酒酒球菌SD-2a胁迫适应性反应及其机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果酸-乳酸发酵(Malolactic fermentation,MLF)可使新(生)葡萄酒的生青、酸涩等特点消失,达到理想的酸度平衡,微生物稳定性增强。而能够适应葡萄酒环境、较专一地进行MLF、并对葡萄酒质有增益作用的主要是葡萄酒乳酸菌中的酒酒球菌(Oenococcus oeni)。由于葡萄酒生境恶劣复杂,人工接种诱导MLF时,往往由于菌体的大量死亡,而无法成功启动MLF。究其原因有两方面,一是实验室培养获得的菌体失去了对葡萄酒环境的天然抗性,造成接种存活率下降;二是菌体在冷冻干燥过程中受到损伤,导致冻干后存活细菌数量减少。因此,对于直投式葡萄酒乳酸菌发酵剂生产说,除保证菌体的高密度培养外,更需注重培养条件对菌体接种存活率和冻干存活率影响的研究。酒酒球菌SD-2a是本实验室从山东烟台地区自然MLF葡萄酒中分离得到,并获得国家专利保护的优良菌株。深入研究酒酒球菌SD-2a的胁迫适应性反应机制,对开发具有我国自主产权的直投式葡萄酒乳酸菌发酵制剂,具有重要的理论和实践意义。
     本文以酒酒球菌SD-2a为受试菌材,研究不同培养基组成、酸胁迫处理和乙醇胁迫处理对菌体生长、接种存活率、MLF活性及冻干存活率的影响,以评价在培养过程中,诱导菌体发生酸、乙醇胁迫适应性反应对提高菌体存活率的有效性,为直投式酒酒球菌SD-2a发酵剂的制备提供新的研究思路和基础实验数据。此外,本文通过测定上述培养条件对菌体细胞内MLE活性、H~+-ATP酶活性和细胞膜脂肪酸组分的影响,以期初步探讨酒酒球菌SD-2a的酸、乙醇胁迫适应性反应机制。本文得出的主要结果有:
     (1)与FMATB和MATB培养基相比,ATB培养基培养获得的菌体,其细胞产量分别增加了8.5%和46.2%;其接种模拟酒培养液后的存活率分别提高了20.3%和40.2%;其冷冻干燥存活率分别提高了48.5%和68.3%;不同培养基条件下,菌体生理状态测定结果表明,与FMATB和MATB培养基相比,ATB培养基培养获得的菌体,其H~+-ATP酶活性分别增加了22.6%和72.8%;其细胞膜中C19cyc11的相对含量分别提高了10.0%和36.8%;其细胞膜U/S值分别提高了20.4%和45.2%。故ATB培养基培养所得菌体,由于自我酸胁迫反应,增强了其对葡萄酒胁迫因素及冷冻干燥的抗性,而该反应与H~+-ATP酶活性增强和菌体细胞膜脂肪酸组分的变化密切相关。
     (2)与ATB和MATB培养基相比,FMATB培养基培养获得的菌体,其菌体生长速率分别增加了12.1%和94.5%,其细胞内MLE活性分别增加了33.9%和7.1%。故混合添加有葡萄糖、果糖、苹果酸的FMATB培养基,有利于菌体生长速率及MLF活性的提高。
     (3)通过比较酸胁迫条件下,酒酒球菌SD-2a在三种培养基中的最大生长速率和最大OD_(600)值,选择FMATB培养基为酸胁迫处理用培养基。在FMATB培养基条件下,酸胁迫处理降低了酒酒球菌SD-2a菌体的生长速率,且对菌体细胞产量有一定影响,其中,pH3.2处理所获菌体细胞产量约为对照的70%。但酸胁迫处理显著增强了菌体的接种存活率,其中pH3.2处理的菌体接种存活率比对照提高了近9倍。pH3.5和pH3.2处理均能使菌体顺利启动模拟酒培养液的MLF。且酸胁迫处理能显著提高菌体的冻干存活率,其中,pH3.5和pH3.2处理所获菌体的冻干存活率分别为对照的2.2倍和1.9倍。故酸胁迫处理是直投式酒酒球菌SD-2a发酵剂生产有效的胁迫处理方式,初步筛选出酸胁迫处理条件应设置在pH3.5~3.2之间。
     (4)酒酒球菌SD-2a酸胁迫适应性反应机制研究结果表明,酸胁迫处理诱导增强了菌体细胞内MLE活性,其中,pH3.5和pH3.2处理菌体细胞内MLE活性,分别比对照处理提高了23.7%和46.4%;酸胁迫条件诱导增强了菌体H~+-ATP酶活性,其中,pH3.5和pH3.2处理分别是对照处理的1.22和1.39倍;酸胁迫处理明显增加了细胞膜中环丙烷型脂肪酸的相对含量,且pH3.5和pH3.2处理与对照相比显著增加了细胞膜U/S值。故菌体在酸胁迫适应过程中,细胞内MLE活性和H~+-ATP酶活性的升高,细胞膜环丙烷型脂肪酸的聚集及U/S值增加,应与菌体接种存活率和冻干存活率的提高密切相关。
     (5)通过比较乙醇胁迫条件下,酒酒球菌SD-2a在三种培养基中的最大生长速率和最大OD_(600)值,选择FMATB培养基为乙醇胁迫处理用培养基。在FMATB培养基条件下,乙醇胁迫处理明显降低了菌体的生长速率和生长量。与酸胁迫处理相比,乙醇胁迫处理对提高菌体的接种存活率及发酵活性,效果不明显。5%乙醇胁迫条件降低了菌体对冷冻干燥的耐受性,而10%乙醇胁迫条件能诱导增强菌体对冷冻干燥的抗性。但总体来讲,乙醇胁迫处理不是直投式酒酒球菌SD-2a发酵剂生产有效的胁迫处理方式。
     (6)酒酒球菌SD-2a乙醇胁迫适应性反应机制研究结果表明,乙醇胁迫条件诱导增加了菌体细胞内MLE的活性,且乙醇浓度越高,菌体细胞内MLE的活性越高;但乙醇胁迫处理却显著抑制了菌体H~+-ATP酶活性;5%乙醇胁迫处理明显增加了细胞膜总饱和脂肪酸的比例,细胞膜U/S值降低;而10%乙醇胁迫处理明显降低了细胞膜总饱和脂肪酸的比例,增加了总不饱和脂肪酸的相对含量,细胞膜U/S值增大。
     (7)酒酒球菌SD-2a在10%乙醇胁迫条件下,菌体的生长速率和生长量随着培养基中苹果酸含量增加而增大。菌体生理状态测定结果表明,随着培养基中苹果酸含量的增加,菌体细胞内MLE活性显著增加,且菌体细胞膜U/S值显著增加。故在10%乙醇胁迫存在的条件下,MLF途径及细胞膜脂肪酸组分的调整,能增强菌体的乙醇耐受性,提高了菌体在乙醇胁迫环境中的生长能力。
     (8)处于稳定前期的酒酒球菌SD-2a菌体,其冻干存活率高于处于指数中期的菌体。酸胁迫条件和培养基组分都显著影响着菌体的冻干存活率,且两因素间的交互作用极显著。
     (9)脂肪酸组分与冻干存活率间具有较强的相关关系,其中C16:0与冻干存活率间存在显著负相关,C19cyc11与冻干存活率之间存在显著正相关。故认为增加细胞膜中C19cyc11的相对含量是酒酒球菌抗冷冻干燥机制之一。
     (10)本文的创新点:初次以本土酒酒球菌菌株为试材,进行了酒酒球菌酸、乙醇胁迫适应性反应机制的研究;本文提出在酒酒球菌SD-2a培养过程中,诱导其发生酸胁迫适应性反应可有效提高菌体的存活率,该结论为该菌直投式发酵剂的制备提供了理论支持;首次对酒酒球菌抗冷冻干燥机制进行了初步研究。
During the process of winemaking,malolactic fermentation (MLF) follows alcoholicfermentation.Different bacteria genera have been reported to carry out MLF in wine.Amongthem,Oenococcus oeni is recognized as the most advantageous and tolerant bacterium.MLFdeacidifies wine and results in a softer feeling in the mouth.MLF also improvesmicrobiological stability and organoleptic characteristics.However,due to very harshenvironmental conditions in the wine for bacterial survival and growth,induction of MLF hasshown failures.There are two reasons for such failures.On one hand,strains lose their naturaladaptation to survive and growth in wine,which results in low inoculation viability;On theother hand,lyophilization offers stress conditions such as freezing,drying,and concentrationstress,which diminish cell viability.Therefore,expanding interest in freeze-driedready-to-use malolactic starter cultures has placed more emphasis on developing starterproduction and preservation methods that promote high cell viability and activity.
