三氧化钨基电致变色薄膜与器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以W03为主要研究对象,采用多孔化、纳米阵列化、有机复合化等手段对其进行电致变色性能优化研究,主要目的是提高其电致变色光谱调制幅度,变色响应速度以及变色效率,并探索了W03薄膜在红外波段的电致变色性能,组装了基于WO3和NiO互补变色机制的凝胶型全固态原型器件。
     利用阳极氧化法在溅射金属钨层的ITO玻璃表面形成了W03多孔薄膜,相比于致密态的WO3薄膜,阳极氧化法获得的W03多孔薄膜具有更加优越的电致变色性能,包括更快的响应速度和更大的可见光调制幅度。利用PS球模板法在ITO玻璃表面制备了大孔WO3阵列薄膜。其光谱调制幅度、变色速度等有了较大的提高,同时大孔阵列薄膜的循环性能没有明显下降。多孔性WO3薄膜为电化学反应提供了更多的活性界面,可缩短离子扩散路径,增强电极反应动力学。
     分别用水热氧化法和水热合成法制备了WO3纳米树等级结构阵列薄膜和纳米线阵列薄膜。用水热氧化法直接在金属钨片上生长WO3纳米树等级阵列薄膜,薄膜具有六方晶系,并在500℃以下热处理可保持晶体结构不变。六方结构W03中存在的六角形和三角形离子通道,有利于离子的扩散;纳米树等级结构既有开放性的多孔表面与电解液充分接触,又与导电基底紧密连接,因此表现出了优异的电致变色性能。400℃热处理的薄膜的反射率调制范围达30%(500 nm处),变色效率为43.6 cm2C-1。用水热合成法在FTO玻璃表面沉积了WO3薄膜,通过调整结构控制剂的浓度,可获得不同形貌和结构的WO3薄膜。在优化的条件下,可以制备具有纳米线阵列形貌的W03薄膜。相比于不加硫酸铵所制成的“微米砖”薄膜,纳米线阵列薄膜具有更佳的电致变色性能。WO3纳米线阵列薄膜在633 nm的透过率调制范围为58%,电致变色效率高达102.8 cm2 C-1。,而“微米砖”薄膜分别只有45%和24.5 cm2 C-1。WO3纳米线阵列薄膜同时表现出了很快的变色响应速度,着色时间7.6 s,褪色时间4.2 s。电化学阻抗分析结果表明薄膜具有更高的电化学活性和电极反应动力。
     以过氧化钨酸(PTA)作为掺杂剂,用一种简易的化学氧化聚合法一步合成了PANI-WO3复合薄膜,这些薄膜具有由纳米短棒组成的粗糙表面,WO3相被均匀地复合在PANI网络中。由于W03和PANI的着色与褪色所在的电压范围并不完全重叠,使复合薄膜具有了双向的电致变色效应。得益于WO3和PANI两者本身所具有的优点以及施主-受主体系的形成,有机/无机复合薄膜具有较好的电致变色性能,如更快的变色速度和更长的循环寿命。
     利用直流磁控溅射法制备了WO3薄膜,并研究了基底温度对薄膜结晶性能进而在红外波段的电致变色性能的影响。W03薄膜红外电致变色性能随基底温度的升高而增强,在250℃时,薄膜在8-12μm的中红外大气窗口具有35%调制幅度,在9μm处的变色效率达18.5 cm2C-1。但是过高的基底温度(300℃)导致薄膜不能很好地嵌入离子,因而红外波段的电致变色性能反而下降。用磁控溅射制备的WO3薄膜和化学浴法制备的NiO薄膜为电致变色层和离子存储层(互补变色层),用含Li’凝胶型聚合物为电解质层,设计并组装了电致变色原型器件。该互补型电致变色器件表现出优越的性能,在550 nm处的透过率调制幅度达55%,变色效率达87 cm2 C-1,并具有很好的循环稳定性,循环1600次无明显衰减。
In this dissertation, tungsten trioxide (WO3) based thin films for electrochromic applications are developed using various approaches including sputtering, anodic oxidation, hydrothermal method, templating method, hybridization, etc. The main purpose is to improve the electrochromic properties of WO3 based materials such as spectrum modulation, switching speed and coloration efficiency. The electrochromic effect of WO3 thin films in infrared band is also investigated. Finally, an all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte is fabricated.
     Self-organized macroporous WO3 films were grown by an anodic oxidation in a NaF electrolyte from a DC-sputtered tungsten layer on ITO glass. Well-structured films adhere to the entire surface under optimized experimental conditions. The as-anodized films show an amorphous structure and are poorly transparent. After annealing, the films adopt an orthorhombic structure and become transparent. The anodized WO3 films on ITO glass with macroporous structure exhibit excellent electrochromic properties, including faster switching speed and larger color contrast. WO3 microbowl array films have been electrodeposited on ITO glasses using PS spheres as template. The films show a connected network of monodispersed pores with average size of 600 nm after the template is removed. Comparing to dense films prepared without PS template for the same deposition time, the porous WO3 films deposited with PS template show enhanced electrochromic properties, i.e. high switching speed and fast coloration efficiency. Especially for the WO3 microbowl array film deposited for 300 s, a coloration efficiency as high as 68 cm2C-1, and fast coloration (bleaching) speeds of 3.6 s (1.0 s) are obtained. Mean while the cyclic stability has no significant difference between the WO3 films prepared with and without PS template.
     WO3 nanotree films were prepared by hydrothermal oxidation of W substrate. The film thickness can be controlled by adjusting the hydrothermal duration and a 550 nm-thick nanotree film was obtained after hydrothermal process for 5 h. The as-prepared film was of hexagonal structure and kept its crystal structure until it was annealed up to 500℃. The nanotree film annealed at 400℃exhibits remarkable electrochromic properties with an optical reflectance modulation of 30% at 500 nm. The coloration efficiency value as high as 43.6 cm2 C-1 is achieved for this film. This is due to the porous structure of nanotree film and its hexagonal and trigonal tunnels of h-WO3, into which Li+can be intercalated and deintercalated readily. Hexagonal WO3 nanowire array film was obtained using a template-free hydrothermal method by adding ammonium sulfate as capping agent. The WO3 nanowires grown vertically on FTO-coated glass substrate are woven together at the surface of the film, forming well-aligned arrays at the bottom part and a porous surface morphology. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that each nanowire is a hexagonal single crystal and the long axis of it oriented toward [0001] direction. Due to the highly porous surface, good contact with conductive substrate and large tunnels of hexagonal structured WO3, fast switching speed of 7.6 and 4.2 s for coloration and bleaching, respectively, and high coloration efficiency of 102.8 cm2 C-1 are achieved for the WO3 nanowire array film.
