黑斑侧褶蛙SSR位点分离及种群遗传结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广域分布的两栖类无尾目动物,一直被视为分子支系地理学研究的模式物种。近年来,两栖类全球性的衰退问题已引起广泛关注。作为我国分布最广、数目最多的两栖类动物——黑斑侧褶蛙(Pelophylax nigromaculatus,简称黑斑侧褶蛙),也如同其他许多两栖类动物一样,正处于严重的衰退中。为此,本文在筛选SSR以建立检测标记,并配合使用线粒体控制区标记,对黑斑侧褶蛙的群体检测,分析种群的遗传结构特征,以期为相关领域开展黑斑侧褶蛙及其近缘类群衰退问题的研究,提供有用的信息。本研究主要结果如下:
     (1)以磁珠富集法筛选了13个多态的微卫星座位(Rnh1~Rnh13),自浙江金华的35个黑斑侧褶蛙个体检测到的等位基因值为3-14,观察杂合度和期望杂合度分别为0.171-0.941和0.422-0.912。各位点多态信息含量为0.341-0.891,位点累计的个体识别率达到0.9999。
     (2)以古北区区域内23个种群的321个个体的样品为材料,通过线粒体D-loop区约630bp的序列分析,定义了114个单倍型,并基于邻接法(neighbor joining, NJ)将这些单倍型分为两个明显的支系,依据其分布的地域命名为:中原支系和东北支系。除长白山脉一带的黑斑侧褶蛙种群属于东北支系外,其余中国境内的古北区黑斑侧褶蛙皆属于中原支系。其中,中原支系的在Bayes树、NeighborNet网络、Median-joining网络中都大致可以分为两支。这两支的分布基本是重叠的,这可能暗示着中原支系在扩散初期就存在着多态的祖先单倍型。
     (3)按照无尾目物种线粒体控制区的普遍进化速率(3.5% per million years),可推算出中原支系群体和东北支系群体分别在约0.070MYA和0.025MYA经历了种群扩张事件。这两个时间都处于第四纪的更新世。这暗示,黑斑侧褶蛙的群体扩张事件,可能与第四纪晚期的气候变化存在联系。但由于缺乏近缘物种的化石校正点,因此在具体的时间上,可能存在一些出入。
     (4)与线粒体的分析结果一样,基于微卫星座位数据的STRUCTURE分析将群体聚为中原支系和东北支系两支。另外,发现还一个位点仅在中原支系中扩增,这再次暗示了两个支系之间遗传分化。但由于缺乏其他分子标记的证据(特别是适应性的分子标记),两个支系是否能构成显著进化单元,仍有待于进一步的讨论。其中,东北支系的相关种群基于微卫星STRUCTURE分析又被明确地分为两组,这可能由于长白山脉的地理阻隔有关。但在线粒体方面,这两组群体并无明确分化,这可能是由于微卫星具备更高的分辨率,又或者可能与偏性扩散有关。
     (5)用mantel test检测遗传分化和地理距离之间的关系发现:如果把两个支系视为一个整体,则遗传分化与地理距离之间无明显的相关性(P值分别为0.462和0.280)。这可能是主要是由于两个支系缺乏基因交流造成的。
     而如果将两个支系分开考虑:中原支系无论在微卫星标记和线粒体标记上,都表现出了遗传分化与地理距离的显著正相关性(相关系数分别0.561和0.265,P值分别为0.001和0.015)。这可能是因为中原支系在古北区内主要分布于华北平原和东北平原,并不存在阻隔基因流的特殊因素,所以地理距离成了种群之间最主要的隔离因素。所以,邻近的种群之间可能依然存在一定的基因交流,这点在STRUCTURE分析的结果中也得到了验证。而东北支系则在两套标记上都表现为相关性并不显著(P值分别为0.552和0.160)。这说明地理因素并非东北支系各种群之间产生遗传隔离的主要原因。从STRUCTURE分析的结果中可知,东北支系的种群分为两支,这两支之间有长白山脉阻隔。综上可知,至少对于黑斑侧褶蛙而言,地形因素是影响遗传格局的重要因素
     (6)对从微卫星标记和线粒体标记中的所得的数据进行遗传多态性分析。发现无论是微卫星标记,还是线粒体标记,中原支系群体都比东北支系群体表现出了更高的遗传多态性。在线粒体标记方面,中原支系群体的单倍型多态性和核苷酸多态性分别为0.958和0.01268,而东北支系群体分别对应为0.859和0.00492。在微卫星标记方面,中原支系群体的有效等位基因数目、等位基因丰富度、观察杂合度分别为5.451、9.29、0.676、0.734,而东北支系群体对应为1.883、4.45、0.342、0.367。就中原支系群体而言,古北区的种群在微卫星标记和线粒体标记方面,都表现出了“南高北低”格局的遗传多样性。而在东北支系群体中,毗邻于朝鲜半岛的种群具有更高的遗传多样性。这种遗传格局可能和冰期后的种群扩散有关。
     (7)通过对各地种群进行近期瓶颈效应的检测,发现存在多个种群经历了显著的的近期瓶颈效应。这些近期经历了瓶颈效应的种群,并不连成区域,邻近的种群常表现不同情况。而且近期经历了瓶颈效应的种群,从南到北都有零散分布。这暗示,黑斑侧褶蛙种群衰退的主因可能并非是流行性疾病或全球气候变化,而是人为捕杀或生境破坏。因为由疾病或气候变化引起来的两栖类种群衰退,通常表现为区域性种群全面衰退。而这个结果也与宏观调查的结论相符合。
Widespread anuran amphibians are regarded as good models for phylogeographic research. And global population decline of amphibians has attracted the attention of conservation biologist all over the world. As the most widespread and common amphibian, black-spotted frog (Pelophylax nigromaculatus) is also suffering from serious population decline. The work on phylogeography and conservation genetics was not only important for basic research, but also provided essential information for conservation strategies of amphibians.