     O.oeniSD-2a isolated by our lab from spontaneous MLF wine of YanTai area,is a highlystress adaptive strain.It is of theory and practical importanc e to study on O.oeniSD-2a stressadaptive response mechanism and develop ready-to-use malolactic starter cultures with ourown property right.Using O.oeniSD-2a as experimental strain,we investigated the effect ofmedium composition,acid stress treatment,alcohol stress treatment on MLF activity afterdirectly inoculated into wine-like medium and freeze-drying viability,in order to evaluate thefeasibility of application of stress induced cross protection into preparation of starter cultures,and supply basic experimental dates.In addition,from the point of intracellular MLE activity,H~+-ATPase activity and changes in membrane fatty acid composition,the paper clarifiedO.oeniSD-2a acid and alcohol stress adaptive response and cross protective responsemechanism.Main results were displayed as follows:
     1.The effect of 3 kinds of culture media was investigated on the direct inoculationviability,freeze-drying viability of O.oeniSD-2a.ATB medium without supplementation ofDL-malate had weak pH buffering capability.Compared with FMATB and MATB,O.oenicells cultured in ATB increased inoculation viability and freeze-drying viability.Though ATBmedium decreased intracellular MLE activity,H+-ATPase activity was the highest among 3kinds of culture media.Concerning the membrane fatty acid composition,it was observed that ATB medium increased distinctly the relative concentration of lactobacillic acid (C19cyc11)and U/S ratio in cell membrane lipid composition of O.oeniSD-2a.The increased resistance towine stressor and freeze-drying is probably a result of the cross protection conferred by selfacid stress response induced in ATB medium,which might be related with changes inmembrane fatty acid composition of O.oeniSD-2a.
     2.FMATB medium is mixed with glucose,fructose and DL-malate,which makes forbacterial growth and MLF activity.Compared with ATB and MATB medium,the growth rateincreased by 12.1% and 94.5% in FMATB medium,intracellular MLE activity increased by33.9% and 7.1%.
     3.Acid stress treatment decreased the growth rate of O.oeniSD-2a,but took a certaineffect on cell biomass in FMATB medium.Acid stress treatment increased inoculationviability,and pH3.2 treatment increased by 9 folds compared with control treatment.Thistreatment could successfully initiate and complete MLF.Acid stress treatment all increasedfreeze-drying viability,and the freeze-drying viability of pH3.5 treatment was 103%,whichwas highest survival rate.Therefore,acid stress treatment was an effective technique forpreparation of ready-to-use O.oeniSD-2a starter cultures.pH stress conditions should be setbetween 3.5-3.2.
     4.Acid stress adaptive response mechanisms of O.oeniSD-2a were studied;The resultsshowed that acid stress treatment increased bacterial intracellular MLE activity andH~+-ATPase activity.Membrane fatty acid composition analysis showed acid stress treatmentdistinctly increased CFAs relative concentration,and pH3.5 and pH3.2 treatment significantlyincreased membrane U/S ratio,which should closely related with enhancement of inoculationviability and freeze-drying viability.Accumulation of CFAs in membrane lips might be oneof basic substance of acid induced cross protection response mechanism.
