实时心肌声学造影结合二维应变成像评价冠心病患者心肌灌注与心肌功能的临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实时心肌声学造影评价冠心病患者冠脉狭窄程度对心肌灌注的影响
     目的初步探讨实时心肌声学造影定量分析冠心病患者冠脉狭窄程度对心肌灌注的影响。方法对40例冠心病患者经静脉给予Sono Vue进行实时心肌声学造影,将左室壁分为18节段,运用Q-analysis软件进行心肌灌注的定量分析。
     结果(1)在狭窄冠脉供血区域,其中室壁运动异常的节段为114个,无室壁运动异常的节段为393个。有室壁运动异常节段心肌的A值,k值,A×k值[分别为(6.07±3.16)dB,(0.25±0.11)/s,(1.57±1.25)dB/s]均小于无室壁运动异常节段心肌[分别为7.20±3.11)dB,(0.31±0.16)/s,(2.28±1.16)dB/s],差异均有统计学意义(P<0.01)。相应的值进行标化后,室壁运动异常节段心肌的A×k值小于无室壁运动异常节段心肌[(0.13±0.10) vs(0.19±0.16),P<0.01]。(2)狭窄冠脉供血区域且无室壁运动异常节段心肌,根据冠脉狭窄程度分为两组,狭窄≥75%冠脉供血节段心肌共279个,狭窄<75%冠脉供血节段心肌共114个。狭窄≥75%冠脉供血节段心肌的的A×k值小于狭窄<75%冠脉供血节段心肌[(2.14±1.46)dB/s vs(2.62±2.02)dB/s,P<0.01]。而相应的值进行标化后,狭窄≥75%冠脉供血节段心肌的A×k值亦小于狭窄<75%冠脉供血节段心肌[(0.17±0.11) vs(0.23±0.15),P<0.05]。
     结论冠脉供血狭窄区域伴室壁运动异常节段的心肌血流量低于无室壁运动异常节段心肌,其中无室壁运动区域的心肌血流量与供血冠脉的狭窄程度有关。
     第二部分实时心肌声学造影与二维应变成像评价心肌梗死患者存活心肌的研究
     目的初步探讨实时心肌声学造影与二维应变成像评价心肌梗死患者存活心肌的价值。
     方法20例准备进行血运重建术心肌梗死患者,于术前1周内行实时心肌声学造影检查,心肌灌注结果进行半定量评价:3分为充盈缺损,2分为回声稀疏不均匀及心内膜下充盈缺损,1分为回声均匀性增强;实时心肌声学造影定义心肌灌注记分≤2分为存活心肌,而心肌充盈缺损表示无心肌存活。术后3个月再次进行二维超声心动图检查。室壁运动采用18节段分析,根据术后的室壁运动有否改善分为存活心肌组和无存活心肌组,同时测量术前左室各节段心肌的收缩期纵向峰值应变。
     结果(1)血运重建术前,二维超声心动图发现共有90个室壁明显发生节段性运动异常,其中有70个室壁的节段性运动异常术后得到改善。(2)血运重建术前,实时心肌声学造影评价存活心肌为65节段,无存活心肌为25节段,敏感性、特异性及准确性分别为93.8%、64%和85.5%。(3)存活心肌组术前心肌收缩期纵向峰值应变明显高于无存活心肌组[(-7.34±5.84)% vs(-2.11±1.66)%,p<0.001]。以术前心肌收缩期纵向峰值应变≤-5.0%作为截断值判断心肌梗死时存活心肌的敏感性为72%,特异性为85%。
     结论实时心肌声学造影能够准确地预测梗死心肌的存活性;另外,二维应变成像以术前心肌收缩期纵向峰值应变≤-5.0%作为截断值也可以预测梗死心肌的存活性
     第三部分实时心肌声学造影结合二维应变成像评价冠状动脉搭桥术后心肌灌注与收缩功能的改变
     目的初步探讨实时心肌声学造影结合二维应变成像评价冠状动脉搭桥术后心肌灌注与收缩功能的变化。
     方法20例拟行冠脉搭桥术的冠心病患者,于术前1周及术后2周分别进行实时心肌超声造影检查。于冠状动脉搭桥术前、术后2周及术后3个月分别获取左室心尖四腔、二腔及左心长轴切面的高帧频图像,应用二维应变软件测量各个节段的收缩期纵向峰值应变。
     结果冠状动脉搭桥术后71.6%的节段心肌灌注较术前明显改善。在术后3个月,心肌灌注改善组的心肌收缩期纵向峰值应变较术前明显改善,差异有统计学意义[(-15.78±5.91)% vs(-10.45±8.31)%,P<0.05];而心肌灌注无改善组无明显变化,差异无统计学意义[(-10.33±6.53)% vs(-9.41±6.09)%,P>0.05]。
     结论冠状动脉搭桥术后心肌灌注改善与否可以反映心肌功能恢复的趋势,而二维应变能够动态观察局部心肌功能变化,联合运用两种技术能够更加准确地评价冠状动脉搭桥术的治疗效果。
Evaluation of myocardial perfusion and systolic function in patients with coronary artery disease by myocardial contrast echocardiography and two-dimensional strain echocardiography
     PART I Evaluation of the impact of the degree of coronary artery stenosis on myocardial perfusion by real-time myocardial contrast echocardiography
     Objective We attempted to evaluate the impact of the degree of coronary artery stenosis of coronary artery patients on myocardial perfusion by real-time myocardial contrast echocardiography (MCE).
