李小民,高动态环境GPS应用中几个关键技术研究,遥测遥控,2000:75-78
    [59]J.Skaloud,A.M.Bruton,K.P.Schwarz,Detection and filtering of short-term 0 noise in inertial sensors,Navigation,1999,46(2):97-107
    [60]朱荣,张炎华,莫友声,用于光纤陀螺消噪的新型神经网络,上海交通大学学报,2000,34(5):646-649
    [61]杨莉,汪叔华,采用BP神经网络的惯导初始对准系统,南京航空航天大学学报,1996,28(4):487-479
    [62]王丹力,张洪钺,基于RBPBP神经网络的惯导初始对准系统,航天控制,1999,(2):44-50
    [63]Yue Xiaokui,Yuan Jianping,Luo Jianjun,H_∞ Filter and its application in GPS/DMU integrated navigation,Proceedings of 2002 International Symposium on GPS/GNSS,2002
    [64]万德钧,房建成,王庆,GPS动态滤波的理论、方法及其应用,南京:江苏科技出版社,2000:75-79
    [65]Ydstie B.E.,Co T.Recursive estimation with adaptive divergence control,IEEE Proc.,1985,132D:124-130
    [66]胡国荣,欧吉坤,改进的高动态GPS自适应卡尔曼滤波方法.测绘学报,1999,28(4):290-294
    [67]夏启军,孙优贤,周春晖,渐消卡尔曼滤波器的最近自适应算法及其应用,自动化学报,1990,16(3):124-130
    [68]周东华,席裕庚,张钟俊,一种带多重次优渐消因子的扩展卡尔曼滤波器,自动化学报,1991,17(6):689-695
    [69]Gordon N,Salmand D,Smith AFM,Optimal Nonlinear Filtering in GPS/INS Integration,IEEE Trans.AES.,1997,33(3):835-850
    [70]Rudolph van der Merwe,etc,The Unscented Particle Filters,Advances in Neural Information Processing Systems 13,2000
    [71]Per-Johan Nordlund,Fredrik Gustafasson,Sequential Monta Carlo filtering techniques applied to integration navigation system,Proceedings of the American control conference,Arlington,2001
    [72]J.Z.Sasiadek etc,Fuzzy adaptive Kalman filtering for INS/GPS data fusion,Proceedings of the 15th international symposium on intelligent control,2000
    [73]张守信,GPS卫星测量定位理论与应用,长沙:国防科技大学出版社,1996:79-80
    [74]Weihua Zhuang,James Tranquilla,Digital baseband processor for GPS receiver modeling and simulations,IEEE trans,onAES,1993,Vol.29,No.4:1343-1349
    [75]李小民,刘晖等,高动态环扩频系统伪码延时的精确估计方法,北京航空航天大学学报,2000,26(2):129-132
    [76]李小民,刘晖等,一种基于数据跳变检测的高动态环境GPS信号参数估计方法,航空学报,1999,20(5):430-434
    [77]李小民,田庆民,适应高动态环境的GPS载波相位估计方法研究,武汉大学学报(工学版),2003,36,(3):120-124
    [78]Waddah K Alem,Chartes L.weber.Acquisition techniques of PN sequences,NTC'77,page 35:2-1-35:2-4
    [79]沈春允,扩谱技术,北京:国防工业出版社:35-37
    [80]朱近康,CDMA通信技术,北京:人民邮电出版社,2001:82-87
    [81]宫剑,毕红军,贾怀义,Kasami扩频序列的研究,北方交通大学学报,2001,25(3): 103-106
    [82]申鼎煊,随机过程,武汉:华中理工大学出版社,1989:121-126
    [83]Homes J.K.,Coherent spread spectrum system,John Wiley & Sons,USA,1982:350-366
    [84]《数学手册》编写组,数学手册,北京:高等教育出版社,1979年第一版:244-245
    [85]Dr.Ing.Petr Bezucha,Mean acquisition times of serial spread spectrum PN acquisition system in the presence of code Doppler,IEEE 7th Int.Sym.on Spread-Spectrum Tech.& App.,Prague,Sept.2-5,2002:750-755
    [86]Marvin K.Simon etc,Spread spectrum Communication handbook,McGraw-Hill Co.and Posts & telecommunications Press,2002:753-765,777-781,785-787