     We developed a set of microsatellite loci for black-spotted frog which were immediately applied to the research of phylogeography and conservation genetics of black-spotted frog with a fragment of D-loop. The major results were as follow:
     (1) We isolated 13 polymorphic microsatellite loci according manetic beads enrichment protocol. Analysis of 35 muscle samples collected from Jinhua in Zhejiang showed the number of alleles from 3-14, observed heterozygosity and expected heterozygosity were 0.171-0.941 and 0.422-0.912, respectively. The polymorphic information content of these loci was 0.341-0.891, and combined identity exclusion probability reached 0.9999.
     (2) We collected 607 samples from 23 populations in Palearctic Realm. There were 321 individuals detected by the primers which could amplify a 630 bp fragment of D-loop. We identified 114 haplotypes which were clustered 2 clades based neighbor-joining method. The two lineages were named Central Plain Lineage and Northeast Lineage according distribution. The Central Plain Lineage was split into two clades based Bayes tree, NeighborNet network and Median-joining network. The two clades were approximate sympatry. It suggested the Central Plain Lineage was polymorphic before dispersal.
     (3) According to the universal evolutionary rate of anuran D-loop (3.5% per million years), we estimated the occurrence of population expansion began approximately 0.070MYA for Northeast Lineage and 0.025MYA for Central Plain Lineage. But due to lack of fossil calibration, there might be some error in temporal estimation.
     (4) As high degree of population genetic structure, only 7 microsatellite loci could be amplified among all population. Rnh5 could be amplified in the population belong to Central Plain Lineage. It suggested that high nuclear gene differentiation of two lineages, and it was verified by STRUCTURE analysis. But it was unknown that whether the lineages were two Evolutionarily Significant Units due to lack of evidence from other molecular markers, especially adaptive molecular markers. The population of Northeast Lineage could be divided into two groups, by STRUCTURE analysis. But it could not be verified by mtDNA. Maybe it explained by sex-biased dispersal or higher resolution of microsatellites.
     (5) There was a significant correlation between geogeraphic isolation and genetic differentiation in Central Plain Lineage (P-values were 0.001 and 0.015, respectively) reflected by both mtDNA and microsatellites. Because the major Northe lineage distributed in flatland of north China, and there was nothing separating populations of different regions. But there was no correlation between geogeraphic isolation and genetic differentiation in Northeast Lineage (P-values were 0.552 and 0.160, respectively). Because the major Northeast Lineage distributed in Changbai mountain range, and elevation could hinder gene flow of different populations. It suggested that the genetic distribution of black-spotted frog were impacted by landscape.
     (6) There was more genetic diversity in the populations of Central Plain Lineage according both nuclear genes and mtDNA markers. The haplotype diversity and nucleotide diversity of mtDNA were 0.958 and 0.01268 in populations of Central Plain Lineage, while 0.859 and 0.00492 in the populations of Northeast Lineage, respectively. The number of effective alleles, allelic richness, observed heterozygosity and expected heterozygosity of microsatellites in the populations of Central Plain Lineage were 5.451,9.29,0.676,0.734, while 1.883,4.45,0.342, 0.367 in the populations of Northeast Lineage. In the populations of Central Plain Lineage in Palearctic Realm, the genetic diversity of south populations was higher than north populations. In the populations of Northeast Lineage, the populations adjacent to korean peninsula had higher genetic diversity. The pattern of black-spotted frog might be related to population dispersal after glacial period.
     (7) Many black-spotted frog populations had experienced bottleneck in recent years. These populations were distributed widely, and the adjacent populations did not have unanimous demographic history in recent years. It suggested that the major causes of black-spotted frog might be habitat destruction or/and over exploitation, rather than epidemic or climate change.
引文
陈领.古北和东洋界在我国东部的精确划界——据两栖动物.动物学研究.2004.25:369-377
    方盛国,万秋红,吴华,等.大熊猫保护遗传学.北京:科学出版社,2008
    费梁,叶昌媛,黄永昭.中国两栖动物检索.北京:科学出版社,1990
    费梁,胡淑琴,叶昌媛,等.中国动物志两栖纲(下卷)无尾目蛙科.北京:科学出版社,2009
    高春华,陈欣.农药对农区生物多样性的影响.应用生态学报.2004.15:341-344
    江建平,周开亚.从12S rRNA序列研究中国蛙科24种的进化关系.动物学报.2001.47:38-44
    李明,魏辅文,谢菁,等.保护生物学一新分支学科——保护遗传学.四川动物.2000.19:16-19
    李强,万建民SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传.2005.27:808-810
    施雅风.中国第四纪冰川与环境变化.石家庄:河北科学技术出版社,2006
    唐丽霞,左婷.中国农村污染状况调查与分析——来自全国141个村的数据.中国农村观察.2008.1:31-38
    谢锋,刘惠宁,Stuart SN,等.中国两栖动物保护需求总述.中国科学(c辑:生命科学).2006.36:570-581
    杨玉慧,张德兴,李义明,等.中国黑斑侧褶蛙种群的线粒体DNA多样性和生物地理演化过程的初探.动物学报.2004.50:193-201