     Methods 40 patients underwent intravenous real-time MCE after venous injections of Sono Vue. Left ventricular wall was divided into 18 segments and quantitative analysis was performed by Q-analysis software.
     Results (1) There were 507 segments subtended by coronary arteries with >50% stenosis, including 114 segments with abnormal wall motion and 393 segments without abnormal wall motion. A, k and the product A×k were significantly lower in segments with abnormal wall motion than those without abnormal wall motion [(6.07±3.16) dB vs (7.20±3.11) dB, P< 0.01; (0.25±0.11)/s vs (0.31±0.16)/s,P<0.01; (1.57±1.25)dB/s vs (2.28±1.16) dB/s, P<0.01==. However, the standardized number of the product A×k was significantly lower in segments with abnormal wall motion than those without abnormal wall motion [(0.13±0.10) vs (0.19±0.16), P<0.01=. (2) Segments with normal wall motion were divided into 2 groups. Group 1 had 279 segments whose flow was subtended by coronary arteries with≥75% stenosis. Group 2 had 114 segments whose flow was subtended by coronary arteries with <75% stenosis. The product A×k in group 1 was lower than that in group 2[(2.14±1.46) dB/s vs (2.62±2.02) dB/s, P<0.01]. At the same time, the standardized number of the product A×k in group 1 was lower than that in group 2[(0.17±0.11) vs (0.23±0.15), P< 0.05=.
     Conclusions Our present study showed that the product A×k in segments with abnormal wall motion in patients was significantly different from that in segments without abnormal wall motion. The product A×k in segments without abnormal wall motion was related with coronary artery stenosis.
     PARTⅡEvaluation of real-time myocardial contrast echocardiography and Two-dimensional strain echocardiography on viable myocardium in patients with myocardial infarction
     Objective We attempted to evaluate myocardial viability in patients with myocardial infarction with intravenous real-time myocardial contrast echocardiography (RT-MCE) and Two-dimensional strain echocardiography.
     Methods Intravenous RT-MCE was performed in 20 patients with myocardial infarction before revascularization. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions:contrast defect=3; partial or reduced opacification or subendocardial contrast defect=2; homogeneous opacification=1, presence of viability was defined as the presence of contrast effect (score≤2). Two-dimensional images were recorded from the left ventricular four-chamber view, two-chamber view and the apical view before and after revascularization, according ventricular wall motion improved after revascularization, which were divided into viable myocardium group and non-viable myocardium group, the peak systolic longitudinal strain was measured in the apical views before operation.
     Results (1) 90 significantly segmental wall motion abnormality were found by two-dimensional echocardiography before revascularization, including 70 of abnormal segmental wall motion improved post-operation. (2) Viable myocardium group had 65 segments and non-viable myocardium group had 25 segments detected by RT-MCE before revascularization. The sensitivity, specificity and accuracy were 93.8%,64% and 85.5% respectively. (3) The peak systolic longitudinal strain of viable myocardium group were significantly higher than non-viable myocardium group[(-7.34±5.84)% vs (-2.11±1.66)%, p <0.001]. When taking peak systolic longitudinal strain≤-5.0% as a cut-off value for detecting survived myocardium, the sensitivity and specificity were 72% and 85% respectively.
     Conclusions RT-MCE can accurately assess myocardial viability. At the same time, when taking peak systolic longitudinal strain≤-5.0% as cut-off value can also assess myocardial viability.
     PART III Assessment of myocardial perfusion and systolic function in patients with coronary artery disease after coronary artery bypass surgery by real-time myocardial contrast echocardiography and two-dimensional strain echocardiography
     Objective To assess the clinical application value of myocardial perfusion and systolic function in patients with coronary artery disease after coronary artery bypass surgery using real-time myocardial contrast echocardiography (RT-MCE) combined with two-dimensional strain echocardiography.