     Nanostructured polyaniline (PANI)-WO3 hybrid thin films were synthesized via a molecular assembling route in a solution of aniline using peroxotungstic acid (PTA) as the dopant and ammonium persulfate as the oxidant. The films show a porous morphology with nanorod arrays on the surface, and WO3 is uniformly incorporated into the polymer network. Electrochemical and electrochromic tests including cyclic voltammetry, chronoamperometry and corresponding in situ transmittance of PANI-WO3 hybrid films comparing with neat PANI film and sol-gel WO3 film were conducted in 0.5 M sulfuric acid solution. The hybrid films, being a dual electrochromic material, varied from royal purple to green, pale yellow and finally dark blue as the applied potential was scanned from 0.8 V to-0.5 V. Compared to sulfate doped PANI film, the high colouration efficiency and comparable durability are obtained in the PANI-WO3 hybrid films. The PANI-WO3 hybrid films also show faster switching speed and better durability than WO3 film. The enhanced electrochromic properties such as faster switching speed and better durability are mainly attributed to the combining of advantages of both materials and the formation of the donor-acceptor system.
     WO3 films were deposited by reactive dc magnetron sputtering at different substrate temperatures. With the increasing of the deposition temperature, the diffusion coefficient of H+ ions in the WO3 films decrease. The infrared reflectance modulation and color efficiency first increase and then decrease with the deposition temperature, and maximum values of 40% and 18.5 cm2 C-1, respectively, are achieved at 250℃and 9μm. The WO3 films with reflectance modulation (higher than 30%) in infrared band can be fabricated into devices, which have considerable applications in thermal control and infrared camouflage. An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid polyelectrolyte was manufactured for modulating the optical transmittance. The device consists of WO3 film as the main electrochromic layer, single-phase hybrid polyelectrolyte as the Li+ ion conductor layer, and NiO film as the counter electrochromic layer. Indium tin oxide (ITO)-coated glass was used as substrate and ITO film act as the transparent conductive electrodes. The effective area of the device is 5×5 cm2. The device showed an optical modulation of 55% at 550 nm and achieved a coloration efficiency of 87 cm2 C-1. The response time of the device is found to be about 10 s for coloring step and 20 s for bleaching step. The electrochromic mechanism in the NiO/WO3 complementary structure with Li+ion insertion and extraction was investigated by means of cyclic voltammograms (CV) and X-ray photoelectron spectroscopy (XPS).
引文
[1]J.R. Platt. Electrochromism, a possible change of color producible in dyes by an electric Field [J]. Journal of Chemical Physics,1961,34(3):862-863.
    [2]C.G. Granqvist. Handbook of inorganic electrochromic materials [M].2nd Edition ed.. Amsterdam:Elsevier.2002.
    [3]S.K. Deb. A novel electrophotographic system [J]. Applied Optics,1969,8(suppl.1): 192-195.
    [4]S.K. Deb. Optical and photoelectric properties and color centers in thin-films of tungsten oxide [J]. Philosophical Magazine,1973,27(4):801-822.
    [5]P.S. Patil, S.H. Mujawar, S.B. Sadale, H.P. Deshmukh and A.I. Inamdar. Effect of film thickness on electrochromic activity of spray deposited iridium oxide thin films [J]. Materials Chemistry and Physics,2006,99(2-3):309-313.
    [6]R.D. Rauh and S.F. Cogan. Counter electrodes in transmissive electrochromic light modulators [J]. Solid State Ionics,1988,28:1707-1714.
    [7]R. Sivakumar, P. Manisankar, M. Jayachandran and C. Sanjeeviraja. Intercalation studies on electron beam evaporated MoO3 films for electrochemical devices [J]. Solar Energy Materials and Solar Cells,2006,90(15):2438-2448.
    [8]M.A.B. de Moraes, B.C. Trasferetti, F.P. Rouxinol, R. Landers, S.F. Durrant, J. Scarminio and A. Urbano. Molybdenum oxide thin films obtained by the hot-filament metal oxide deposition technique [J]. Chemistry of Materials,2004,16(3):513-520.
    [9]S. Heusing, D.L. Sun, J. Otero-Anaya and M.A. Aegerter. Grey, brown and blue coloring sol-gel electrochromic devices [J]. Thin Solid Films,2006,502(1-2):240-245.
    [10]Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang and S.Y. Guo. Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition [J]. Electrochimica Acta,2011,56(3):1208-1212.
    [11]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang and H. Huang. Morphology effect on the electrochromic and electrochemical performances of NiO thin films [J]. Electrochimica Acta,2008,53(18):5721-5724.
    [12]M.H. Yang, T.T. Chen, Y.S. Wang, H.T. Chiu and C.Y. Lee. Electrochromism of rutile nanowires, vertically aligned along the [001] direction, due to alkali metal ion intercalation [J]. Journal of Materials Chemistry,2011,21(46):18738-18743.
    [13]Y.S. Lin, C.W. Tsai and P.W. Chen. Electrochromic properties of V2O5-z thin films sputtered onto flexible PET/ITO substrates [J]. Solid State Ionics,2008,179(7-8):290-297.
    [14]M.R.J. Scherer, L. Li, P.M.S. Cunha, O.A. Scherman and U. Steiner. Enhanced electrochromism in gyroid-structured vanadium pentoxide [J]. Advanced Materials,2012, 24(9):1217-1221.
    [15]Z.H. Jiao, X. Wang, J.M. Wang, L. Ke, H.V. Demir, T.W. Koh and X.W. Sun. Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance [J]. Chemical Communications,2012,48(3): 365-367.
    [16]Z.H. Jiao, X.W. Sun, J.M. Wang, L. Ke and H.V. Demir. Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics [J]. Journal of Physics D-Applied Physics,2010,43(28):No.285501.
    [17]S.S. Kalagi, D.S. Dalavi, R.C. Pawar, N.L. Tarwal, S.S. Mali and P.S. Patil. Polymer assisted deposition of electrochromic tungsten oxide thin films [J]. Journal of Alloys and Compounds,2010,493(1-2):335-339.