    张华.中国大陆黑斑侧褶蛙种群的线粒体DNA分岐与建群历史:上新世隔离事件与独立的避难所.[硕士学位论文].南京师范大学,2005
    张荣祖.中国动物地理.北京:科学出版社,1999
    张雄飞,周开亚,常青.中国大陆黑斑侧褶蛙基于mtDNA控制区序列的种群遗传结构.遗传学报.2004.31:1232-1240
    Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for understanding wildlife immunogenetics? Trends in Ecology and Evolution.2006.21:433-438
    Alford RA, Richards SJ. Global amphibian declines:a problem in applied ecology. Annual Review of Ecology and Systematics.1999.30:133-165
    Allentoft ME, O'Brien J. Global amphibian declines, loss of genetic diversity and fitness:a review. Diversity.2010.2:47-71
    Alton LA, Wilson RS, Franklin CE. Risk of predation enhances the lethal effects of UV-B in amphibians. Global Change Biology.2010.16:538-545
    Alves PC, Melo-Ferreira J, Freitas H, et al. The ubiquitous mountain hare mitochondria:multiple introgressive hybridization in hares, genus Lepus. Philosophical Transactions of the Royal Society B:Biological Sciences.2008. 363:2831-2839
    Avise JC, Arnold J, Ball RM, et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics.1987.18:489-522
    Avise JC, Ball RM, Arnold J Current versus historical population sizes in vertebrate species with high gene flow:a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution.1988.5:331-344
    Avise JC, Walker DE, Johns GC. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London Series B:Biological Sciences.1998.265:1707-1712
    Avise JC. Phylogeography:the history and formation of species. Harvard:Harvard Unversity Press,2000
    Avise JC. Phylogeography:retrospect and prospect. Journal of Biogeography.2009. 36:3-15
    Avise JC Catadromous eels continue to be slippery research subjects. Molecular ecology.2011.20:1317-1319
    Bai C, Garner TWJ, Li YM. First evidence of Batrachochytrium dendrobatidis in China:discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth.2010.7:127-134
    Barnosky AD, Matzke N, Tomiya S, et al. Has the Earth's sixth mass extinction already arrived? Nature.2011.471:51-57
    Barribeau SM, Villinger J, Waldman B Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PloS ONE.2008.3: e2692
    Bazin E, Glemin S, Galtier N. Population size does not influence mitochondrial genetic diversity in animals. Science.2006.312:570-572
    Becker CG, Fonseca CR, Haddad CFB, et al. Habitat split as a cause of local population declines of amphibians with aquatic larvae. Conservation Biology. 2010.24:287-294
    Beebee TJC Conservation genetics of amphibians. Heredity.2005.95:423-427
    Berlin S, Merila J, Ellegren H. Isolation and characterization of polymorphic microsatellite loci in the common frog, Rana temporaria. Molecular ecology. 2000.9:1938-1939
    Bensasson D, Zhang DX, Hartl DL, et al. Mitochondrial pseudogenes:evolution's misplaced witnesses. Trends in Ecology and Evolution.2001.16:314-321
    Bininda-Emonds ORP. Fast genes and slow clades:comparative rates of molecular evolution in mammals. Evolutionary bioinformatics online.2007.3:59-85
    Birky Jr CW. The inheritance of genes in mitochondria and chloroplast:laws, mechanisms, and models. Annual Review of Genetics.2001.35:125-148
    Blackwell JM, Bull CM. A narrow hybrid zone between two Western Australian frog species Ranidella insignifera and R. pseudinsignifera:the extent of introgression. Heredity.1978.40:13-25
    Blaustein AR, Wake DB. Declining amphibian populations a global phenomenon. Trends in Ecology and Evolution.1990.5:203-204
    Blaustein AR, Wake DB, Sousa WP. Amphibian Declines:Judging Stability, Persistence, and Susceptibility of Populations to Local and Global Extinctions. Conservation Biology.1994.8:60-71
    Blaustein AR, Kiesecker JM, Chivers DP, et al. Ambient UV-B radiation cause deformities in amphibian embryos. Proceedings of the National Academy of Sciences of the United States of America.1997.94:13735-13737
    Blaustein AR, Walls SC, Bancroft BA, et al. Direct and indirect effects of climate change on amphibian populations. Diversity.2010.2:281-313
    Blaustein AR, Han BA, Relyea RA, et al. The complexity of amphibian population declines:understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences.2011.1223:108-119
    Bloor P, Barker F, Watts P, et al. Microsatellite libraries by enrichment. Protocol available at:http://www.genomics.liv.ac.uk/animal/Protocoll.html,2001
    Bohonak AJ. Dispersal, gene flow, and population structure. Quarterly review of biology.1999.74:21-45
    Bossuyt F, Milinkovitch MC. Amphibians as indicators of Early Tertiary "out-of-India" dispersal of vertebrates. Science.2001.292:93-95
    Boyce MS. Population viability analysis. Annual Review of Ecology and Systematics. 1992.23:481-506
    Brito D. Amphibian conservation:Are we on the right track? Biological conservation. 2008.141:2912-2917
    Brohele J, Ellegren H. Microsatellite evolution:polarity of substitution within repeats and neutrality of flanking sequences. Proceedings of Royal Society of London. Series B:Biological Sciences.1999.266:825-833.
    Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America.1979.76:1967-1971
    Briihl CA, Pieper S, Weber B. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environmental Toxicology and Chemistry. 2011.30:2465-2472
    Callen DF, Thompson AD, Shen Y, et al. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. American Journal of Human Genetics.1993.52: 922-927
    Carey C, Cohen N, Rollins-Smith L. Amphibian declines:an immunological perspective. Developmental and Comparative Immunology.1999.23:459-472
    Caughley G. Directions in conservation biology. Journal of animal ecology.1994.63: 215-244
    Chapin FS 3rd, Zavaleta ES, Eviner VT, et al. Consequences of changing biodiversity. Nature.2000.405:234-242
    Che J, Pang J, Zhao H, Wu GF, et al. Phylogeny of Raninae (Anura:Ranidae) inferred from mitochondrial and nuclear sequences. Molecular Phylogenetics and Evolution.2007.43:1-13
    Church AH. Research on turacin, an animal pigment contraining copper. Philosophical Transactions of the Royal Society.1870.159:627-636
    Collins JP, Storfer A. Global amphibian declines:sorting the hypotheses. Diversity and distributions.2003.9:89-98
    Collins JP, Crump ML. Extinction in our times:global amphibian decline. Oxford: Oxford University Press,2009
    Cornuet JM, Luikart G. Description and power analysis of two tests for inferring recent population bottlenecks from allele frequency data. Genetics.1996.144: 2001-2014
    Coombs JA, Letcher BH, Nislow KH. CREATE:a software to create input files from diploid genotypic data for 52 genetic software programs. Molecular Ecology Resources.2008.8:578-580
    Dai JH, Zhou KY. Development of microsatellite loci for Pelophylax plancyi and cross-amplification in other ranid species. Conservation Genetics.2009.10: 763-766
    Dakin E, Avise JC. Microsatellite null alleles in parentage analysis. Heredity.2004. 93:504-509
    de Guia APO, Saitoh T. The gap between the concept and definitions in the Evolutionarily Significant Unit:the need to integrate neutral genetic variation and adaptive variation. Ecological Research.2007.22:604-612
    Di Rienzo A, Peterson A, Garza J, et al. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America.1994.91:3166-3170
    Dinerstein E, Loucks C, Wikramanayake E, et al. The fate of wild tigers. BioScience. 2007.57:508-514
    Dixo M, Metzger JP, Morgante JS, et al. Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biological Conservation.2009.142:1560-1569
    Dixon AD, Cox WR, Everham Ⅲ EM, et al. Anurans as Biological Indicators of Restoration Success in the Greater Everglades Ecosystem. Southeastern Naturalist.2011.10:629-646
    Doiron S, Bernatchez L, Blier PU. A comparative mitogenomic analysis of the potential adaptive value of arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution. 2002.19:1902-1909
    Dowling TE, Secor CL. The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics.1997.28: 593-619
    Drummond A, Rambaut A, Shapiro B, et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution.2005.22:1185-1192
    Drummond A, Rambaut A. BEAST:Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology.2007.7:214
    Dupanloup I, Schneider S, Excoffier L. A simulated annealing approach to define the genetic structure of populations. Molecular ecology.2002.11:2571-2581
    Du FK, Petit RJ, Liu JQ. More introgression with less gene flow:chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Molecular ecology.2009.18:1396-1407
    Dunn RR, Harris NC, Colwell RK, et al. The sixth mass coextinction:are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences.2009.276:3037-3045
    Duryea M, Brasileiro C, Zamudio K. Characterization of microsatellite markers for snouted treefrogs in the Scinax perpusillus species group (Anura, Hylidae). Conservation Genetics.2009.10:1053-1056
    Earl JE, Whiteman HH. Effects of pulsed nitrate exposure on amphibian development. Environmental Toxicology and Chemistry.2009.28:1331-1337
    Edwards MC, Gibbs RA. Multiplex PCR:advantages, development, and applications. Genome research.1994.3:S65-S75
    Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity.2010.107:1-15
    Eisen JA. Mechanistic basis for microsatellite instability. In:Microsatellites: Evolution and Applications (eds Goldstein DB, Schlstterer C). Oxford:Oxford University Press,1999
    Erwin DH. Lessons from the past:Biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences of the United States of America.2001.98:1399-1403
    Estoup A, TailliezC, Cornuet JM, et al. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Molecular Biology and Evolution.1995.12:1074-1084
    Estoup A, Jarne P, Cornuet JM. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular ecology. 2002.11:1591-1604
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular ecology.2005. 14:2611-2620
    Excoffier L, Lischer HEL. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources.2010.10:564-567
    Fisher MC, Garner TWJ, Walker SF. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual review of microbiology.2009.63:291-310
    Flajnik MF. The immune system of ectothermic vertebrates. Veterinary immunology and immunopathology.1996.54:145-150
    Folke C, Carpenter SR, Walker B, et al. Resilience thinking:integrating resilience, adaptability and transformability. Ecology and Society.2010.15:20
    Forster M, Forster P, Watson J. Network version 4.6.1.0:A software for population genetics data analysis. Available:http://www.fluxus-engineering.com/sharenet. htm,2011
    Frost DR, Grant T, Faivovich J, et al. The amphibian tree of life. Bulletin of the American Museum of Natural History.2006.297:1-370
    Frankham R. Conservation genetics. Annual review of genetics.1995.29:305-327
    Frankham R, BallouJD, Briscoe DA. Introduction to Conservation Genetics.2nd ed. Cambridge:Cambridge University Press,2010
    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics.1997.147:915-925
    Galtier N, Enard D, Radondy Y, et al. Mutation hot spots in mammalian mitochondrial DNA. Genome research.2006.16:215-222
    Galtier N, Nabholz B, Glemin S, et al. Mitochondrial DNA as a marker of molecular diversity:a reappraisal. Molecular ecology.2009.18:4541-4550