     Methods 20 patients underwent intravenous RT-MCE by venous injections of Sono Vue before and after coronary artery bypass surgery. Two-dimensional images were recorded from the left ventricular four-chamber view, two-chamber view and the apical view before and after two weeks and three months coronary artery bypass surgery, the peak systolic longitudinal strain was measured.
     Results Myocardial perfusion significantly increased after coronary artery bypass surgery in about 71.6% segments. In the group that myocardial perfusion was improved, the peak systolic longitudinal strain after three months bypass surgery was significantly higher than that before operation [(-15.78±5.91)% vs. (-10.45±8.31)%, P<0.05]. However, the parameters did not change in the group without myocardial perfusion improvement [(-10.33±6.53)% vs. (-9.41±6.09)%, P>0.05].
     Conclusions Whether or not the improvement of myocardial perfusion can reflect the recovery trend of regional systolic function, and two-dimensional strain echocardiography can observe dynamic change of regional systolic function, combined with the two methods can more accurately assess the treatment results of coronary artery bypass surgery.
引文
1. Swinburn JM, Lahiri A, Senior R. Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction. J Am Coll Cardiol.2001; 38(1):19-25.
    2. Hillis GS, Mulvgh SL, Pellikka PA, et al. Comparison of intravenous myocardial contrast echocardiography and low-dose dobutamine echocardiography for predicting left ventricular functional recovery following acute myocardial infarction. Am J Cardiol. 2003; 92(5):504-508.
    3. Mengozzi G, Rossini R, Palagi C, et al. Usefulness of intravenous myocardial contrast echocardiography in the early left ventricular remodeling in acute myocardial infarction. Am J Cardiol 2002; 90 (7):713-719.
    4. Elhendy A, Domburg van RT, Bax JJ, et al. The grade of worsening of regional function during dobutamine stress echocardiography predicts the extent myocardial perfusion abnormalities. Heart,2000; 83(1):35-39.
    5. Porter T, Li S, Kilzer K, et al. Correlation between quantitative angiographic lesion severity and myocardial contrast intensity during a continuous infusion of perfluorocarbon-containing microbubbles. J Am Soc Echocardiogr.1998; 11(7):702-710.
    6. Tanaka H, Kawai H, Tatsumi K, Kataoka T, Onishi T, Nose T, Mizoguchi T, Yokoyama M. Relationship between regional and global left ventricular systolic and diastolic function in patients with coronary artery disease assessed by strain rate imaging. Circ J. 2007; 71(4):517-523.
    7. Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998; 97 (5):473-483.
    8. Machecourt J, Longere P, Fagret D, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1,926 patients with follow-up at 33 months. J Am Coll Cardiol.1994; 23(5):1096-1106.
    9. Agati L, Voci P, Autore C, et al. Combined use of dobutamine echocardiography and myocardial contrast echocardiography in predicting regional dysfunction recovery after coronary revascularization in patients with recent myocardial infarction. Eur Heart J. 1997; 18(5):771-779.
    10. Lepper W, Hoffman R, Kamp 0, et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation.2000; 101(20):2368-2374.
    11. Ismail S, Jayaweera AR, Camarano G, et al. Relation between air-filled albumin microbubble and red blood cell rheology in the human myocardium. Circulation.1996; 94(6):445-451.
    12. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol.1990; 15(2):459-474.
    1. Meluzin J, Cerny J, Groch L, et al. Prognostic importance of the quantification of myocardial viability in revascularized patients with coronary artery disease and moderate-to-severe left ventricular dysfunction. Int J Cardiol.2003; 90(1):23-31.
    2. deFilippi CR, Willett DL, Irani WN, et al. Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation. Circulation.1995; 92(1):2863-2868.
    3. Nagueh SF, Vaduganathan P, Ali N, et al. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography.J Am Coll Cardiol. J Am Coll Cardiol.1997; 29(5):985-993.
    4. Langeland S,D'hooge J,Wouters PF,et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation.2005; 112 (14):2157-2162.
    5. Salustri A, Elhendy A, Garyfallydis P, et al. Prediction of improvement of ventricular function after first acute myocardial infarction using low-dose dobutamine stress echocardiography.Am J Cardiol.1994;74(9):853-856.
    6. Tanaka H, Kawai H, Tatsumi K, Kataoka T, Onishi T, Nose T, Mizoguchi T, Yokoyama M. Relationship between regional and global left ventricular systolic and diastolic function in patients with coronary artery disease assessed by strain rate imaging. Circ J. 2007;71(4):517-523.