    [18]A. Subrahmanyam and A. Karuppasamy. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films [J]. Solar Energy Materials and Solar Cells, 2007,91(4):266-274.
    [19]M. Giannouli and G. Leftheriotis. The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films [J]. Solar Energy Materials and Solar Cells,2011,95(7):1932-1939.
    [20]Y.S. Lin, S.S. Wu and T.H. Tsai. Electrochromic properties of novel atmospheric pressure plasma jet-synthesized-organotungsten oxide films for flexible electrochromic devices [J]. Solar Energy Materials and Solar Cells,2010,94(12):2283-2291.
    [21]K.H. Krishna, O.M. Hussain and C. Guillen. Growth, microstructure and electrochromic properties of activated reactive evaporated WO3 thin films on flexible substrates [J]. Optoelectronics and Advanced Materials-Rapid Communications,2008,2(4):242-246.
    [22]K. Tajima, Y. Yamada, S. Bao, M. Okada and K. Yoshimura. Reactive DC sputter-deposited tantalum oxide thin film for all-solid-state switchable mirror [J]. Vacuum, 2008,83(3):602-605.
    [23]K. Tajima, H. Hotta, Y. Yamada, M. Okada and K. Yoshimura. Mg-Ni thin-film composition dependence of durability of electrochromic switchable mirror glass in simulated environment [J]. Solar Energy Materials and Solar Cells,2011,95(12): 3370-3376.
    [24]M.A. Depaoli, E.R. Duek and M.A. Rodrigues. Poly(aniline) cellulose-acetate composites-conductivity and electrochromic properties [J]. Synthetic Metals,1991,41(3):973-978.
    [25]S. Kuwabata, K. Mitsui and H. Yoneyama. Preparation of polyaniline films doped with methylene blue-bound Nafion and the electrochromic properties of the resulting films [J]. Journal of Electroanalytical Chemistry,1990,281(1-2):97-107.
    [26]M. Morita. Multicolor electrochromic behavior of polyaniline composite films combined with polythiophene and poly(3-Methylthiophene) films [J]. Makromolekulare Chemie-Macromolecular Chemistry and Physics,1993,194(8):2361-2374.
    [27]H. Yoneyama, M. Tokuda and S. Kuwabata. Photoinduced electrochromic reactions of deprotonated polyaniline containing cadmium-sulfide particles [J]. Electrochimica Acta, 1994,39(8-9):1315-1320.
    [28]T. Pauporte. A simplified method for WO3 electrodeposition [J]. Journal of the Electrochemical Society,2002,149(11):C539-C545.
    [29]S.X. Xiong, S.L. Phua, B.S. Dunn, J. Ma and X.H. Lu. Covalently bonded polyaniline-Ti02 hybrids:a facile approach to highly stable anodic electrochromic materials with low oxidation potentials [J]. Chemistry of Materials.2010,22(1):255-260.
    [30]J. Yano, S. Kai and K. Ogura. Poly(o-phenylenediamine) prussian blue composite film for a 3-color-expressible electrochromic display material [J]. Journal of Materials Science Letters,1993,12(22):1791-1792.
    [31]E.M. Girotto and M.A. De Paoli. Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye [J]. Advanced Materials,1998,10(10):790-793.
    [32]J.M. Kim, S.M. Chang, H.W. Lee, Y.S. Kwon and Y.H. Oh. Study of the dynamic electrochromic behaviors of electrochemically polymerized polypyrrole thin film using QCA and UV spectrophotometer [J]. Synthetic Metals,1997,85(1-3):1371-1372.
    [33]P.M.S. Monk, R.J. Mortimer and D.R. Rosseinsky. Electrochromism:fundamentals and applications [M]. New York:VCH Publishers, Inc.,1995.
    [34]P.M. Beaujuge and J.R. Reynolds. Color control in pi-conjugated organic polymers for use in electrochromic devices [J]. Chemical Reviews,2010,110(1):268-320.
    [35]A. Desbenemonvernay, P.C. Lacaze and J.E. Dubois. Polaromicrotribometric (Pmt) and Ir, esca, electron-paramagnetic-res spectroscopic study of colored radical films formed by the electrochemical oxidation of carbazoles.1. carbazole and N-ethyl, N-phenyl and N-carbazyl derivatives [J]. Journal of Electroanalytical Chemistry,1981,129(1-2): 229-241.
    [36]M.S. Wu and C.H. Yang. Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition [J]. Applied Physics Letters, 2007,91(3):No.033109.
    [37]S.H. Lin, F.R. Chen and J.J. Kai. Electrochromic properties of nano-composite nickel oxide film [J]. Applied Surface Science,2008,254(11):3357-3363.
    [38]I. Bouessaya, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz and J.M. Tarascon. Electrochromic degradation in nickel oxide thin film:A self-discharge and dissolution phenomenon [J]. Electrochimica Acta,2005,50(18):3737-3745.
    [39]S.Y. Han, D.H. Lee, Y.J. Chang, S.O. Ryu, T.J. Lee and C.H. Chang. The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition [J]. Journal of the Electrochemical Society,2006,153(6):C382-C386.
    [40]E.O. Zayim, I. Turhan, F.Z. Tepehan and N. Ozer. Sol-gel deposited nickel oxide films for electrochromic applications [J]. Solar Energy Materials and Solar Cells,2008,92(2): 164-169.
    [41]GA. Niklasson and C.G. Granqvist. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide, and devices based on these [J]. Journal of Materials Chemistry,2007,17(2):127-156.
    [42]L.D. Burke and O.J. Murphy. Electrochromic behavior of oxide-films grown on cobalt and manganese in base [J]. Journal of Electroanalytical Chemistry,1980,109(1-3):373-377.
    [43]L.D. Burke and O.J. Murphy. Electrochromic behavior of electrodeposited cobalt oxide-films [J]. Journal of Electroanalytical Chemistry,1980,112(2):379-382.
    [44]X.H. Xia, J.P. Tu, J. Zhang, J.Y. Xiang, X.L. Wang and X.B. Zhao. Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties [J]. ACS Applied Materials & Interfaces,2010, 2(1):186-192.
    [45]T. Yoshino and N. Baba. Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition [J]. Solar Energy Materials and Solar Cells,1995, 39(2-4):391-397.