     5.Alcohol stress treatment distinctly decreased bacterial growth rate and cell biomass inFMATB medium.Compared with acid stress treatment,alcohol stress treatment had littleimpact on inoculation viability.5% alcohol stress treatment decreased freeze-drying viability,and 10% alcohol stress treatment increased freeze-drying viability.However,as a whole,alcohol stress treatment was not an effective technique for preparation of O.oeniSD-2a startercultures.
     6.Alcohol stress adaptive response mechanisms of O.oeniSD-2a were studied;Theresults showed that alcohol stress treatment increased bacterial intracellular MLE activity,butgreatly inhibited H~+-ATPase activity,which might be related with high medium pH.Membrane fatty acid composition analysis showed 5% alcohol stress treatment distinctlyincreased SFAs relative concentration,decreased membrane U/S ratio,which might be related with lower freeze-drying viability.But 10% alcohol stress treatment distinctly decreasedSFAs relative concentration,increased UFAs relative concentration,increased membrane U/Sratio,which might be related with enhancement of inoculation viability and freeze-dryingviability.
     7.In the presence of 10% alcohol stress,medium composition plays an important role ingrowth rate.The results showed malic acid in medium notably increased intracellular MLEactivity,and distinctly increased membrane U/S ratio.It was assumed that MLF pathwaycould be involved in changes in membrane fatty acid profiles,which increased bacterialalcohol tolerance.
     8.O.oeniSD-2a cells in the early stationary phase survived better after freeze-drying thanthose in the mid-exponential phase.Acid stress conditions and medium compositionsignificantly affect bacterial freeze-drying viability,and interaction between those two factorswas also significant.The freeze-drying viability of O.oeniSD-2a cultured in pH3.5 FMATBmedium was highest.
     9.The correlation matrix calculated by DPS software showed the freeze-drying viabilityexhibited a significant positive correlations with the levels of C 19cyc11,and had a significantnegative correlations with the levels of C16:0,which indicated C19cyc11,rather than C16:0,could offer more tolerance ability of O.oeniSD-2a cells to freeze-drying.However,fatty acidcomposition and freeze-drying viability of O.oeniSD-2a cells were determined by the mediumpH when cells harvested.There were significant negative correlations between the mediumpH and the levels of C19cyc11,and between the medium pH and freeze-drying viability,suggesting that low growth pH stimulated the synthesis of C19cyc11,which might play animportant role in the resistance of O.oeniSD-2a cells to freeze-drying.
     10.The innovation of the paper was as follows:(1) it is the first time to study O.oenistress adaptive response mechanism by using a native O.oeni strain.(2) a new idea was putforward that O.oeni acid stress adaptive response could be applied into preparation ofready-to-use malolactic starter cultures,and good experimental results were obtained.(3) Thefreeze-drying tolerance mechanisms of O.oeni were studied for the first time.
引文
[1]李华.现代葡萄酒工艺学[M].西安:陕西人民出版社,2000.
    [2]张春晖,李华.葡萄酒微生物学[M].西安:陕西人民出版社,2003.
    [3]Lonvaud-Funel A.Lactic acid bacteria in the quality improvement and depreciation of wine [J].Antonie Van Leeuwenboek,1999,76:317-331.
    [4]Lonvaud-Funel A,Joyeux A.Antagonisms between lactic acid bacteria of wines:inhibition of euconostoc oenos by Lactobacillus plantarum and Pediococcus pentosaceus.Food microbial,1993,10:411-419.
    [5]Versari A,Parpinello GP,Cattaneo M.Leuconostoc oenos and MLF in wine:A review [J].J Ind Microbiol Biotechnol,1999,23:447-455.
    [6]Arnink K,Henick-Kling T.Influence of Saccharomyces cerevisiae and Oenococcus oeni strains on successful malolactic conversion in wine [J].Am J Enol Viticul,2005,56:32-42.
    [7]Edwards CG.Occurrence and characterization of lactic acid bacteria from Washington State wines:Pediococcus spp.Am J Enol Vitic,1992,43:233-238.
    [8]Gonzalez MC,Callejo MJ,Colomo B and Suarez JA.Contribution to the study of induction of malolactic fermentation in Navarra wines:III.Induction tests of malolactic fermentation with clones of selected yeasts and lactic bacteria [J].Alimentaria,1995,33:49-57.
    [9]Patarata L,Serpa-Pimentel M,Pot B,Kersters K,Mendes Faia A.Identification of lactic acid bacteria isolated from Portuguese wines and musts by SDS-PAGE [J].J Appl Bacteriol,1994,76:288-293.
    [10]Sieiro C,J Cansado,D Agrelo,JB Vela'squez and TG Villa.Isolation and enological characterization of malolactic bacteria from the vineyards of northwestern Spain [J].Appl Environ Microbiol,1990,56:2936-2938.
    [11]Izuagbe YS,Dohman TP,Sandine EE,Heatherbell DA.Characterization of Leuconostoc oenos isolated from Oregon wines [J].Appl Environ Microbiol,1985,50:680-684.
    [12]张春晖.中国优良酒酒球菌的分离筛选及MLF研究[D].西北农林科技大学博士论文,2001.
    [13]Dicks LMT,Dellaglio F,Collins MD.Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [J].Int J Syst Bacteriol,1995,45:395-397.
    [14]Plessis HW,Dicks LMT,Pretorius IS,Lambrechts MG,du Toit M.Identification of lactic acid bacteria isolated from South African brandy base wines [J].Int J Food Microbiol,2004,91:19-29.
    [15]郭永亮,Trioli G,Pemeja C.苹—乳发酵管理是优质葡萄酒酿造工艺中极其重要的一环[J].中外葡萄与葡萄酒,2002,3:49-51.
    [16]Beelman RB,Keen RM,Banner MJ,King SW.Interactions between wine yeast and malolactic bacteria under wine conditions [J].Developments in Industrial Microbiology,1982,23:107-121.
    [17]李华.葡萄酒酿造与质量控制[M].杨凌:天则出版社,1990.
    [18]Zhang DS,Lovitt RW.Strategies for enhanced malolactic fermentation in wine and cider maturation [J].J Chem Technol Biotechnol,2006,81:1130-1140.