    7. Jeetley P, Swinburn J, Hickman M, et al. Myocardial contrast echocardiography predicts left ventricular remodelling after acute myocardial infarction. J Am Soc Echocardiogr.2004; 17(10):1030-1036.
    8. Holms DR, Detre KM, William s DO, et al. Long-tree outcome of patients w ith dep ressed left ventricular function undergoing percutaneous translum inal co ronary angiop lasty:the NHLB IPTCA registry. Circulation.1993; 87 (1):21-29.
    9. Andrassy P, Zielinska M, Busch R, et al. Myocardial blood volume and the amount of viable myocardium early after mechanical reperfusion of acute myocardial infarction: prospective study using venous contrast echocardiography. Heart.2002; 87(4):350-355.
    10. Sutherland GR, DiSalvo G, Claus P, et al. Strain and strain rate imaging:a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr. 2004;17(7):788-802.
    1. Coggins MP, Sklenar J, Le DE, Wei K, Lindner JR, Kaul S. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood flow. Circulation.2001; 104(20):2471-24777.
    2. Aggeli C, Bonou M, Stefanadis C. Potential clinical applications of myocardial contrast echocardiography in evaluating myocardial perfusion in coronary artery disease. Int J Cardiol.2005; 104(1):1-9.
    3. Abe Y, Muro T, Sakanoue Y, Komatsu R, Otsuka M, Naruko T, Itoh A, Yoshiyama M, Haze K, Yoshikawa J. Intravenous myocardial contrast echocardiography predicts regional and global left ventricular remodelling after acute myocardial infarction: comparison with low dose dobutamine stress echocardiography. Heart.2005; 91(12):1578-1583.
    4. Fukuda S, Hozumi T, Muro T, Watanabe H, Hyodo E, Yoshiyama M, Takeuchi K, Yoshikawa J.Quantitative intravenous myocardial contrast echocardiography predicts recovery of left ventricular function after revascularization in chronic coronary artery disease. Echocardiography.2004; 21(2):119-124.
    5. Langeland S, D'hooge J, Wouters PF, Leather HA, Claus P, Bijnens B, Sutherland GR. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation.2005;112(14):2157-2162.
    6. Tanaka H, Kawai H, Tatsumi K, Kataoka T, Onishi T, Nose T, Mizoguchi T, Yokoyama M. Relationship between regional and global left ventricular systolic and diastolic function in patients with coronary artery disease assessed by strain rate imaging. Circ J.2007; 71(4):517-523.
    7. Swinburn JM, Lahiri A, Senior R. Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction. Am Coll Cardiol.2001; 38(1):19-25.
    8. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation.1998; 97(5):473-483.
    9. Lepper W, Hoffmann R, Kamp O, Franke A, de Cock CC, Kiihl HP, Sieswerda GT, Dahl J, Janssens U, Voci P, Visser CA, Hanrath P. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation.2000; 101(20):2368-2374.
    10. Andrassy P, Zielinska M, Busch R, Schomig A, Firschke C. Myocardial blood volume and the amount of viable myocardium early after mechanical reperfusion of acute myocardial infarction:prospective study using venous contrast echocardiography. Heart.2002; 87(4):350-355.
    11. Brown PM Jr, Kim VB, Boyer BJ, Lust RM, Chitwood WR Jr, Elbeery JR. Regional left ventricular systolic function in humans during off-pump coronary bypass surgery. Circulation.1999; 100(19 Suppl):Ⅱ125-127.
    1. Feinstein SB, Ten Cate FJ, Zwehl W, et al. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol.1984 Jan; 3(1):14-20.
    2. Lindner JR, Song J, Jayaweera AR, et al. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr.2002 May; 15(5):396-403.
    3. Calliada F, Campani R, Bottinelli 0, et al. Ultrasound contrast agents:basic principles. Eur J Radiol 1998; 27(Suppl.2):S157-160.
    4. ter Haar GR. Ultrasonic contrast agents:safety considerations reviewed. Eur J Radiol 2002;41(3):217.
    5. Correas JM, Bridal L, Lesavre A, Mejean A, Claudon M, Helenon O. Ultrasound contrast agents:properties, principles of action, tolerance, and artifacts. Eur Radiol 2001; 11(8):1316.
    6. Schlief R. Ultrasound contrast agents. Curr Opin Radiol 1991; 3(2):198.
    7. Wei K, Skyba DM, Firschke C, et al. Interaction between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997;29:1081-8.