    [46]L.D. Kadam and P.S. Patil. Step potential analysis of cobalt oxide-based electrochromic devices [J]. Solar Energy Materials and Solar Cells,2001,70(1):15-23.
    [47]X.H. Xia, J.P. Tu, J. Zhang, J.Y. Xiang, X.L. Wang and X.B. Zhao. Fast electrochromic properties of self-supported Co3O4 nanowire array film [J]. Solar Energy Materials and Solar Cells,2010,94(2):386-389.
    [48]P.S. Patil, R.K. Kawar and S.B. Sadale. Electrochromism in spray deposited iridium oxide thin films [J]. Electrochimica Acta,2005,50(12):2527-2532.
    [49]A.R. Hillman, M.A. Skopek and S.J. Gurman. X-Ray spectroscopy of electrochemically deposited iridium oxide films:detection of multiple sites through structural disorder [J]. Physical Chemistry Chemical Physics,2011,13(12):5252-5263.
    [50]M.C. Hersam, D.J. Comstock, S.T. Christensen, J.W. Elam and M.J. Pellin. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition [J]. Electrochemistry Communications,2010,12(11):1543-1546.
    [51]J. Hu, M. Abdelsalam, P. Bartlett, R. Cole, Y. Sugawara, J. Baumberg, S. Mahajan and G. Denuault. Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates [J]. Journal of Materials Chemistry,2009,19(23): 3855-3858.
    [52]Y.J. Chen, P.L. Taylor and D. Scherson. Electrochemical and in situ optical studies of supported iridium oxide films in aqueous solutions [J]. Journal of the Electrochemical Society,2009,156(1):F14-F21.
    [53]A.Q. Pan, J.G. Zhang, Z.M. Nie, G.Z. Cao, B.W. Arey, G.S. Li, S.Q. Liang and J. Liu. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries [J]. Journal of Materials Chemistry,2010,20(41):9193-9199.
    [54]K.J. Balkus, C.R. Xiong, A.E. Aliev and B. Gnade. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics [J]. Acs Nano,2008,2(2):293-301.
    [55]A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued and R. Bruning. Synthesis and structural characterization of mesoporous V2O5 thin films for electrochromic applications [J]. Thin Solid Films,2006,515(4):1500-1505.
    [56]K.C. Cheng, F.R. Chen and J.J. Kai. V2O5 nanowires as a functional material for electrochromic device [J]. Solar Energy Materials and Solar Cells,2006,90(7-8): 1156-1165.
    [57]L. Ottaviano, A. Pennisi, F. Simone and A.M. Salvi. RF sputtered electrochromic V2O5 films [J]. Optical Materials,2004,27(2):307-313.
    [58]M. Benmoussa, A. Outzourhit, A. Bennouna and E.L. Ameziane. Electrochromism in sputtered V2O5 thin films:structural and optical studies [J]. Thin Solid Films,2002, 405(1-2):11-16.
    [59]J.B.K. Kana, J.M. Ndjaka, P.O. Ateba, B.D. Ngom, N. Manyala, O. Nemraoui, A.C. Beye and M. Maaza. Thermochromic VO2 thin films synthesized by rf-inverted cylindrical magnetron sputtering [J]. Applied Surface Science,2008,254(13):3959-3963.
    [60]H. Miyazaki and I. Yasui. Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering [J]. Journal of Physics D-Applied Physics,2006,39(10): 2220-2223.
    [61]L. Zheng, Y. Xu, D. Jin and Y. Xie. Novel metastable hexagonal MoO3 nanobelts:synthesis, photochromic, and electrochromic properties [J]. Chemistry of Materials,2009,21(23): 5681-5690.
    [62]C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng and W.C. Hsu. Electrochromic properties of nanocrystalline MoO3 thin films [J]. Thin Solid Films,2008,516(15):4839-4844.
    [63]章俞之,王忠春,快素兰,胡行方.锂掺杂Mo03薄膜的制备及电色性能的研究[J].无机材料学报,2000,15(6):1131-1135.
    [64]A. Benoit, I. Paramasivam, Y.C. Nah, P. Roy and P. Schmuki. Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity [J]. Electrochemistry Communications,2009,11(4):728-732.
    [65]A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Munoz and P. Schmuki. TiO2 nanotubes:H-insertion and strong electrochromic effects [J]. Electrochemistry Communications,2006,8(4):528-532.
    [66]W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H.J. Wang, N. Suzuki, H. Oveisi and Y. Yamauchi. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity [J]. Angewandte Chemie-International Edition,2010,49(23):3956-3959.
    [67]V.D. Neff. Electrochemical oxidation and reduction of thin-films of Prussian Blue [J]. Journal of the Electrochemical Society,1978,125(6):886-887.
    [68]D.E. Stilwell, K.H. Park and M.H. Miles. Electrochemical studies of the factors influencing the cycle stability of Prussian Blue films [J]. Journal of Applied Electrochemistry,1992,22(4):325-331.
    [69]F. Ricci and G. Palleschi. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes [J]. Biosensors & Bioelectronics,2005,21(3): 389-407.
    [70]C. Pal, A.N. Cammidge, M.J. Cook, J.L. Sosa-Sanchez, A.K. Sharma and A.K. Ray. In situ chemichromic studies of interactions between a lutetium bis-octaalkyl-substituted phthalocyanine and selected biological cofactors [J]. Journal of the Royal Society Interface, 2012,9(66):183-189.
    [71]G.C.S. Collins and D.J. Schiffrin. The properties of electrochromic film electrodes of lanthanide diphthalocyanines in ethylene-glycol [J]. Journal of the Electrochemical Society, 1985,132(8):1835-1842.
    [72]E. Salje and K. Viswanathan. Physical-properties and phase-transitions in WO3 [J]. Acta Crystallographica Section A,1975, A 31(May1):356-359.
    [73]J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna and C. Bechinger. Chromic mechanism in amorphous WO3 films [J]. Journal of the Electrochemical Society, 1997,144(6):2022-2026.
    [74]E. Salje. Electrochromic effect in polar WO3 [J]. Optics Communications,1978,24(2): 231-232.
    [75]R.S. Crandall and B.W. Faughnan. Measurement of diffusion-coefficient of electrons in WO3 films [J]. Applied Physics Letters,1975,26(3):120-121.