    [87]James Bao-Yen Tsui,Fundamentals of Global Positing System receivers:a software approach,New York:Wiley,2000:150-151
    [88]James Bao-Yen Tsui,Michael H.Stockmaster,Dennis M.Akos,Block Adjustment of synchronizing signal for global positioning system receiver signal processing,ION GPS 1997:637-643
    [89]D.Akopian,H.Valio,S.Turunen,Fine Frequency Resolving Acquisition Methods for GPS Receivers,ION GPS 2002:2515-2523
    [90]Friedrich Kromberg,Doppler effect,http://netsciencet.univie.at/Nets/gps/wien-bg8/schuelerweb/GPSde.html
    [91]吴诩,朱炬波等,关于多普勒频率转换成距离变化率的讨论,中国空间科学技术,1997,(6):45-49
    [92]童宝润,时间统一系统,北京:国防工业出版社,2003:51-53
    [93]许晓勇等,圆轨道卫星信号的多普勒特性研究,国防科大第二界研究生学术活动节,2002(下):631-637
    [94]Stephen R.Cantor,Clock Technology,ION 55th annual meeting,1999:37-47
    [95]王飞雪,郭桂蓉,二相编码信号分段相关-视频积的最优中频积时间,国防科技大学学报,1999,21(1):71-75
    [96]朱祥维,王飞雪,基于平方律检波的二相编码信号分段相关-视频积方法研究,电子学报,2005,33(3):545-548
    [97]王飞雪,直接序列扩频信号的全数字式快速捕获,长沙:国防科技大学研究生院,1998:33
    [98]Barton D K.Modern radar system analysis,Norwood:Artech House Inc,1988:65.
    [99]J.K.Holms and C.C.Chen,Acquisition time performance of PN spread spectrum systems,IEEE Trans.Commun.,1977,Vol.COM-25:778-783
    [100]张星,屈定邦,王定中,DS/CDMA系统扩频序列的捕获技术,移动通信,1998(6):28-31
    [101]Elliott D.Kaplan.Understanding GPS Principle and applications.London:Artech House,1996:128-150
    [102]谢京稳,郭军海,遥外测综合测量系统弹道测量计算新方法,遥测遥控,2000,21(5):11-16
    [103]李巍,郭军海,多目标遥外测综合测量体制靶场布站几何理论分析与仿真.遥测遥控,2001,22(2):15-21
    [104]李邦复,航天遥测应用研究一瞥,遥测遥控,1998,19(1):1-9
    [105]孙民华,张力余,多目标遥外测方案的探讨,遥测遥控,1995,16(5):5-9
    [106]干国强,邱致和,导航与定位-现代战争的北斗星,北京:国防工业出版社,2000:256-261
    [107]丁鹭飞,耿富录,雷达原理,西安:西安电子科技大学,2000:244-295
    [108]Lawrence L.Wells,Real-time missile tracking with GPS,Navigation,1981,28(3):224-230
    [109]Carl E Hoefener,Bob Van Wechel,The institute's professional form:P-code versus C/A code GPS for range tracking applications,Navigation,1991,38(3):289-293
    [110]姜昌,小卫星时代的测控(TT&C)观念变革及其关键技术,遥测遥控,1998,19(3):1-9
    [111]孙程君,扩频体制小卫星群测控的研究,遥测遥控,2001,22(2):8-14
    [112]张守信,GPS卫星测量定位理论与应用,长沙:国防科技大学出版社,1996:79-80.
    [113]Jun'ichiro Moriya,Takaaki Hasegawa,A study of inverse GPS based positing system.Proceedings the 7th International IEEE Conference on Intelligent Transportation Systems 2004,2004:559-563
    [114]Howell J.;Frolik J,An Internet-based,inverse-GPS system for monitoring and tracking mobile aquatic sensors.Proceedings of IEEE Sensors 2002,2002,Vol.2:1734-1739
    [115]Suzuki T.,Tanaka T.,Study on canceling intersymbol interference of inverse-GPS,Proceedings the 6th International Conference on Signal Processing,2002,Vol.2:1637-1640
    [116]樊功瑜,误差理论与平差,上海:同济大学出版社,1998:197-198
    [117]沙定国,误差分析与测量不确定度评定,北京:中国计量出版社,2003:110-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700