    8. Spinazzi A. Emerging clinical applications for contrast-enhanced ultrasonography. Eur Radiol.2001; 11 Suppl 3:E7-12.
    9. Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging:the key role of perfluorochemicals. Angew Chem Int Ed Engl.2003 Jul 21; 42(28):3218-35.
    10. McCulloch M, Gresser C, Moos S, et al. Ultrasound contrast physics:A series on contrast echocardiography, article 3. J Am Soc Echocardiogr.2000 Oct; 13(10):959-967.
    11. Porter TR, Xie F. Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation.1995 Nov 1;92(9):2391-2395.
    12. Vancon AC, Fox ER, Chow CM, et al. Pulse inversion harmonic imaging improves endocardial border visualization in two-dimensional images:comparison with harmonic imaging. J Am Soc Echocardiogr.2002 Apr; 15(4):302-308.
    13. Tiemann K, Veltmann C, Ghanem A, et al. The impact of emission power on the destruction of echo contrast agents and on the origin of tissue harmonic signals using power pulse-inversion imaging. Ultrasound Med Biol.2001 Nov; 27(11):1525-1533.
    14. Sieswerda GT, Yang L, Boo MB, et al. Real-time perfusion imaging:a new echocardiographic technique for simultaneous evaluation of myocardial perfusion and contraction. Echocardiography.2003 Aug; 20(6):545-555.
    15. Kaul S. Myocardial contrast echocardiography:basic principles. Prog Cardiovasc Dis. 2001 Jul-Aug; 44(1):1-11. Review.
    16. Swinburn JM, Lahiri A, Senior R. Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction. Am Coll Cardiol.2001 Jul; 38(1):19-25.
    17. Wei K, Jayaweera AR, Firoozan S,et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation.1998 Feb 10; 97(5):473-483.
    18. Balcells E, Powers ER, Lepper W, et al. Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol.2003 Mar 5; 41(5):827-833.
    19. Masugata H, Lafitte S, Peters B, et al. Comparison of real-time and intermittent triggered myocardial contrast echocardiography for quantification of coronary stenosis severity and transmural perfusion gradient. Circulation.2001 Sep 25; 104(13):1550-1556.
    20. Peltier M, Vancraeynest D, Pasquet A, Ay T, Roelants V, D'hondt AM, Melin JA, Vanoverschelde JL. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography. Comparison with technetium-99m sestamibi single-photon emission computed tomography and quantitative coronary angiography. J Am Coll Cardiol.2004 Jan 21; 43(2):257-264.
    21. Renkin J, Wijns W, Ladha Z, et al. Reversal of segmental hypokinesis by coronary angioplasty in patients with unstable angina, persistent T wave inversion, and left anterior descending coronary artery stenosis. Additional evidence for myocardial stunning in humans. Circulation.1990 Sep; 82(3):913-921.
    22. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation.1993 Jan; 87(1):1-20.
    23. Swinburn JM, Senior R. Myocardial viability assessed by dobutamine stress echocardiography predicts reduced mortality early after acute myocardial infarction: determining the risk of events after myocardial infarction (DREAM) study. Heart. 2006 Jan; 92(1):44-48.
    24. Steg PG, Goldberg RJ, Gore JM, et al. Baseline characteristics, management practices, and in-hospital outcomes of patients hospitalized with acute coronary syndromes in the Global Registry of Acute Coronary Events (GRACE). Am J Cardiol.2002 Aug 15; 90(4):358-363.
    25. Matsunari I, Boning G, Ziegler SI, et al. Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. J Am Coll Cardiol.1998 Oct; 32(4):927-935.
    26. Bax JJ, Patton JA, Poldermans D, et al.18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography:cardiac applications.Semin Nucl Med.2000 Oct; 30(4):281-298.
    27. Kaul S, Ito H. Microvasculature in acute myocardial ischemia:part Ⅱ:evolving concepts in pathophysiology, diagnosis, and treatment. Circulation.2004 Jan 27; 109(3):310-315.
    28. Janardhanan R, Burden L, Senior R. Usefulness of myocardial contrast echocardiography in predicting collateral blood flow in the presence of a persistently occluded acute myocardial infarction-related coronary artery. Am J Cardiol.2004 May 15;93(10):1207-1211.
    29. Wei K, Jayaweera AR, Firoozan S,et al. Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography:bolus or continuous infusion? J Am Coll Cardiol.1998 Jul; 32(1):252-260.
    30. Galiuto L, Iliceto S. Myocardial contrast echocardiography in the evaluation of viable myocardium after acute myocardial infarction. Am J Cardiol.1998 Jun18; 81(12A):29G-32G.