    [76]R.S. Crandall, B.W. Faughnan and M.A. Lampert. Electric-field extraction of an electron-ion plasma in amorphous WO3 films [J]. Bulletin of the American Physical Society,1975,20(3):394-394.
    [77]B.W. Faughnan, R.S. Crandall, P.M. Heyman and M. Lampert. Dynamics of coloring and bleaching of WO3 amorphous electrochromic films [J]. Ieee Transactions on Electron Devices,1975,22(11):1063-1064.
    [78]B.W. Faughnan, R.S. Crandall and P.M. Heyman. Electrochromism in WO3 amorphous films [J]. RCA Review,1975,36(1):177-197.
    [79]B.W. Faughnan, R.S. Crandall and M.A. Lampert. Model for bleaching of WO3 electrochromic films by an electric-field [J]. Applied Physics Letters,1975,27(5): 275-277.
    [80]M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J.C. Bernede and B. El Idrissi. Electrical and optical properties of WO3 thin films [J]. Thin Solid Films,2001,397(1-2): 238-243.
    [81]J.P. Zhang and K. Colbow. Optical-properties of pyrolytic spray deposited electrochromic tungsten trioxide films [J]. Applied Physics Letters,1991,58(10):1013-1014.
    [82]D. Lu, B. Liang, A. Ogino and M. Nagatsu. Study of the synthesis of tungsten trioxide nanostructured arrays by tungsten hot filament chemical vapor deposition method and their field emission properties [J]. Journal of Vacuum Science & Technology B,2010,28(2): C2A98-C2A103.
    [83]T. Pauporte. Electrodeposition of WO3 thin films. [J]. Electrochromic Materials and Applications,2003,2003(17):18-27.
    [84]H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna and P. Schmuki. Self-organized porous WO3 formed in NaF electrolytes [J]. Electrochemistry Communications,2005,7(3):295-298.
    [85]L. Madler, S. Pokhrel, J. Birkenstock, M. Schowalter and A. Rosenauer. Growth of ultrafine single crystalline WO3 nanoparticles using flame spray Pyrolysis [J]. Crystal Growth & Design,2010,10(2):632-639.
    [86]S.R. Bathe and P.S. Patil. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique [J]. Solar Energy Materials and Solar Cells,2007,91(12):1097-1101.
    [87]Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma and J.N. Yao. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures [J]. Journal of Physical Chemistry B,2006,110(47):23829-23836.
    [88]K. Gesheva, A. Szekeres and T. Ivanova. Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides [J]. Solar Energy Materials and Solar Cells,2003,76(4):563-576.
    [89]T. Ivanova, K. Gesheva, F. Hamelmann, G. Popkirov, D. Abrashev, M. Ganchev and E. Tzvetkova. Optical and electrochromic properties of CVD mixed MoO3-WO3 thin films [J]. Vacuum,2004,76(2-3):195-198.
    [90]S.H. Baeck, T.F. Jaramillo, D.H. Jeong and E.W. McFarland. Parallel synthesis and characterization of photoelectrochemically and electrochromically active tungsten-molybdenum oxides [J]. Chemical Communications,2004, (4):390-391.
    [91]B. Yebka, B. Pecquenard, C. Julien and J. Livage. Electrochemical Li+ insertion in WO3-xTiO2 mixed oxides [J]. Solid State Ionics,1997,104(3-4):169-175.
    [92]A. Karuppasamy and A. Subrahmanyam. Studies on electrochromic smart windows based on titanium doped WO3 thin films [J]. Thin Solid Films,2007,516(2-4):175-178.
    [93]Y.R. Hu, L.G. Wang and G.Q. Li. Electrochromic properties of sputtered Ti-doped WO3 films [J]. Plasma Science & Technology,2007,9(4):452-455.
    [94]S.R. Bathe and P.S. Patil. Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films [J]. Solid State Ionics,2008,179(9-10):314-323.
    [95]I. Valyukh, S.V. Green, C.G. Granqvist, G.A. Niklasson, S. Valyukh and H. Arwin. Optical properties of thin films of mixed Ni-W oxide made by reactive DC magnetron sputtering [J]. Thin Solid Films,2011,519(9):2914-2918.
    [96]S.V. Green, E. Pehlivan, C.G. Granqvist and G.A. Niklasson. Electrochromism in sputter deposited nickel-containing tungsten oxide films [J]. Solar Energy Materials and Solar Cells,2012,99:339-344.
    [97]X.L. Sun,Z.M. Liu and H.T. Cao. Electrochromic properties of N-doped tungsten oxide thin films prepared by reactive DC-pulsed sputtering [J]. Thin Solid Films,2011,519(10): 3032-3036.
    [98]C.O. Avellaneda and L.O.S. Bulhoes. Electrochromic properties of WO3 and WO3:P thin films [J]. Journal of Solid State Electrochemistry,2003,7(3):183-186.
    [99]E. Brescacin, M. Basato and E. Tondello. Amorphous WO3 films via chemical vapor deposition from metallorganic precursors containing phosphorus dopant [J]. Chemistry of Materials,1999,11(2):314-323.
    [100]Y. Yang, Q.Y. Zhu, A.P. Jin and W. Chen. High capacity and contrast of electrochromic tungsten-doped vanadium oxide films [J]. Solid State Ionics,2008,179(21-26):1250-1255.
    [101]K.R. Padmanabhan. Ion beam analysis of electrochromic and thermochromic oxide films [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2004,219:942-946.
    [102]A. Rougier, A. Blyr, J. Garcia, Q. Zhang and S.A. Impey. Electrochromic W-M-O (M=V, Nb) sol-gel thin films:a way to neutral colour [J]. Solar Energy Materials and Solar Cells, 2002,71(3):343-357.
    [103]K.M. Karuppasamy and A. Subrahmanyam. The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films [J]. Solar Energy Materials and Solar Cells,2008,92(11):1322-1326.
    [104]D. Yang and L. Xue. Structures and electrochromic properties of Ta0.1W0.9Ox thin films deposited by pulsed laser ablation [J]. Thin Solid Films,2004,469(Special Issue):54-58.
    [105]S.R. Bathe and P.S. Patil. Influence of Nb doping on the electrochromic properties of WO3 films [J]. Journal of Physics D-Applied Physics,2007,40(23):7423-7431.