    Gantress J, Maniero GD, Cohen N, et al. Development and characterization of a model system to study amphibian immune responses to iridoviruses. Virology. 2003.311:254-262
    Gaudilliere JP, Rheinberger HJ. From molecular genetics to genomics:the mapping cultures of twentieth-century genetics. New York:Routledge,2004
    Ge XJ, Hwang CC, Liu ZH, et al. Conservation genetics and phylogeography of endangered and endemic shrub Tetraena mongolica (Zygophyllaceae) in Inner Mongolia, China. BMC genetics.2011.12:1
    Gissi C, Reyes A, Pesole G, et al. Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution.2000.17:1022-1031
    Glaubitz JC. convert:A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes. 2004.4:309-310
    Gonser RA, Collura RV. Waste not, want not:toe-clips as a source of DNA. Journal of Herpetology.1996.30:445-447
    Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available:http://www.unil.ch/popgen/softwares/fstat.htm,2001
    Graur D, Martin W. Reading the entrails of chickens:molecular timescales of evolution and the illusion of precision. Trends in genetics.2004.20:80-86
    Gray MJ, Miller DL, Hoverman JT. Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms.2009.87:243-266
    Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping. Molecular Ecology Resources.2001.11:591-611
    Gupta P, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics.2003.270:315-323
    Gyllensten U, Wharton D, Josefsson A, et al. Paternal inheritance of mitochondrial DNA in mice. Nature.1991.352:255-257
    Hall T. BioEdit version 5.0.6. Available:http://www.mbio.ncsu.edu/BioEdit/bioedit. html,2004
    Hamilton MB, Pincus EL, Di Fiore A, et al. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques.1999.27:500-507
    Hancock JM. Microsatellites and other simple sequences:genomic context and mutational mechanisms. In:Microsatellites:Evolution and Applications (eds: Goldstein DB, Schltterer C). Oxford:Oxford University Press,1999
    Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution.1989.4:6-11
    Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society.1996.58:247-276
    Hewitt GM. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society.1999.68:87-112
    Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature.2000.405: 907-913
    Hewitt GM. The structure of biodiversity-insights from molecular phylogeography. Frontiers in Zoology.2004.1:1-16
    Hickerson M, Carstens B, Cavender-Bares J, et al. Phylogeography's past, present, and future:10 years after. Molecular Phylogenetics and Evolution.2010.54: 291-301
    Hilgenboecker K, Hammerstein P, Schlattmann P, et al. How many species are infected with Wolbachia?-a statistical analysis of current data. FEMS Microbiology Letters.2008.281:215-220
    Hoffman EA, Ardren W, Blouin M. Nine polymorphic microsatellite loci for the northern leopard frog (Rana pipiens). Molecular Ecology Notes.2006.3: 115-116
    Holderegger R, Kamm U, Gugerli F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecology.2006.21:797-807
    Holsbeek G, Mergeay J, Hotz H, et al. A cryptic invasion within an invasion and widespread introgression in the European water frog complex:consequences of uncontrolled commercial trade and weak international legislation. Molecular ecology.2008.17:5023-5035
    Hutchison CA, Newbold JE, Potter SS, et al. Maternal inheritance of mammalian mitochondrial DNA. Nature.1974.251:536-538
    Innan H, Nordborg M. Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution.2002.19:1122-1127
    Jablonski D. In Extinction Rates. Oxford:Oxford University Press,1995
    Jiang JP, Zhou KY. Phylogenetic relationships among Chinese ranids:inferred from sequence data set of 12S and 16S rDNA. Herpetological Journal.2005.15:1-8
    Jakupciak JP, Wells RD. Gene conversion (recombination) mediates expansions of CTG.CAG repeats. Journal of Biological Chemistry.2000.275:4003-4013
    Jardine N, McKenzie D. Continental drift and the dispersal and evolution of organisms. Nature.1972.235:20-24
    Jing W, Wang XL, Lan H, et al. Eleven novel microsatellite markers for the Chinese alligator (Alligator sinensis). Conservation Genetics.2009.10:543-546
    Joseph MB, Piovia-Scott J, Lawler SP, et al. Indirect effects of introduced trout on Cascades frogs (Rana cascadae) via shared aquatic prey. Freshwater Biology. 2011.56:828-838
    Julian SE, King TL. Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica. Molecular Ecology Notes.2003.3:256-258
    Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular ecology.2007.16:1099-1106
    Karraker NE, Arrigoni J, Dudgeon D. Effects of increased salinity and an introduced predator on lowland amphibians in Southern China:Species identity matters. Biological Conservation.2010.143:1079-1086
    Kats LB, Ferrer RP. Alien predators and amphibian declines:review of two decades of science and the transition to conservation. Diversity and Distributions.2003. 9:99-110
    Kawamura T, Nishioka M. On the pond frogs in the Palearctic region, with special reference to the isolating mechanisms between different species. Proceedings of the Japanese Society of Systematic Zoology.1978.11:61-78
    Kawamura T, Nishioka M. Descendants of Reciprocal Hybrids between Two Japanese Pond-frog Species, Rana nigromaculata and Rana brevipoda. Scientific report of the Laboratory for Amphibian Biology.1978.13:399-419
    Kerby JL, Richards-Hrdlicka KL, Storfer A, et al. An examination of amphibian sensitivity to environmental contaminants:are amphibians poor canaries? Ecology letters.2010.13:60-67
    Kim JB, Matsui M, Lee JE, et al. Notes on a discrepancy in mitochondrial DNA and allozyme differentiation in a pond frog Rana nigromaculata. Zoological science. 2004.21:39-42
    Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics.1964.49:725-738
    Kimura M, Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the United States of America.1978.75:2868-2872
    Kingman JFC. The coalescent. Stochastic processes and their applications.1982.13: 235-248
    Koblmuller S, Egger B, Sturmbauer C, et al. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Molecular Phylogenetics and Evolution.2010.55: 318-334
    Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, et al. Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Molecular Ecology.2005.14:3307-3315
    Kuhner MK. LAMARC 2.0:maximum likelihood and Bayesian estimation of population parameters. Bioinformatics.2006.22:768-770
    Kumar S, Hedges SB. A molecular timescale for vertebrate evolution. Nature.1998. 392:917-920
    Kvist L, Martens J, Nazarenko A A, et al. Paternal leakage of mitochondrial DNA in the great tit (Parus major). Molecular Biology and Evolution.2003.20:243-247
    Lalitha S. Primer premier 5. Biotech Software and Internet Report.2000.1:270-272
    Lande R. Genetics and demography in biological conservation. Science.1988.241: 1455-1460
    Lamb T, Avise JC. Directional introgression of mitochondrial DNA in a hybrid population of tree frogs:the influence of mating behavior. Proceedings of the National Academy of Sciences of the United States of America.1986.83: 2526-2530
    Liu K, Wang F, Chen W, et al. Rampant historical mitochondrial genome introgression between two species of green pond frogs, Pelophylax nigromaculatus and P. plancyi. BMC Evolutionary Biology.2010.10:201
    Li YC, Korol AB, Fahima T, et al. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review. Molecular ecology.2002.11: 2453-2465
    Li YC, Korol AB, Fahima T, et al. Microsatellites within genes:structure, function, and evolution. Molecular Biology and Evolution.2004.21:991-1007
    Li XY, Zhou J, Yu M, et al. Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata. Ecotoxicology and Environmental Safety.2009.72:552-556
    Li YM, Wilcove DS. Threats to vertebrate species in China and the United States. BioScience.2005.55:147-153
    Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics.2009.25:1451-1452
    Liepelt S, Kuhlenkamp V, Anzidei M, et al. Pitfalls in determining size homoplasy of microsatellite loci. Molecular Ecology Notes.2001.1:332-335
    Lin HD, Chen YR, Lin SM. Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Molecular Phylogenetics and Evolution.2012.62:251-262
    Lischer HEL, Excoffier L. PGDSpider:An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics.2012. 28:298-299
    Liu WZ, Lathrop A, Fu J, et al. Phylogeny of East Asian bufonids inferred from mitochondrial DNA sequences (Anura:Amphibia). Molecular Phylogenetics and Evolution.2000.14:423-435
    Ljungqvist M, Akesson M, Hansson B. Do microsatellites reflect genome-wide genetic diversity in natural populations? A comment on Vali et al. (2008). Molecular ecology.2010.19:851-855
    Lougheed S, Gascon C, Jones D, et al. Ridges and rivers:a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London Series B:Biological Sciences.1999.266:1829-1835
    Lynch M, Conery JS. The origins of genome complexity. Science.2003.302: 1401-1404
    MacAlpine DM, Kolesar J, Okamoto K, et al. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. The EMBO journal.2001.20: 1807-1817
    Macey JR, Schulte JA, Larson A, et al. Phylogenetic Relationships of Toads in theBufo bufoSpecies Group from the Eastern Escarpment of the Tibetan Plateau: A Case of Vicariance and Dispersal. Molecular Phylogenetics and Evolution. 1998.9:80-87
    Malausa T, Gilles A, Meglecz E, et al. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources.2011.11:638-644
    Mann RM, Hyne RV, Choung CB, et al. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution.2009. 157:2903-2927
    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research.1967.27:209-220
    Martin AP. Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Molecular Biology and Evolution.1995.12:1124-1131
    Maruyama T, Fuerst PA. Population bottlenecks and nonequilibrium models in population genetics. Ⅱ. Number of alleles in a small population that was formed by a recent bottleneck. Genetics.1985. 111:675-689
    Metzker ML. Sequencing technologies-the next generation. Nature Reviews Genetics. 2009.11:31-46
    Meudt HM, Clarke AC. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in plant science.2007.12:106-117
    Middleton EM, Herman JR, Celarier EA, et al. Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conservation Biology.2001.15:914-929
    Milligan B, McMurry C. Dominant vs. codominant genetic markers in the estimation of male mating success. Molecular ecology.1993.2:275-283
    Monsen KJ, Blouin M S. Genetic structure in a montane ranid frog:restricted gene flow and nuclear-mitochondrial discordance. Molecular ecology.2003.12: 3275-3286
    Moritz C, Dowling T, Brown W. Evolution of animal mitochondrial DNA:relevance for population biology and systematics. Annual Review of Ecology and Systematics.1987.18:269-292
    Moritz C. Defining 'evolutionarily significant units' for conservation. Trends in Ecology and Evolution.1994.9:373-374
    Nabholz B, Mauffrey JF, Bazin E, et al. Determination of mitochondrial genetic diversity in mammals. Genetics.2008a.178:351-361
    Nabholz B, Glemin S, Galtier N. Strong variations of mitochondrial mutation rate across mammals-the longevity hypothesis. Molecular Biology and Evolution. 2008b.25:120-130
    Nabholz B, Glemin S, Galtier N. The erratic mitochondrial clock:variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evolutionary Biology.2009.9:54
    Nei M, Tajima F. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics.1983.105:207-217
    Nei M. Molecular Evolutionary Genetics. NewYork:Columbia University Press, 1987
    Newman RA, Squire T. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Molecular ecology.2001.10:1087-1100
    O'Brien SJ. A role for molecular genetics in biological conservation. Proceedings of the National Academy of Sciences of the United States of America.1994.91: 5748-5755
    Ouborg N, Pertoldi C, Loeschcke V, et al. Conservation genetics in transition to conservation genomics. Trends in Genetics.2010.26:177-187
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics.2000.155:945-959
    Patarnello T, Volckaert FAMJ, Castilho R. Pillars of Hercules:is the Atlantic-Mediterranean transition a phylogeographical break? Molecular ecology. 2007.16:4426-4444
    Posada D. jModelTest:phylogenetic model averaging. Molecular Biology and Evolution.2008.25:1253-1256.