    31. Ohmori K, Cotter B, Leistad E, et al. Assessment of myocardial postreperfusion viability by intravenous myocardial contrast echocardiography:analysis of the intensity and texture of opacification. Circulation.2001 Apr 17; 103(15):2021-2027.
    32. Reimer KA, Jennings RB. The "wavefront phenomenon" of myocardial ischemic cell death. Ⅱ. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest.1979 Jun; 40(6):633-644.
    33. Maruoka Y, Tomoike H, Kawachi Y, Noguchi K, Nakamura M. Relations between collateral flow and tissue salvage in the risk area after acute coronary occlusion in dogs:a topographical analysis. Br J Exp Pathol.1986 Feb; 67(1):33-42.
    34. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis:a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992; 85:1699-1705.
    35. Cheirif J, Narkiewiczjodko JB, Hawkins HK, et al. Myocardial contrast echocardiography:relation of collateral perfusion to extent of injury and severity of contractile dysfunction in a canine model of coronary thrombosis and reperfusion. J Am Coll Cardiol 1995; 26(2):537-546.
    36. Ito H, Okamura A, Iwakura K, et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 1996; 93(11):1993-1999.
    37. Sakuina T, Otsuka M, Okimoto T, et al. Optimal time for predicting myocardial viability after successful primary angioplasty in acute myocardial infarction:a study using myocardial contrast echocardiography.2001 Mar 15; 87(6):687-692.
    38. Rovai D, Lubrano V, Vassalle C, et al. Detection of perfusion defects during coronary occlusion and myocardial reperfusion following thrombolysis by intravenous administration of the echo enhancing agent BRI. J Am Soc Echocardiogr 1998; 11(2):169-180.
    39. Swinburn JMA, Lahiri A, Senior R. Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction. J Am Coll Cardiol 2001; 38(1):19-25.
    40. Senior R, Swinburn JM. Incremental value of myocardial contrast echocardiography prediction of recovery of function in dobutamine nonresponsive myocardium early after acute myocardial infarction. Am J Cardiol 2003; 91(4):397-402.
    41. Lepper W, Hoffmann R, Kamp O,et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation.2000 May 23; 101(20):2368-2374.
    42. Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T. Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation.1996 Jan 15; 93(2):223-228.
    43. Sakuma T, Otsuka M, Okimoto T, et al. Optimal time for predicting myocardial viability after successful primary angioplasty in acute myocardial infarction:a study using myocardial contrast echocardiography. Am J Cardiol.2001 Mar 15; 87(6):687-92.
    44. Brochet E, Czitrom D, Karila-Cohen D,et al. Early changes in myocardial perfusion patterns after myocardial infarction:relation with contractile reserve and functional recovery. J Am Coll Cardiol.1998 Dec; 32(7):2011-2017.
    45. Bolognese L, Antoniucci D, Rovai D, et al. Myocardial contrast echocardiography versus dobutamine echocardiography for predicting functional recovery after acute myocardial infarction treated with primary coronary angioplasty. J Am Coll Cardiol. 1996 Dec; 28(7):1677-1683.
    46. Main ML, Magalski A, Chee NK, et al. Full-motion pulse inversion power Doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardiol.2001 Nov 1;38(5):1390-1394.
    47. Janardhanan R, Swinburn JMA, Greaves K, et al. Usefulness of myocardial contrast echocardiography using low-power continuous imaging early after acute myocardial infarction to predict late functional left ventricular recovery. Am J Cardiol 2003; 92(5):493-497.
    48. Hillis GS, Mulvagh SL, Pellikka PA, et al. Comparison of intravenous myocardial contrast echocardiography and low-dose dobutamine echocardiography for predicting left ventricular functional recovery following acute myocardial infarction. Am J Cardiol.2003 Sep 1; 92(5):504-508.
    49. Main ML, Magalski A, Morris BA, et al. Combined assessment of microvascular integrity and contractile reserve improves differentiation of stunning and necrosis after acute anterior wall myocardial infarction. J Am Coll Cardiol.2002 Sep 18; 40(6):1079-1084.
    50. Kaul S, Senior R, Firschke C, et al. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation:a multicenter study. Am Heart J.2004 Jul; 148(1):129-136.
    51. Korosoglou G, Labadze N, Giannitsis E, Bekeredjian R, Hansen A, Hardt SE, Selter C, Kranzhoefer R, Katus H, Kuecherer H. Usefulness of real-time myocardial perfusion imaging to evaluate tissue level reperfusion in patients with non-ST-elevation myocardial infarction. Am J Cardiol.2005 May 1; 95(9):1033-1038.