    [106]N.R. de Tacconi, C.R. Chenthamarakshan, K.L. Wouters, F.M. MacDonnell and K. Rajeshwar. CompositeWO3-TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior [J]. Journal of Electroanalytical Chemistry,2004,566(2):249-256.
    [107]K.W. Park. Electrochromic properties of Au-WO3 nanocomposite thin-film electrode [J]. Electrochimica Acta,2005,50(24):4690-4693.
    [108]N. Naseri, R. Azimirad, O. Akhavan and A.Z. Moshfegh. Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals [J]. Thin Solid Films, 2010,518(8):2250-2257.
    [109]A.E. Aliev and H.W. Shin. Nanostructured materials for electrochromic devices [J]. Solid State Ionics,2002,154:425-431.
    [110]Y.C. Nah, A. Ghicov, D. Kim and P. Schmuki. Enhanced electrochromic properties of self-organized nanoporous WO3 [J]. Electrochemistry Communications,2008,10(11): 1777-1780.
    [111]P. Schmuki, R. Kirchgeorg and S. Berger. Ultra fast electrochromic switching of nanoporous tungsten-tantalum oxide films [J]. Chemical Communications,2011,47(3): 1000-1002.
    [112]S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan and A.C. Dillon. Crystalline WO3 nanoparticles for highly improved electrochromic applications [J]. Advanced Materials,2006,18(6):763-766.
    [113]S.Y. Park, J.M. Lee, C. Noh and S.U. Son. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies [J]. Journal of Materials Chemistry,2009,19(42):7959-7964.
    [114]P.S. Lee, J.M. Wang, E. Khoo and J. Ma. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods [J]. Journal of Physical Chemistry C,2008, 112(37):14306-14312.
    [115]J.M. Wang, E. Khoo, P.S. Lee and J. Ma. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte [J]. Journal of Physical Chemistry C,2009, 113(22):9655-9658.
    [116]E. Khoo, P.S. Lee and J. Ma. Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application [J]. Journal of the European Ceramic Society,2010,30(5): 1139-1144.
    [117]M. Deepa, A.K. Srivastava, K.N. Sood and S.A. Agnihotry. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows [J]. Nanotechnology,2006,17(10):2625-2630.
    [118]M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood and S.A. Agnihotry. Spin coated versus dip coated electrochromic tungsten oxide films:structure, morphology, optical and electrochemical properties [J]. Electrochimica Acta,2006,51(10):1974-1989.
    [119]C.C. Liao, F.R. Chen and J.J. Kai. Annealing effect on electrochromic properties of tungsten oxide nanowires [J]. Solar Energy Materials and Solar Cells,2007,91(13): 1258-1266.
    [120]C.M. Amb, A.L. Dyer and J.R. Reynolds. Navigating the color palette of solution-processable electrochromic polymers [J]. Chemistry of Materials,2011,23(3): 397-415.
    [121]H. Yoneyama and Y. Shoji. Incorporation of WO3 into polypyrrole, and electrochemical properties of the resulting polymer-films [J]. Journal of the Electrochemical Society,1990, 137(12):3826-3830.
    [122]H. Yoneyama, S. Hirao and S. Kuwabata. Preparation and electrochemical properties of WO3-incorporated polyaniline films [J]. Journal of the Electrochemical Society,1992, 139(11):3141-3146.
    [123]P.K. Shen, H.T. Huang and A.C.C. Tseung. A study of tungsten trioxide and polyaniline composite films.1. electrochemical and electrochromic behavior [J]. Journal of the Electrochemical Society,1992,139(7):1840-1845.
    [124]M. Deepa, A.K. Srivastava, K.N. Sood and A.V. Murugan. Nanostructured tungsten oxide-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid films:synthesis, electrochromic response, and durability characteristics [J]. Journal of the Electrochemical Society,2008,155(11):D703-D710.
    [125]J.H. Zhu, S.Y. Wei, M. Alexander, T.D. Dang, T.C. Ho and Z.H. Guo. Enhanced electrical switching and electrochromic properties of poly(p-phenylenebenzobisthiazole) thin films embedded with nano-Wo3 [J]. Advanced Functional Materials,2010,20(18):3076-3084.
    [126]A.Z. Sadek, H.D. Zheng, K. Latham, W. Wlodarski and K. Kalantar-Zadeh. Anodization of Ti thin film deposited on ITO [J]. Langmuir,2009,25(1):509-514.
    [127]S. Berger, A. Ghicov, Y.C. Nah and P. Schmuki. Transparent TiO2 nanotube electrodes via thin layer anodization:fabrication and use in electrochromic devices [J]. Langmuir,2009, 25(9):4841-4844.
    [128]L.J. Zhang, J.J. Fan, Z. Zhang, F.H. Cao, J.Q. Zhang and C.N. Cao. Study on the anodic film formation process of AZ91D magnesium alloy [J]. Electrochimica Acta,2007,52(17): 5325-5333.
    [129]P.C. Howlett, T. Khoo, G. Mooketsi, J. Efthimiadis, D.R. MacFarlane and M. Forsyth. The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys [J]. Electrochimica Acta,2010,55(7):2377-2383.
    [130]H.A. El-Sayed and V.I. Birss. Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes [J]. Nano Letters,2009,9(4):1350-1355.
    [131]Y.C. Nah, A. Ghicov, D. Kim, S. Berger and P. Schmuki. TiO2-W03 composite nanotubes by alloy anodization:growth and enhanced electrochromic properties [J]. Journal of the American Chemical Society,2008,130(48):16154-16155.
    [132]Y. Djaoued, P.V. Ashrit, S. Badilescu and R. Bruning. Synthesis and characterization of macroporous tungsten oxide films for electrochromic application [J]. Journal of Sol-Gel Science and Technology,2003,28(2):235-244.
    [133]M. Deepa, M. Kar, D.P. Singh, A.K. Srivastava and S. Ahmad. Influence of polyethylene glycol template on microstructure and electrochromic properties of tungsten oxide [J]. Solar Energy Materials and Solar Cells,2008,92(2):170-178.
    [134][134] E.O. Zayim, P. Liu, S.H. Lee, C.E. Tracy, J.A. Turner, J.R. Pitts and S.K. Deb. Mesoporous sol-gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates [J]. Solid State Ionics,2003,165(1-4):65-72.