    [19]Boulton RB,Singleton VL,Bisson LF.Principles and practices of winemaking [M].New York:Chapman & Hall,1995.
    [20]Nault I,Gerbaux V,Larpent JP,Vayssier Y.Influence of pre-culture conditions on the ability of Leuconostoc oenos to conduct malolactic fermentation in wine [J].Am J Enol Vitic,1995,46:357-362.
    [21]Lonvaud-Funel A,Joyeux A,Dessens C.Inhibition ofmalolactic fermentation of wines by products of yeast metabolism [J].J Sci Food Agficul,1988,44:183-191.
    [22]Guzzo J,Cavin JF,Divies C.Induction of stress proteins in Leuconostoc oenos to perform direct inoculation of wine [J].Biotech Lett,1994,16:1189-1194.
    [23]Nielsen JC,Prahl C,Lonvaud-Funel A.Malolactic fermentation in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures [J].Am J Enol Vitic,1996,47:42-48.
    [24]Henick-Kling T.Control of malo-lactic fermentation in wine:energetics,flavour modification and methods of starter culture preparation [J].J Appl Bacteriol Symp Suppl,1995,79:29S-37S.
    [25]Maicas S,Jose(?)-Vicente G,Pardo I,Ferrer S.Improvement of volatile composition of wines by controlled addition ofmalolactic bacteria [J].Food Res Int,1999,32:491-496.
    [26]张春晖,李华,夏双梅.酒明串珠菌31DH酿酒特性研究[J].微生物学通报,1997,2:15-19.
    [27]Capucho I,San Romao MV.Effect of ethanol and fatty acids on malolactic activity of Leuconostoc oenos [J].Appl Microbiol Biotechnol,1994,42:391-395.
    [28]Beelman RB,McArdel FJ,Duke GR.Comparison ofLeuconostoc oenos strains ML-34 and PSU-1 to induce malolactic fermentation in Pennsylvanis red table wine [J].Am J Enol Vitic,1980,31:269-276.
    [29]Britz TJ and Traccy RP.The combination effect of pH,SO_2 and temperature on the growth of Leuconostoc oenos [J].J Appl Bacteriol,1990,68:23-31.
    [30]Lonvaud-Funel A.Microbiology of the malolactic fermentation [J].FEMS Microbiol Lett,1995,126:209-214.
    [31]Edwards CG,Beelman RB.Inhibition of the malolactic bacterium,Leuconostoc oenos (PSU-1),by decanoic acid and subsequent removal of the inhibition by yeast ghosts [J].Am J Enol Vitic,1987,38:239-242.
    [32]Edwards CG,Beelman RB,Bartley CE,McConnell AL.Production of decanoic acid and other volatile compounds and the growth of yeast and malolactic bacteria during vinification [J].Am J Enol Vitic,1990,41:48-56.
    [33]刘志恒.现代微生物学[M].北京:科学出版社,2002.
    [34]Alexandre H.Costello PJ,Remize F,Guzzo J,Guilloux-Benatier M.Saccharomyces cerevisiae-Oenococcus oeni interactions in wine:current knowledge and perspectives [J].Int J Food Microbiol,2004,93:141-151.
    [35]Nygaard M,Prahl C.Compatibility between strains of Saccharomyces cerevisiae and Leuconostoc oenos as an important factor for successful malolactic fermentation.Proceedings of the Fourth International Symposium on Cool-Climate Viticulture and Oenology,1996.16-20 July,Rochester,NY,USA,V1-103-V1-106.
    [36]Guilloux-Benatier M,Guerreau J,Feuillat M.Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms [J].American J Enol Viticul,1995,46:486-492.
    [37]Rollan GC,Fanas ME,Strasser de Saad AM,Manta de Nadra MC.Exoprotease activity of Leuconostoc oenos in stress conditions [J].J Appl Microbiol,1998,85:219-223.
    [38]Farlas ME,Manca de Nadra MC.Purification and partial c,haracterization of Oenococcus oeni exoprotease [J].FEMS Microbiol Lett,2000,185:263-266.
    [39]Remize F,Gaudin A,Kong Y,Guzzo J.Oenococcus oeni preference for peptides:qualitative and quantitative analysis of nitrogen assimilation [J].Arch Microbiol,2006,185:459-469.
    [40]King SW,Beelman RB.Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model grape juice/wine system [J].Am J Enol Viticul,1986,37:53-60.
    [41]Costello PJ,Henschke PA,Markides AJ.Standardised method for testing malolactic bacteria and wine yeast compatibility [J].Australian Journal of Grape and Wine Research,2003,34:113-127.
    [42]Pedro A.Aredes Fernndez,Mar C.Manca de Nadral.Growth Response and Modifications of Organic Nitrogen Compounds in Pure and Mixed Cultures of Lactic Acid Bacteria from Wine [J].Current Microbiology,2006,52:86-91.
    [43]Arendt EK,Lonvaud A,Hammes WP.Lysogeny in Leuconostoc oenos [J].J Gen Microbiol,1991,137:2135-2139.
    [44]Arendt EK,Hammes WP.Isolation and characterization of Leuconostoc oenos phages from German wines [J].Appl Microbiol Biotechnol,1992,37:643-646.
    [45]Gindreau E,Torlois S,Lonvaud-Funel A.Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage 10MC [J].FEMS Microbiol Lett,1997,147:279-285.
    [46]Guilloux-Benatier M,Lefur Y,Feuillat M.Influence of fatty acids on the growth of wine microorganisms Saccharomyces cerevisiae and Oenococcus oeni.J Ind Microbiol Biotechnol,1998,20:144-149.
    [47]Spano G,Massa S.Environmental Stress Response in Wine Lactic Acid Bacteria:Beyond Bacillus subtilis [J].Critical Reviews in Microbiology,2006,32,77-86.
    [48]赵文英,李华,王华.酒酒球菌(Oenococcus oeni)胁迫适应性反应机制[J].微生物学报,2008,48:556-561.
    [49]Cox DJ,Henick-Kling T.Chemiosmotic energy from malolactic fermentation [J].J Bacteriol,1989,171:5750-5752.