    52. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol.1990 Feb; 15(2):459-474.
    53. Bin JP, Pelberg RA, Wei K, et al. Dobutamine versus dipyridamole for inducing reversible perfusion defects in chronic multivessel coronary artery stenosis. J Am Coll Cardiol.2002 Jul 3; 40(1):167-174.
    54. Linka AZ, Sklenar J, Wei K, et al. Assessment of transmural distribution of myocardial perfusion with contrast echocardiography. Circulation.1998 Nov 3;98(18):1912-1920
    55. Heinle SK, Noblin J, Goree-Best P, et al. Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress:comparison with (99m)Tc-sestamibi SPECT imaging. Circulation.2000 Jul 4; 102(1):55-60.
    56. Elhendy A, O'Leary EL, Xie F, McGrain AC, Anderson JR, Porter TR. Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol.2004 Dec 7; 44(11):2185-2191.
    57. Senior R, Lepper W, Pasquet A, et al. Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography.Am Heart J.2004 Jun; 147(6):1100-1105.
    58. Wei K, Le E, Jayaweera AR, Bin JP, Goodman NC, Kaul S. Detection of noncritical coronary stenosis at rest without recourse to exercise or pharmacological stress. Circulation.2002 Jan 15; 105(2):218-223.
    59. Emond M, Mock MB, Davis KB, Fisher LD, Holmes DR Jr, Chaitman BR, Kaiser GC, Alderman E, Killip T 3rd. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation.1994 Dec; 90(6):2645-2657.
    60. Elefteriades JA, Tolis G Jr, Levi E, et al. Coronary artery bypass grafting in severe left ventricular dysfunction:.excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol.1993; 22(5):1411-1417.
    61. Nagueh SF, Vaduganathan P, Ali N, et al. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol.1997 Apr; 29(5):985-993.
    62. De Filippi CR, Willett DL, Irani WN, et al. Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation.1995 Nov 15; 92(10):2863-2868.
    63. Shimoni S, Frangogiannis NG, Aggeli CJ, et al. Microvascular structural correlates of myocardial contrast echocardiography in patients with coronary artery disease and left ventricular dysfunction:implications for the assessment of myocardial hibernation. Circulation.2002 Aug 20; 106(8):950-956.
    64. Aggeli C, Stefanadis C, Bonou M, et al. Prediction of functional recovery of hibernating myocardium using harmonic power Doppler imaging and dobutamine stress echocardiography in patients with coronary artery disease. Am J Cardiol.2003 Jun 15;91(12):1415-1420.
    65. Korosoglou G, Hansen A, Hoffend J, et al. Comparison of real-time myocardial contrast echocardiography for the assessment of myocardial viability with fluorodeoxyglucose-18 positron emission tomography and dobutamine stress echocardiography. Am J Cardiol.2004; 94(5):570-6.
    66. Vannan M, McCreery T, Li P, et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr.2002 Mar; 15(3):214-218
    67. Porter TR, Xie F. Ultrasound, microbubbles, and thrombolysis. Prog Cardiovasc Dis. 2001; 44(2):101-110.
    68. Nath S, Whayne JG, Kaul S, et al. Effects of radiofrequency catheter ablation on regional myocardial blood flow. Possible mechanism for late electrophysiological outcome. Circulation.1994 Jun; 89(6):2667-2672.
    1. Sheehan FH. Quantitative evaluation of regional left ventricular systolic function. In: Otto CM, editor. The Practice of Clinical Echocardiography. Philadelphia:WB Saunders Company; 2002.65-87.
    2. Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography — from technical considerations to clinical applications. J Am Soc Echocardiogr.2007; 49(19):1903-1914.
    3. Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002; 106(1):50-56.
    4. Yu CM, Sanderson JE, Marwick TH, et al. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol.2007; 49(19):1903-1914.
    5. Reisner SA, Lysyansky P, Agmon Y, et al. Global longitudinal strain:a novel index of left ventricular systolic function. J Am Soc Echocardiogr.2004 Jun;17(6):630-633.
    6. Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr.2004; 17(10):1021-1029
    7. Modesto KM, Cauduro S, Dispenzieri A, et al. Two-dimensional acoustic pattern derived strain parameters closely correlate with one-dimensional tissue Doppler derived strain measurements. Eur J Echocardiogr.2006; 7(4):315-321.
    8. Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain:application in hypertrophic cardiomyopathy. J Am Coll Cardiol.2006; 47(6):1175-1181.