    [135]W. Cheng, E. Baudrin, B. Dunn and J.I. Zink. Synthesis and electrochromic properties of mesoporous tungsten oxide [J]. Journal of Materials Chemistry,2001,11(1):92-97.
    [136]S. Badilescu and P.V. Ashrit. Study of sol-gel prepared nanostructured WO3 thin films and composites for electrochromic applications [J]. Solid State Ionics,2003,158(1-2): 187-197.
    [137]S.L. Kuai, G. Bader and P.V. Ashrit. Tunable electrochromic photonic crystals [J]. Applied Physics Letters,2005,86(22):No.221110.
    [138]J.Y. Xiang, X.L. Wang, J. Zhong, D. Zhang and J.P. Tu. Enhanced rate capability of multi-layered ordered porous nickel phosphide film as anode for lithium ion batteries [J]. Journal of Power Sources,2011,196(1):379-385.
    [139]V.K. Laurinavichute, S.Y. Vassiliev, A.A. Khokhlov. L.M. Plyasova, I.Y. Molina and G.A. Tsirlina. Electrodeposited oxotungstate films:towards the molecular nature of recharging processes [J]. Electrochimica Acta,2011,56(10):3530-3536.
    [140]M. Rezrazi, O. Bohnke and J. Pagetti. Electrochromic behavior of thin-films of tungsten trioxide prepared by anodic-oxidation of tungsten with pulsed current [J]. Displays,1987, 8(3):119-126.
    [141]S.H. Lee, H.M. Cheong, C.E. Tracy, A. Mascarenhas, J.R. Pitts, G. Jorgensen and S.K. Deb. Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films [J]. Applied Physics Letters,2000,76(26):3908-3910.
    [142]C. Bohnke, O. Bohnke and B. Vuillemin. Constant phase-angle behavior of SnO2/WO3 thin-film electrodes in anhydrous LiClO4-propylene carbonate electrolyte [J]. Electrochimica Acta,1993,38(14):1935-1940.
    [143]M. Shibuya and M. Miyauchi. Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure [J]. Chemical Physics Letters,2009,473(1-3):126-130.
    [144]A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem and J.S. Lee. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction [J]. Journal of Materials Chemistry,2010,20(9): 1683-1690.
    [145]J.H. Ha, P. Muralidharan and D.K. Kim. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts [J]. Journal of Alloys and Compounds,2009,475(1-2):446-451.
    [146]M.D. Levi and D. Aurbach. Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for Li-ion batteries [J]. Journal of Physical Chemistry B,2004,108(31):11693-11703.
    [147]C.A.C. Sequeira and D.M.F. Santos. Tungsten oxide electrochromic windows with lithium polymer electrolytes [J]. Journal of the Electrochemical Society,2010,157(6):J202-J207.
    [148]G. Orsini and V. Tricoli. Mesoporous, high-surface-area tungsten oxide monoliths with mixed electron/proton conductivity [J]. Journal of Materials Chemistry,2010,20(30): 6299-6308.
    [149]S. Bhadra, D. Khastgir, N.K. Singha and J.H. Lee. Progress in preparation, processing and applications of polyaniline [J]. Progress in Polymer Science,2009,34(8):783-810.
    [150]W. Caseri. Color switching in nanocomposites comprising inorganic nanoparticles dispersed in a polymer matrix [J]. Journal of Materials Chemistry,2010,20(27): 5582-5592.
    [151]C.M. Amb, P.M. Beaujuge and J.R. Reynolds. Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach [J]. Advanced Materials,2010,22(6):724-728.
    [152]T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, A.G. Rinzler, S. Barlow, J.L. Bredas, B. Kippelen, S.R. Marder and J.R. Reynolds. A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer [J]. Journal of the American Chemical Society,2009,131(8):2824-2826.
    [153]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang and H. Huang. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance [J]. Nanotechnology,2008, 19(46).
    [154]X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang and J.Y. Xiang. Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries [J]. Electrochemistry Communications,2008,10(9):1288-1290.
    [155]C.H. Yang, L.R. Huang, Y.K. Chih, W.C. Lin, F.H. Liu and T.L. Wang. Molecular assembled self-doped polyaniline copolymer ultra-thin films [J]. Polymer,2007,48(11): 3237-3247.
    [156]E.A. Meulenkamp. Mechanism of WO3 electrodeposition from peroxy-tungstate solution [J]. Journal of the Electrochemical Society,1997,144(5):1664-1671.
    [157]C.Q. Bian, Y.J. Yu and G. Xue. Synthesis of conducting polyaniline/TiO2 composite nanofibres by one-step, in situ, polymerization method [J]. Journal of Applied Polymer Science,2007,104(1):21-26.
    [158]J.H. Zhu, S.Y. Wei, L. Zhang, Y.B. Mao, J. Ryu, P. Mayinakuli, A.B. Karki, D.P. Young and Z.H. Guo. Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity [J]. Journal of Physical Chemistry C,2010,114(39):16335-16342.
    [159]J.H. Zhu, S.Y. Wei, L. Zhang, Y.B. Mao, J. Ryu, A.B. Karki, D.P. Young and Z.H. Guo. Polyaniline-tungsten oxide metacomposites with tunable electronic properties [J]. Journal of Materials Chemistry,2011,21(2):342-348.
    [160]Y. Gao, X. Li, J. Gong, B. Fan, Z.M. Su and L.Y. Qu. Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior [J]. Journal of Physical Chemistry C.2008,112(22):8215-8222.
    [161]J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang and A.G. Macdiarmid. X-ray structure of polyaniline [J]. Macromolecules,1991,24(3):779-789.
    [162]J. Yue and A.J. Epstein. XPS study of self-doped conducting polyaniline and parent systems [J]. Macromolecules,1991,24(15):4441-4445.
    [163]R. Azimirad, N. Naseri, O. Akhavan and A.Z. Moshfegh. Hydrophilicity variation of WO3 thin films with annealing temperature [J]. Journal of Physics D-Applied Physics,2007, 40(4):1134-1137.
    [164]M. Breedon, P. Spizzirri, M. Taylor, J. du Plessis, D. McCulloch, J.M. Zhu, L.S. Yu, Z. Hu, C. Rix, W. Wlodarski and K. Kalantar-Zadeh. Synthesis of nanostructured tungsten oxide thin films:a simple, controllable,inexpensive, aqueous sol-gel method [J]. Crystal Growth & Design,2010,10(1):430-439.