    Pound JA, Bustamante MR, Coloma LA, et al. Widesp read amphibian extinction s from epidemic disease driven by global warming. Nature.2006.439:161-167
    Primack RB. Essentials of Conservation Biology.5th ed. Massachusetts:Sinauer Assciates,2010
    Primmer CR, Merila J. A low rate of cross-species microsatellite amplification success in Ranid frogs. Conservation Genetics.2002.3:445-449
    Peakall R, Smouse PE. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes.2006.6:288-295
    Pechmann JHK, Scott DE, Semlitsch RD, et al. Declining amphibian populations:the problem of separating human impacts from natural fluctuations. Science.1991. 253:892
    Pechmann JHK, Wilbur HM. Putting declining amphibian populations in perspective: natural fluctuations and human impacts. Herpetologica.1994.50:65-84
    Phillott A, Speare R, Hines H, et al. Minimising exposure of amphibians to pathogens during field studies. Diseases of Aquatic Organisms.2010.92:175-185
    Pidancier N, Miquel C, Miaud C. Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetological Journal.2003.13: 175-178
    Primmer CR. From conservation genetics to conservation genomics. Annals of the New York Academy of Sciences.2009.1162:357-368
    Pritchard JK, Wen XQ, Falush D. Do cumentation for structure software:Version 2.3. Available:http://pritch.bsd.uchicago.edu/structure.html,2010
    Prugnolle F, De Meeus T. Inferring sex-biased dispersal from population genetic tools: a review. Heredity.2002.88:161-165
    Quaranta A, Bellantuono V, Cassano G, et al. Why amphibians are more sensitive than mammals to xenobiotics? PloS ONE.2009.4:e7699
    Rambaut A & Drummond A. Tracer:MCMC trace analysis tool, version 1.5.0. Oxford:University of Oxford,2009
    Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution.2002.19:2092-2100
    Rand DM. The units of selection of mitochondrial DNA. Annual Review of Ecology and Systematics.2001.32:415-448
    Ratnasingham S, Hebert PDN. BOLD:The Barcode of Life Data System (http://www. barcodinglife. org). Molecular Ecology Notes.2007.7:355-364
    Reusch TBH, Ehlers A, Hammerli A, et al. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America.2005.102:2826-2831
    Richard GF, Pques F. Mini- and microsatellite expansions:the recombination connection. EMBO Reports.2000.11:122-126
    Richter SC, Broughton RE. Development and characterization of polymorphic microsatellite DNA loci for the endangered dusky gopher frog, Rana sevosa, and two closely related species, Rana capito and Rana areolata. Molecular Ecology Notes.2005.5:436-438
    Rocha L, Craig M, Bo wen B. Phylogeography and the conservation of coral reef fishes. Coral Reefs.2007.26:501-512
    Rollins-Smith LA. Metamorphosis and the amphibian immune system. Immunological Reviews.1998.166:221-230
    Rollins-Smith LA, Ramsey JP, Pask JD, et al. Amphibian Immune Defenses against Chytridiomycosis:Impacts of Changing Environments. Integrative and Comparative Biology.2011.51:552-562
    Ropiquet A, Hassanin A. Hybrid origin of the Pliocene ancestor of wild goats. Molecular Phylogenetics and Evolution.2006.41:395-404
    Rosenbaum HC, Deinard AS. Caution before claim:an overview of microsatellite analysis in ecology and evolutionary biology. In:Molecular Approaches to Ecology and Evolution, (eds:desalle R, Schierwater B). Basel:Birkhauser Basel, 2003
    Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution.1992.9: 552-569
    Rousset F. genepop'007:a complete re-implementation of the genepop software for Windows and Linux. Molecular ecology resources.2008.8:103-106
    Rowe G, Harris DJ, Beebee TJC. Lusitania revisited:A phylogeographic analysis of the natterjack toad Bufo calamita across its entire biogeographical range. Molecular Phylogenetics and Evolution.2006.39:335-346
    Rubinoff D. Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology.2006.20:1026-1033
    Ryder OA. Species conservation and systematics:the dilemma of subspecies. Trends in Ecology and Evolution.1986.1:9-10
    Ryder OA. Conservation genomics:applying whole genome studies to species conservation efforts. Cytogenetic and genome research.2005.108:6-15
    Sambrook J, Russell DW. Molecular cloning:a laboratory manual. New York:Cold Spring Harbor Lab Press,2001
    Santana QC, Coetzee MPA, Steenkamp ET, et al. Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques.2010.46:217-223
    Savage AE, Zamudio KR. MHC genotypes associate with resistance to a frog-killing fungus. Proceedings of the National Academy of Sciences of the United States of America.2011.108:16705-16710
    Schloegel LM, Daszak P, Cunningham AA, et al. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE):an assessment. Diseases of Aquatic Organisms.2010.92:101-108
    Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. New England Journal of Medicine.2002.347:576-580
    Schwensow N, Fietz J, Dausmann K, et al. Neutral versus adaptive genetic variation in parasite resistance:importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity.2007.99:265-277
    Selkoe KA, Toonen RJ. Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers. Ecology letters.2006.9:615-629
    Sewell D, Griffiths RA. Can a Single Amphibian Species Be a Good Biodiversity Indicator? Diversity.2009.1:102-117
    Shoemarker DD, Machado CA, Molbo D, et al. The distribution of Wolbachia in fig wasps:correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society of London. Series B:Biological Sciences. 2002.269:2257-2267
    Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Current topics in developmental biology.2007.77:87-111
    Sinsch U. Migration and orientation in anuran amphibians. Ethology, Ecology and Evolution.1990.2:65-79
    Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics.1991.129:555-562
    Soule ME. Conservation biology:the science of scarcity and diversity. Massachusetts: Sinauer Assciates,1986
    Spencer C, Neigel J, Leberg P. Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular ecology. 2000.9:1517-1528
    Spolsky C, Uzzell T. Natural interspecies transfer of mitochondrial DNA in amphibians. Proceedings of the National Academy of Sciences of the United States of America.1984.81:5802-5805
    Stewart JB, Freyer C, Elson JL, et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS biology.2008.6:e10
    Storfer A, Eastman JM, Spear SF. Modern molecular methods for amphibian conservation. BioScience.2009.59:559-571
    Stuart SN, Chanson JS, Cox NA, et al. Status and trends of amphibian declines and extinctions worldwide. Science.2004.306:1783-1786
    Sumida M, Ishihara T. Natural hybridization and introgression between Rana nigromaculata and Rana porosa porosa in central Japan. Amphibia-Reptilia. 1997.18:249-257.