    9. D'hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound:principles, implementation and limitations. Eur J Echocardiogr. 2000;1(3):154-1570.
    10. Stoylen A, Heimdal A, Bjornstad K, et al. Strain Rate Imaging by Ultrasound in the Diagnosis of Regional Dysfunction of the Left Ventricle. Echocardiography.1999; 16(4):321-329.
    11. Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation.2000; 102(10):1158-1164.
    12. Heimdal A, Stoylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr.1998; 11(11):1013-1019.
    13. Torrent-Guasp F, Buckberg GD, Clemente C, et al. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart.Semin Thorac Cardiovasc Surg.2001; 13(4):301-319.
    14. Kern MJ. Coronary flow and myocardial ischemia. In:Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald's heart disease:A textbook of cardiovascular medicine. 7th edition, Philadelphia:Elsevier Saunders; 2005; 1103-1127.
    15. Liang HY, Cauduro S, Pellikka P, et al. Usefulness of two-dimensional speckle strain for evaluation of left ventricular diastolic deformation in patients with coronary artery disease. Am J Cardiol.2006; 98(12):1581-1586.
    16. Monin JL, Garot J, Scherrer-Crosbie M, et al. Prediction of functional recovery of viable myocardium after delayed revascularization in postinfarction patients:accuracy of dobutamine stress echocardiography and influence of long-term vessel patency. J Am Coll Cardiol.1999; 34(4):1012-1019.
    17. Swinburn JM, Senior R. Myocardial viability assessed by dobutamine stress echocardiography predicts reduced mortality early after acute myocardial infarction: determining the risk of events after myocardial infarction (DREAM) study. Heart. 2006; 92(1):44-48.
    18. Chan J, Hanekom L, Wong C, et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol.2006; 48(10):2026-2033.
    19. Rajiv C, Vinereanu D, Fraser AG. Tissue Doppler imaging for the evaluation of patients with hypertrophic cardiomyopathy. Curr Opin Cardiol.2004; 19(5):430-436.
    20. Ito T, Suwa M, Tonari S, et al. Regional postsystolic shortening in patients with hypertrophic cardiomyopathy:its incidence and characteristics assessed by strain imaging. J Am Soc Echocardiogr.2006; 19(8):987-993
    21. Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain:application in hypertrophic cardiomyopathy. J Am Coll Cardiol.2006; 47(6):1175-1181.
    22. Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation:speckle tracking echocardiography. Circulation.2005; 112(20):3149-3156
    23. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol.2005; 45(12):2034-2041.
    24. Takeuchi M, Nishikage T, Nakai H, et al. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr.2007; 20(1):36-44.
    25. Akagawa E, Murata K, Tanaka N, et al. Left ventricular apical rotation is impaired in patients with dilated cardiomyopathy: quantitative analysis by two-dimensional tissue tracking system. J Am Coll Cardiol.2006; 47:97A.
    26. Grines CL, Bashore TM, Boudoulas H, et al. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation.1989; 79(4):845-853.
    27. Heyndrickx GR, Vantrimpont PJ, Rousseau MF, et al. Effects of asynchrony on myocardial relaxation at rest and during exercise in conscious dogs. Am J Physiol. 1988; 254(5 Pt 2):H817-822.
    28. Swedberg K, Cleland J, Dargie H, et al. Guidelines for the diagnosis and treatment of chronic heart failure:executive summary (update 2005):The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology.Eur Heart J.2005; 26(11):1115-1140.
    29. Cleland JG, Daubert JC, Erdmann E, et al. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur Heart J. 2006;27(16):1928-1932.
    30. Gasparini M, Mantica M, Galimberti P, et al.Beneficial effects of biventricular pacing in patients with a "narrow" QRS. Pacing Clin Electrophysiol.2003;26(1):169-174.
    31. Donal E, Tournoux F, Leclercq C, et al. Assessment of longitudinal and radial ventricular dyssynchrony in ischemic and nonischemic chronic systolic heart failure:a two-dimensional echocardiographic speckle-tracking strain study. J Am Soc Echocardiogr.2008; 21(1):58-65.
    32. Shi H, Shu X, Wang F,et al. Longitudinal two-dimensional strain rate imaging:a potential approach to predict the response to cardiac resynchronization therapy. Int J Cardiovasc Imaging.2009:29.
    33. Ypenburg C, Sieders A, Bleeker GB, et al. Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy. Am Heart J.2007; 154(6):1160-5.
    34. Langeland S, Wouters PF, Claus P, et al. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain. Ultrasound Med Biol. 2006; 32(10):1509-1513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700