    [50]Salema M,Lolkema JS,San Rom(?)o MV,Dias MCL.The proton motive force generated in Leuconostoc oenos by L-malate fermentation [J].J Bacteriol,1996,178:3127-3132.
    [51]Tourdot-Marechal R,Fortier L,Guzzo J,Lee B,Divies C.Acid sensitivity of neomycin-resistant mutants of Oenococcus oeni:a relationship between reduction of ATPase activity and lack of malolactic activity [J].FEMS Microbiol Lett,1999,178:319-326.
    [52]Drici-Cachon Z,Guzzo J,Cavin JF,Divi(?)s C.Acid tolerance in Leuconostoc oenos.Isolation and characterization of an acid-resistant mutant [J].Appl Microbiol Biotechnol,1996,44:785-789.
    [53]Fortier LC,Tourdot-Marechal R,Divie's C.Induction of Oenococcus oeni H~+-ATPase activity and mRNA transcription under acidic conditions [J].FEMS Microbiol Lett,2003,222:165-169.
    [54]Carrete R,Vidal MT,Bordons A.Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni [J].FEMS Microbiol Lett,2002,211:155-159.
    [55]Guzzo J,Jobin MP,Divi(?)s C.Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation [J].FEMS Microbiol Lett,1998,160:43-47.
    [56]隋森芳.膜分子生物学[M].北京:高等教育出版社,2005.
    [57]Beney L,Gervais P.Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses [J].Appl Microbiol Biotechnol,2001,57:34-42.
    [58]Garbay S,Rozes N,Lonvaud-Funel A.Fatty acid composition of Leuconostoc oenos,incidence of growth conditions and relationship with malolactic efficiency.Food Microbiol,1995,12:387-395.
    [59]Garbay S,Lonvaud-Funel A.Response of Leuconostoc oenos to environmental changes [J].J Appl Bacteriol,1996,81:619-625.
    [60]Barry JA,Gawrisch K.Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers [J].Biochemistry,1994,33:8082-8808.
    [61]Graca Silveira M,Golovina EA,Hoekstra FA,Rombouts FM,Abee T.Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells [J].Appl Environ Microbiol,2003,69:5826-5832.
    [62]Graca Silveira M,Vitoria SRM,Loureiro DMC,Rombouts FM,Abee T.Flow Cytometric Assessment of Membrane Integrity of Ethanol-Stressed Oenococcus oeni Cells [J].Appl Environ Microbiol,2002,68:6087-6093.
    [63]Chu-Ky S,Tourdot-Marechal R,Marechal PA,Guzzo J.Combined cold,acid,ethanol shocks in Oenococcus oeni:Effects on membrane fluidity and cell viability [J].Biochimica et Biophysica Acta,2005,1717:118-124.
    [64]Teixeira H,Goncalves MG,Rozes N,Ramos A,Romao MVS.Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni:A response to ethanol stress?Microb Ecol,2002,43:146-153.
    [65]Graca Silveira M,Baumgartner M,Rombouts FM.Effect of Adaptation to Ethanol on Cytoplasmic and Membrane Protein Profiles of Oenococcus oeni [J].Appl Environ Microbiol,2004,70:2748-2755.
    [66]Guchte M,Serror P,Chervaux C,Smokvina T,Ehrlich S,Maguin E.Stress responses in lactic acid bacteria [J].Antonie van Leeuwenhoek,2002,82:187-216.
    [67]朱力,王恒樑,黄培堂.蛋白质组学在细菌应激反应研究中的应用[J].生物技术通讯,2007,118:511-514.
    [68]Guzzo J,Pierre F,Jobin MP,Samyn B,Beeumen JV,Delmas F,Cavin JF,Divies C.A small heat shock protein induced by multiple stresses and during stationary growth phase from Leuconostoc oenos [J].Lett Appl Microbiol,1997,24:393-396.
    [69]Guzzo J,Jobin MP,Delmas F,Fortier LC,Garmyn D,Tourdot-Marechal R,Lee B,Divies C.Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase [J].Int J Food Microbiol,2000,55:27-31.
    [70]Jobin MP,Delmas F,Garmyn D,Divies C,Guzzo J.Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oeni [J].Appl Environ Microbiol,1997,63:609-614.
    [71]Yuan Y,Crane DD,Barry CE.Stationary phase-associated protein expression in Mycobacterium tuberculosis:function of the mycobacterial a-crystallin homolog [J].J.Bacteriol,1996,178:4484-4492.
    [72]Coucheney F,Gal L,Beney L,Lherminier J,Gervais P,Guzzo J.A small HSP,Lo18,interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium [J].Biochimica et Biophysica Acta,2005,1720:92-98.
    [73]Delmas F,Pierre F,Coucheney F,Divies C,Guzzo J.Biochemical and physiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenococcus oeni [J].J Mol Microbiol Biotechnol.2001,4:601-610.
    [74]Jobin MP,Garmyn D,Divies C,Guzzo J.The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phase [J].J Bacteriol,1999,181:6634-6641.
    [75]Jobin MP,Garmyn D,Divies C,Guzzo J.Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock [J].Microbiology.1999,145:1245-1251.
    [76]Bourdineaud JP,Nehme B,Tesse S,Lonvaud-Funel A.The fish gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress[J].Appl Environ Microbiol,2003,69:2511-2520.
    [77]Beltramo C,Grandvalet C,Pierre F,Guzzo J.Evidence for multiple levels of regulation of Oenococcus oeni clpPclpL locus expression in response to stress [J].J Bacteriol,2004,186:2200-2205.
    [78]Bourdineaud JP,Nehme B,Tesse S,Lonvaud-Funel A.A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine [J].Int J Food Microbiol,2004,92:1-14.
    [79]Mills DA,Rawsthorne H,Parker C,Tamir D,Makarova K.Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking [J].FEMS Microbiology Reviews,2005,29:465-475.
    [80]Beltramo C,Desroche N,Tourdot-Mar(?)chal R.Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium [J].Res Microbiol,2006,157:267-274.