    Sumida M, Kaneda H, Kato Y, et al. Sequence variation and structural conservation in the D-loop region and flanking genes of mitochondrial DNA from Japanese pond frogs. Genes and genetic systems.2000.75:79-92
    Sumida M, Kanamori Y, Kaneda H, et al. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes and genetic systems.2001.76:311-325
    Swei A, Rowley JJL, Rodder D, et al. Is chytridiomycosis an emerging infectious disease in Asia? PloS ONE.2011.6:e23179
    Tallmon DA, Chris Funk W, Dunlap WW, et al. Genetic differentiation among long-toed salamander (Ambystoma macrodactylum) populations. Copeia.2000.1: 27-35
    Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution.1993.10:512-526
    Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution.2011.28:2731-2739
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics.1989.123:585-595
    Teacher AGF, Garner TWJ, Nichols RA. Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PloS ONE.2009.4:e4616
    Toju H, Sota T. Phylogeography and the geographic cline in the armament of a seed-predatory weevil:effects of historical events vs. natural selection from the host plant. Molecular ecology.2006.15:4161-4173
    Vali ULO, Einarsson A, Waits L, et al. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Molecular ecology. 2008.17:3808-3817
    Van Oosterhout C, Hutchinson WF, Wills DPM, et al. Micro-checker:software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes.2004.4:535-538
    Vieites DR, Nieto-Roman S, Barluenga M, et al. Post-mating clutch piracy in an amphibian. Nature.2004.431:305-308
    Vredenburg VT, Knapp RA, Tunstall TS, et al. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America.2010.107:9689
    Vitt LJ, Caldwell JP, Wilbur HM, et al. Amphibians as harbingers of decay. BioScience.1990.40:418
    Vina A, Bearer S, Chen X, et al Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China. Ecological Applications.2007.17:1019-1030
    Wake DB. Declining amphibian populations. Science.1991.253:860
    Wake DB. Action on amphibians. Trends in Ecology and Evolution.1998.13: 379-380
    Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America.2008.105:11466-11473
    Wan QH, Wu H, Fujihara T, et al. (2004) Which genetic marker for which conservation genetics issue? Electrophoresis.25:2165-2176
    Warkentin LG, Bickford D, Sodhi NS, et al. Eating Frogs to Extinction. Conservation Biology.2009.23(4):1056-1059
    Weinreich DM, Rand DM. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics.2000.156:385-399
    Weiss S, Ferrand N. Phylogeography of Southern European Refugia:Evolutionary perspectives on the origins and conservation of European biodiversity. Springer Verlag,2007
    Welsh Jr HH, Olivier LM. Stream amphibians as indicators of ecosystem stress:a case study from California's redwoods. Ecological Applications.1998.8: 1118-1132
    White DJ, Gemmell NJ. Can indirect tests detect a known recombination event in human mtDNA? Molecular Biology and Evolution.2009.26:1435-1439
    Widmer A, Lexer C. Glacial refugia:sanctuaries for allelic richness, but not for gene diversity. Trends in Ecology and Evolution.2001.16:267-269
    Willyard A, Syring J, Gernandt DS, et al. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution.2007.24:90-101
    Wilson CC, Bernatchez L. The ghost of hybrids past:fixation of arctic charr (Salvelinus alpinus) mitochondrial DNA in an introgressed population of lake trout (S. namaycush). Molecular ecology.1998.7:127-132
    Wu Z, Li Y, Wang Y, et al. Diet of introduced bullfrogs (Rana catesbeiana):predation on and diet overlap with native frogs on Daishan Island, China. Journal of Herpetology.2005.39:668-674
    Wyman RL.What's happening to the amphibians? Conservation Biology.1990.4: 350-352
    Yan JC, Zhu, FH, Wu HL. Isolation and characterization of 12 polymorphic microsatellite markers for the frog Pelophylax hubeiensis. Genetics and Molecular Research.2011.10:268-272
    Yang FX, Xu Y, Wen S. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p, p'-DDE on Rana nigromaculata tadpoles. Bulletin of environmental contamination and toxicology.2005.75:1168-1175
    Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Molecular Ecology.2002.11:1-16
    Zeisset I, Beebee T. Amphibian phylogeography:a model for understanding historical aspects of species distributions. Heredity.2008.101:109-119
    Zhang DX, Hewitt GM. Nuclear integrations:challenges for mitochondrial DNA markers. Trends in Ecology and Evolution.1996.11:247-251
    Zhang H, Yan J, Zhang GQ, et al. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata):evidence for independent refugia expansion and secondary contact. BMC Evolutionary Biology.2008.8:21
    Zhang HM, Guo Y, Li DS, et al. Sixteen novel microsatellite loci developed for the giant panda (Ailuropoda melanoleuca). Conservation Genetics.2009.10: 589-592
    Zhao J, Grant SF. Advances in whole genome sequencing technology. Current pharmaceutical biotechnology.2011.12:293-305
    Zhao SS, Chen X, Fang SG, et al. Development and characterization of 15 novel microsatellite markers from forest musk deer (Moschus berezovskii). Conservation Genetics.2008.9:723-725
    Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994.20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700