    [165]B.X. Zou, Y. Liang, X.X. Liu, D. Diamond and K.T. Lau. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite [J]. Journal of Power Sources,2011,196(10):4842-4848.
    [166]H.F. Jiang and X.X. Liu. One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method [J]. Electrochimica Acta,2010, 55(24):7175-7181.
    [167]H. Van Hoang and R. Holze. Electrochemical synthesis of polyaniline/montmorillonite nanocomposites and their characterization [J]. Chemistry of Materials,2006,18(7): 1976-1980.
    [168]W.S. Huang and A.G. Macdiarmid. Optical-properties of polyaniline [J]. Polymer,1993, 34(9):1833-1845.
    [169]S. Mu. Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film:color changes in the wide wavelength range [J]. Electrochimica Acta, 2007,52(28):7827-7834.
    [170]M.K. Ram, E. Maccioni and C. Nicolini. The electrochromic response of polyaniline and its copolymeric systems [J]. Thin Solid Films,1997,303(1-2):27-33.
    [171]G.A. Planes, J.L. Rodriguez, M.C. Miras, G. Garcia, E. Pastor and C.A. Barbero Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation [J]. Physical Chemistry Chemical Physics,2010,12(35): 10584-10593.
    [172]E. Ozkan, S.H. Lee, C.E. Tracy, J.R. Pitts and S.K. Deb. Comparison of electrochromic amorphous and crystalline tungsten oxide films [J]. Solar Energy Materials and Solar Cells, 2003,79(4):439-448.
    [173]L. Hechavarria, H. Hu, M. Miranda and M.E. Nicho. Electrochromic responses of low-temperature-annealed tungsten oxide thin films in contact with a liquid and a polymeric gel electrolyte [J]. Journal of Solid State Electrochemistry,2009,13(5): 687-695.
    [174]M.G. Hutchins. N.S. Butt, A.J. Topping, J. Gallego, P. Milne, D. Jeffrey and I. Brotherston. Infrared reflectance modulation in tungsten oxide based electrochromic devices [J]. Electrochimica Acta,2001,46(13-14):1983-1988.
    [175]H. Huang, J. Tian, W.K. Zhang, Y.P. Gan, X.Y. Tao, X.H. Xia and J.P. Tu. Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window [J]. Electrochimica Acta,2011,56(11):4281-4286.
    [176]D.H. Lee, K.D. Vuong, R.A. Condrate and X.W. Wang. FTIR investigation of RF plasma deposited indium-tin oxide films on glasses [J]. Materials Letters,1996,28(1-3):179-182.
    [177]C. Guery, C. Choquet, F. Dujeancourt, J.M. Tarascon and J.C. Lassegues. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates [J]. Journal of Solid State Electrochemistry,1997,1(3):199-207.
    [178]G. Leftheriotis, S. Papaefthimiou and P. Yianoulis. The effect of water on the electrochromic properties of WO3 films prepared by vacuum and chemical methods [J]. Solar Energy Materials and Solar Cells,2004,83(1):115-124.
    [179]M. Deepa, M. Kar and S.A. Agnihotry. Electrodeposited tungsten oxide films:annealing effects on structure and electrochromic performance [J]. Thin Solid Films,2004,468(1-2): 32-42.
    [180]C.M. Lampert. Chromogenic smart materials [J]. Materials Today,2004,7(3):28-35.
    [181]E.B. Franke, C.L. Trimble, M. Schubert, J.A. Woollam and J.S. Hale. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region [J]. Applied Physics Letters,2000,77(7):930-932.
    [182]Y. Shigesato. Photochromic properties of smorphous WO3 films [J]. Japanese Journal of Applied Physics,1991,30(7):1457-1462.
    [183]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang and H. Huang. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition [J]. Solar Energy Materials and Solar Cells,2008,92(6):628-633.
    [184]F.L. Souza, P.R. Bueno, E. Longo and E.R. Leite. Sol-gel nonhydrolytic synthesis of a hybrid organic-inorganic electrolyte for application in lithium-ion devices [J]. Solid State Ionics,2004,166(1-2):83-88.
    [185]E.R. Leite, F.L. Souza, P.R. Bueno, S. de Lazaro and E. Longo. Hybrid organic-inorganic polymer:s new approach for the development of decoupled polymer electrolytes [J]. Chemistry of Materials,2005,17(18):4561-4563.
    [186]F.L. Souza, M.A. Aegerter and E.R. Leite. Solid hybrid polyelectrolyte with high performance in electrochromic devices:electrochemical stability and optical study [J]. Solar Energy Materials and Solar Cells,2007,91 (19):1825-1830.
    [187]K.S. Ahn, Y.C. Nah, YE. Sung, K.Y. Cho, S.S. Shin and J.K. Park. All-solid-state electrochromic device composed of WO3 and Ni(OH)2 with a Ta2O5 protective layer [J]. Applied Physics Letters,2002,81(21):3930-3932.
    [188]L.Y. Zhang, S.X. Xiong, J. Ma and X.H. Lu. A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide [J]. Solar Energy Materials and Solar Cells,2009,93(5):625-629.
    [189]F. Bussolotti, L. Lozzi, M. Passacantando, S. La Rosa, S. Santucci and L. Ottaviano. Surface electronic properties of polycrystalline WO3 thin films:a study by core level and valence band photoemission [J]. Surface Science,2003,538(1-2):113-123.
    [190]Y.H. Ye, J.Y. Zhang, P.F. Gu and J.F. Tang. Study on the WO3 dry lithiation for all-solid-state electrochromic devices [J]. Solar Energy Materials and Solar Cells,1997, 46(4):349-355.
    [191]M. Deepa, D.P. Singh, S.M. Shivaprasad and S.A. Agnihotry. A comparison of electrochromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films [J]. Current Applied Physics,2007,7(2):220-229.
    [192]M. Oku, H. Tokuda and K. Hirokawa. Final-states after Ni2p photoemission in the nickel oxygen system [J]. Journal of Electron Spectroscopy and Related Phenomena,1991,53(4): 201-211.
    [193]A.F. Carley, S.D. Jackson, M.W. Roberts and J. O'Shea. Alkali metal reactions with Ni(110)-O and NiO(100) surfaces [J]. Surface Science,2000,454:141-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700