    [81]Grandvalet C,Coucheney F,Beltramo C,Guzzo J.CtsR is the master regulator of stress response gene expression in Oenococcus oeni [J].J Bacteriol,2005,187:5614-5623.
    [82]朱琳,刘宁,张英华,霍贵成.乳酸菌细胞膜的冻干损伤[J].食品科学,2006,27:266-269.
    [83]Carvalho AS,Silva J,Peter H,Teixeira P.Relevant factors for the preparation of freeze-dried lactic acid bacteria [J].Int Dairy J,2004,14:835-847.
    [84]张建国,张春晖,李凤彩,李红伟.乳酸菌冻干伤害与保护[J].食品工业科技,2003,24:103-105.
    [85]Gardiner GE,Sullivan E,Kelly J,Auty MAE,Fitzgerald GF,Collins JK.Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L.salivarius strains during heat treatment and spray drying.Appl Environ Microbiol,2000,66:2605-2612.
    [86]Carvalho AS,Silva J,Ho P,Teixeira P,Malcata FX,Gibbs P.Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans [J].J Appl Microbiol,2003,94:947-952.
    [87]Ko R,Smith LT,Smith GM.Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes [J].J Bacteriol,1994,176:426-431.
    [88]Carvalho AS,Silva J,Ho P,Teixeira P,Malcata FX,Gibbs P.Effect of different sugars added to the growth and drying medium upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp.Bulgaricus [J].Biotechnology Progress,2003,20:248-254.
    [89]Torino MI,Taranto MP,Sesma F,Font de Valdez G.Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH [J].J Appl Microbiol,2001,91,846-852.
    [90]Palmfeldt J.Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis [J].Cryobiology,2003,47:21-29.
    [91]Smittle RB,Gilliland SE,Speck ML,Walter WM.Relationship of Cellular Fatty Acid Composition to Survival of Lactobacillus bulgaricus in Liquid Nitrogen [J].Appl Mcriobiol,1974,27:738-743.
    [92]Goldberg I,Eschar L.Stability of Lactic Acid Bacteria to Freezing as Related to Their Fatty Acid Composition [J].Appl Environ Microbiol,1977,33:489-496.
    [93]Silva J,Carvalho AS,Ferreira R,Vitorino R,Amado F,Domingues P,Teixeira P,Gibbs PA.Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp.bulgaricus to stress conditions during spray-drying [J].J Appl Microbiol,2005,98:775-782.
    [94]Broadbent JR,Lin C.Effect of Heat Shock or Cold Shock Treatment on the Resistance of Lactococcus lactis to Freezing and Lyophilization [J].Cryobiology,1999,39:88-102.
    [95]Hubalek Z.Protectants used in the cryopreservation of microorganisms [J].Cryobiology,2003,46:205-229.
    [96]杨永锋,刘树文,李华.保护剂在冷冻干燥乳酸菌中的应用及其作用机理的探讨[C].第三届国际葡萄与葡萄酒学术研讨会论文集,2003,79-83.
    [97]Castro HP,Teixeira PM,Kirby R.Changes in the membrane of Lactobacillus bulgaricus during storage following freeze-drying [J].Biotechnol Lett,1996,18:99-104.
    [98]Maicas S,Pardo I,Ferrerm S.The effects of freezing and freeze-drying of Oenococcus oeni upon induction of malolactic fermentation in red wine [J].Int J Food Sci Technol,2000,35:75-79.
    [99]Zhao G,Zhang G.Effect of protective agents,freezing temperature,rehydration media on viability of malolactic bacteria subjected to freeze-drying [J].J Appl Microbiol,2005,99:333-338.
    [100]文树基,郭蔼光.高级生物化学[M].西北农林科技大学,2003.
    [101]王镜岩,朱圣庚,徐长法.生物化学(上下册)[M].高等教育出版社,2003.
    [102]杨翠兰,罗深秋.温度对细胞膜流动性影响的研究进展[J].第一军医大学学报,2000,20:56-59.
    [103]Macdonald AG,Wahle KW,Cossins AR,Behan MK.Temperature,pressure and cholesterol effects on bilayer fluidity:a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes [J].Biochim Biophys,1988,938:231-242.
    [104]Gawrisch K,Parsegian VA,Hajduk DA,Tate MW,Graner SM,Fuller NL,Rand RP.Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidyl ethanolamine membranes.Biochemistry,1992,31:2856-2864.
    [105]Rietveld AG,Killian JA,Dowhan W,Kruijff B.Polymorphic regulation of membrane phospholipid composition in Escherichia coli [J].J Biol Chem,1993,268:12427-12433.
    [106]Weber FJ,Bont JAM.Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes [J].Biochimica et Biophysica Acta,1996,1286:225-245.
    [107]Gervais P,Martinez de Maranon I.Effects of the kinetics of temperature variation on Saccharomyces cerevisiae viability and permeability [J].Biochim Biophys Acta,1995,1235:52-56.
    [108]Borst JW,Visser NV,Kouptsova O,Visser AJWG.Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes [J].Biochim Biophys Acta,2000,1487:61-73.
    [109]Vigh L,Maresca B,Harwood JL.Does the membrane's physical state control the expression of heat shock and other genes?[J]Trends Biochem Sci,1998,23:369-374.
    [110]Mansilla MC,Cybulski LE,Albanesi D.Ccontrol of membrane lipid fluidity by molecular themosensors. J Bacteri'ol, 2004,186:6681-6688
    [111] Grogan DW, Cronan Jr, JE. Cyclopropane ring formation in membrane lipids of bacteria [J]. Microbiol Molecul Biol Rev, 1997,61: 429-441.
    [112] Jacques NA, Hunt AL. Studies on cyclopropane fatty acid synthesis: effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans [J]. Biochim Biophy Acta, 1980, 337:453-470.
    [113] Macdonald PM, Sykes BD, McElhaney RN. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. A direct comparison of the effects of cis and trans cyclopropane ring and double-bond substituents on orientational order [J]. Biochemistry, 1985, 24:4651-4659.
    [114] George KM, Yuan Y, Sherman DR, Barry CE. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis: Identification and functional analysis of CMAS-2 [J]. J Biol Chem, 1995, 270:27292- 27298.
    [115] Heipieper HJ, Meinhardt F, Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism [J]. FEMS Microbiol Lett, 2003,229:1-7.
    [116] Bottema CDK, Rodriguez RJ, Parks LW. Influence of sterol structure on yeast plasma membrane properties [J]. Biochem Biophys Acta, 1985, 813:313-320
    [117] Watson K. Thermal adaptation in yeasts: correlation of substrate transport with membrane lipid composition in psychrophilic and thermotolerant yeasts [J]. Biochem Soc Trans, 1978, 6:293-296.
    [118] Peyou-Ndi MM, Watts JL, Browse J. Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys, 2000, 376: 399- 408.
    [119] Nakayama H, Mitsui T, Nishihara M, Kito M. Relation between growth temperature of E. coli and phase transition temperatures of its cytoplasmic and outer membranes. Biochim Biophys Acta, 1980, 601:1-10.
    [120] Sinensky M. Homeoviscous adaptation - a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli [J]. Proc Natl Acad Sci, 1974, 71:522-525.
    [121] Nedwell DB. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature [J]. FEMS Microbiol Lett, 1999, 30:101-111.
    [122] Loffeld B, Keweloh H. Cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8 [J]. Lipids, 1996, 31:811-815.
    [123] Welsh DT, Herbert RA. Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli [J]. FEMS Microbiol Lett, 1999, 174:57-63.
    [124] Eleutherio EC, Ribeiro MJ, Pereira MD, Maia FM, Panek AD. Effect of trehalose during stress in a heat-shock resistant mutant of Saccharomyces cerevisiae [J]. Biochem Mol Biol Int, 1995, 36:1217-1223.
    [125] Los DA, Murata N. Structure and expression of fatty acid desaturases [J]. Biochim Biophys Acta, 1998, 1394:3-15.
    [126] Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y. Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene,ATF1 and delta-9 fatty acid desaturase gene,OLE1 by unsaturated fatty acids [J].Yeast,1998,14:711-721
    [127]Chatterjee MT,Khalawan SA,Curran BP.Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response [J].Microbiol,1997,143:3063-3068.
    [128]Chatterjee MT,Khalawan SA,Curran BP.Cellular lipid composition influences stress activation of the yeast general stress response element [J].Microbiol,2000,146:877-884.
    [129]Sales K,Brandt W,Rumbak E,Lindsey G.The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress [J].Biochim Biophys Acta,2000,1463:267-278.
    [130]张春晖,夏双梅,李华.酒类酒球菌的分离和发酵适应性研究[J].中国食品学报,2004,4:35-38.
    [131]Li H,Zhang CH,Liu YL.Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines [J].World J Microbiol & Biotechnol,2006,22:515-518.
    [132]Liu YL,Li H.Rapid specificity identification of Oenococuus oeni with PCR [J].J Microbiol,2006,26:26-29.
    [134]李丹,赵新淮.嗜酸乳杆菌高密度培养时的化学去胁迫[J].食品与发酵工业,2007,3:37-40.
    [135]王奎明,王昌禄,陈铁涛.保加利亚乳杆菌高密度培养的初步研究[J].食品与发酵工业,2007,10:12-16.
    [136]王华,罗华,黄科.酒酒球菌SD-2a高密度培养的研究[J].酿酒科技,2007,154:69-72.
    [137]张燕飞,何环,师舞阳,万民熙,杨宇.正交法优化嗜酸氧化亚铁硫杆菌冷冻干燥保护剂[J].现代医学进展,2006,6:5-10.
    [138]刘丹,潘道东.瑞士乳杆菌冷冻干燥保护剂的研究[J].食品科学,2006,27:73-75.
    [139]靳志强,李平兰.培养基、保护剂和饥饿处理对冻干乳酸菌存活性的影响[J].食品科学,2007,28:296-299.
    [140]李华,刘树文,王华,张春晖.苹果酸-乳酸细菌SD-2a及其应用.2004专利号CN 1428416A.
    [141]Vaillant H,Formisyn P,Gerbaux V.Malolactic fermentation of wine:study of the influence of some physico-chemical factors by experimental design assays [J].J Appl Bacteriol,1995,79:640-650.
    [142]Guerrini S,Bastianini A,Granchi L,Vincenzini M.Effect of oleic acid on Oenococcus oeni strains and malolactic fermentation in wine [J].Current Microbiol,2002,44:5-9.
    [143]Margarida Baleiras Couto M,Huis Intveid J H J.Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts [J].J Appl Bacteriol,1995,78:327-334.
    [144]刘树文,张春晖,李华.酒类酒球菌SD-2a冷冻干燥保护剂的筛选[C].第三届国际葡萄与葡萄酒学术研讨会论文集,2003,83-85.
    [145]王华.葡萄与葡萄酒实验技术操作规范[M1.西安:西安地图出版社,1999.
    [146]Rozes N,Garbay S,Denayrolles M,et al.A rapid method for the determination of bacteried fatty acid composition [J].Lett Appl Microbiol,1993,17:126-131.
    [147]Salou P,Leroy M J,Goma G,Pareilleux A.Influence of pH and malate-glucose ratio on the growth of Leuconostoc oenos [J].Appl Microbiol Biotechnol,1991,36:87-91.
    [148]Passos FV,Fleming HP,Hassan HMand McFeeters RF.Effect of malic acid on the growth kinetics of Lactobacillus plantarum [J].Appl Microbiol Biotechnol,2003,63:207-211.
    [149] Salou P, Loubiere P, Pareilleux A. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose [J]. Appl Environ Microbiol, 1994, 60:1459-1466.
    [150] Maicas S, Pilar G-C, Sergi F, Isabel P. Production of O.oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition [J]. Biotechnol Lett, 1999, 21: 349-353.
    [151] Zhang DS, Lovitt RW. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures [J]. J Appl Microbiol, 2005, 99: 565-572.
    [152] Richter H, De Graaf A, Hamann I, Unden G Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni [J]. Arch Microbiol, 2003,180:465-470.
    [153] Richter H, Hamann I, Unden G. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway [J]. Arch Microbiol, 2003, 179: 227-233.
    [154] Herrero M, Garcia LA, Diaz M. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation [J]. J Ind Microbiol Biotechnol, 2003, 30: 699-704.
    [155] Krieger SA, Hammes WP, Henick-Kling T. Effect of medium composition on growth rate, growth yield and malolactic activity of Leuconostoc oenos LoZHl-t7-l[J]. Food Microbiol, 1992, 9:1-11.
    [156] Garbay S, Lonvaud-Funel A. Characterization of membrane-bound ATPase activity of Leuconostoc oenos: growth conditions [J]. Appl Microbiol Biotechnol, 1994, 41: 597-602.
    [157] Koebmann BJ, Nilsson D, Kuipers OP, Jensen PR. The membrane-bound H~+-ATPase complex is essential for growth of Lactococcus lactis [J]. J Bacteriol, 2000, 182: 4738- 4743.
    [158] Schmitt P, Mathot AG. Fatty acid composition of the genus Leuconstoc. Milchwissenschaft, 1989, 44: 556-559.
    [159] Tourdot-Marechal R, Gaboriau D, Beney L, Divies C. Membrane fluidity of stressed Oenococcus oeni. Int J Food Microbiol, 2000, 55:269-273.
    [160] Lorca GL, De Valdez F. A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639 [J]. Current Microbiology, 2001, 42: 21-25.
    [161] B(?)al C, Fonseca F, Corrieu G. Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition [J]. J Dairy Sci, 2001, 84: 2347-2356.
    [162] Mu(?)oz-Rojas J, Bernal P, Duque E, et al. Involvement of Cyclopropane Fatty Acids in the Response of Pseudomonas putida KT2440 to Freeze-Drying [J]. Appl Environ Microbiol, 2006, 72: 472-477.
    [163] Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S, Maguin E. Stress responses in lactic acid bacteria [J]. Antonie van Leeuwenhoek, 2002, 82: 187-216.
    [164] G-Alegria E, Lopez I, Ruiz JI, Saenz J. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol [J]. FEMS Microbiol Lett, 2004, 230: 53-61.
    [165] Tourdot-Marechal, R., Cavin, J.F., Drici-Cachon, Z., Divies, C. Transport of malic acid in Leuconostoc oenos strains defective in malolactic fermentation: a model to evaluate the kinetic parameters [J]. Appl. Microbiol. Biotechnol, 1993, 39, 499- 505.
    [166] Perly B, Smith ICP, Jarrell HC. Effects of the replacement of a double bond by a cyclopropane ring in phosphatidylethanolamines: a 2H NMR study of phase transitions and molecular organization [J]. Biochemistry, 1985, 24:1055-1063.
    [167]Dufourc EJ,Smith ICP,Jarrell HC.Role of cyclopropane moieties in the lipid properties of biological membranes:a 2H NMR structural and dynamical approach [J].Biochemistry,1984,23:2300-2309.
    [168]Couto JA,Rozes N,Hogg T.Ethanol-induced changes in the fatty acid composition of Lactobacillus hilgardii,its effects on plasma membrane fluidity and relationship with ethanol tolerance [J].J Appl Bacteriol,1996,61:126-132
    [169]Torok Z,Horvath I,Goloubinoff P,Kovacs E,Glatz A,Balogh G,Vigh L.Evidence for a lipochaperonin:association of active proteinfolding GroESL oligomers with lipids can stabilize membranes under heat shock conditions.Proc.Natl.Acad.Sci.USA.1997,94:2192-2197.
    [170]Uchida K.Effects of cultural conditions on the cellular fatty acid composition of Lactobacillus heterohiochii,an alcoholophilic bacterium [J].Agri Biol Chemi,1975,39.387-342.
    [171]Zhao Y,Hindorff LA,Chuang A,Monroe-Augustus M,Lyristis M,Harrison ML,Rudolph FB,Bennet GN.Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824 [J].Appl Environ Microbiol,2003,69,2831-28.
    [172]Zaritsky A,Parola AH,Abdah M,Masalha H.Homeoviscous adaptation,growth rate,and morphogenesis in bacteria [J].J Biophys,1985,48:337-339.
    [173]Shokri A,Sanden AM,Larsson G.Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage [J].Appl Microbiol Biotech,2002,58:386-392.
    [174]Beranov(?) J,Jemio(?)a-Rzemi(?)ska M,Elhottov(?) D,Strza(?)ka,K,Konop(?)ek I.Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation [J].Biochimica et Biophysica Acta,2007,23:513-524
    [175]朱琳,刘宁,张英华,霍贵成.乳酸菌细胞膜的冻干损伤[J].食品科学,2006,27:266-269.
    [176]Teixeira P,Castro H,Kirby R.Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus [J].J Appl Microbiol,1995,78:456-462.
    [177]Fozo EM,Quivery RG.Shifts in the Membrane Fatty Acid Profile of Streptococcus mutans Enhance Survival in Acidic Environments [J].Appl Environ Microbiol,2004,70:929-936.
    [178]Gilliland SE,Rich CN.Stability during frozen and subsequent refrigerated storage of Lactobacillus acidophilus grown at different pH [J].J Dairy Sci,1990,73:1187-1192.
    [179]Palmfeldt J,Hahn-Hagerdal B.Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying [J].Int J Food Microbiol,2000,55:235-238.
    [180]Wang Y,Corrieu G,B(?)al C.Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758 [J].J Dairy Sci,2005,88:21-29.
    [181]Chang YY,Cronan JE.Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli [J].Molecul Microbiol,1999,33:249-259.
    [182]Quivey RG,Faustoferri R,Monahan K,Marquis R.Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutants [J].FEMS Microbiol Lett,2000,189:89-92.
    [183]赵文英,李华,王爱连.不同培养基对酒酒球菌SD-2a存活率及膜脂肪酸组分的影响[J].微生物学报,2008,48:1319-1323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700