混合二异丙苯的择形催化裂化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间二异丙苯是一种很重要的化工原料,主要用于氧化生产间苯二酚。近年来,随着间苯二酚在许多行业中应用的增长,对间二异丙苯的需求也日益增加。目前,在苯酚-丙酮生产工艺中苯-丙烯烷基化反应单元会生成一定量的副产品二异丙苯,由于二异丙苯三种异构体沸点极为接近,用常规的蒸馏方法很难将间二异丙苯分离出来。本文利用分子筛催化剂的择形作用对混合二异丙苯进行选择裂化,使分子构型较小的对二异丙苯进入分子筛孔道于酸中心反应裂化成苯和异丙苯,而分子构型较大的间二异丙苯留在分子筛孔道外,不发生裂化,这样所得产物由于沸点差异较大(苯80.1℃、异丙苯152.5℃),经过精馏过程即可得到纯度为99%的间二异丙苯。
     本文首先对4种不同类型的沸石分子筛HZSM-5、HZSM-22、Hβ和HY的选择裂化性能进行了评价,发现HZSM-5型沸石分子筛对混合二异丙苯择形催化裂化反应有良好的选择裂化性能;不同晶粒大小的HZSM-5分子筛的反应结果表明,纳米HZSM-5分子筛的选择裂化性能最好。
     以纳米HZSM-5分子筛为催化剂,考察了载气、反应温度和空速对择形催化裂化反应的影响,结果表明,在氮气为载气,压力为0.1MPa,温度为380℃,质量空速为6h~(-1)的反应条件下,纳米HZSM-5分子筛上对二异丙苯的裂化率为93%,产物二异丙苯中间二异丙苯的含量为94%,间二异丙苯收率为75.7%。在此基础上,我们分别采用负载镁和镧的氧化物和水热处理对纳米级HZSM-5分子筛进行了改性。
     镁和镧的氧化物改性结果表明,催化剂在40h内反应仍能表现出较高的活性,稳定性提高,同时间二异丙苯的收率提高。其中以硝酸镁为前身物制备的催化剂比以醋酸镁为前身物制备的催化剂的裂化活性高,稳定性好;比较了不同含量镧离子对反应的影响,当La离子含量为0.1wt%时,对二异丙苯的裂化率可达92%,产物二异丙苯中间二异丙苯的含量为93%,间二异丙苯的收率提高至85%以上。
     对比160℃时条件下不同水热处理时间改性的纳米ZSM-5催化剂,结果表明,水热处理2h后的催化剂在50h内保持较高的活性,其稳定性最好。
     此外,我们还考察了水热处理和镧复合改性对催化剂稳定性的影响,结果表明,镧改性后再水热处理的催化剂比先水热处理再镧改性的催化剂稳定性好,60h内对二异丙苯的裂化率保持在85%以上,产物二异丙苯中间二异丙苯的含量保持在90%以上。
Diisopropylbenzenes(DIPBs)will be formed as byproduct during manufacturing cumene by alkylation of benzene with propylene to in phenol-acetone plants,and meta-DIPB is an important raw material,which mainly can be oxidized to resorcinol. Recently with the need of resorcinol increasing in many industries,the need of m-DIPB is also increasing.However,the boiling points of the three isomers of DIPB are very close: ortho-DIPB 205℃,meta-DIPB 203℃,para-DIPB 203.5℃,so it is difficult to separate meta-DIPB from the other isomers using normal distillation.In this paper,the certain zeolites which have the shape-selective function will be used as catalysts to crack DIPBs selectively. They have the appropriate pore diameter in order to let para-DIPB go into the pores of molecular sieves and will be cracking to benzene and cumene with the acid centers inside,but meta-DIPB(larger diameter than para-)can not go inside and does not react.So 99% meta-DIPB can be producted though distillation using the obvious differences of boiling points of products,(benzene 80.1℃,eumene 152.5℃).
     Shape-selective cracking of DIPB was investigated over zeolite catalysts,i.e.HZSM-5, HZSM-22、Hβand HY.The results showed that HZSM-5 zeolite appeared to be the most efficient catalysts for the reaction.Meanwhile,nano-HZSM-5 is the high-active catalyst for the reaction compared the different grain sizes of HZSM-5.The reaction conditions over nano-HZSM-5 were investigated,the cracking rate of para-DIPB can reach 93%,Content of m-DIPB in product DIPB 94%and the yield of meta-DIPB 75.7%at the optimum conditions: pressure 0.1MPa,reaction temperature 380℃,and weight hourly space velocity(WHSV)6h~(-1) with N_2.
     Nano-HZSM-5 was modified with oxides of magnesium and lanthanum,the results show that the modified zeolites have the high activity during 40h,the stability is increasing,and the yielding of meta-DIPB is also increasing.The catalysts prepared with Mg(NO_3)_2 as the precursor of MgO have the higher cracking activity and stability than the catalysts prepared with Mg(CH_3COO)_2 as the precursor.Compared with the effects of different contents of lanthanum iron,the results indicate that 0.1%content the stability of catalysts increased obviously,and the cracking rate of para-DIPB can reach 92%,Content of m-DIPB in product DIPB 93%,the yield of meta-DIPB over 85%.
     Compared with modification by hydrothermal treatment in different time under the temperature of 160℃,the results indicate the catalysts modified by hydrothermal treatment in 2h hold high activity during 50h,and have the best stability.The stability of nano-HZSM-5 modified by hydrothermal treatment followed by lanthanum is better than modified by lanthanum followed by water,the cracking rate of para-DIPB can holding over 85%during 60h,Content of m-DIPB in product DIPB over 90%,the yield ofmeta-DIPB over 90%.
引文
[1]杨华.国内外间苯二酚的生产与应用.精细化工原料及中间体,2004,1:25-28
    [2]Exxonmobil Chem Patents INC(US).Selective Production of Meta-diisopropylbenzene.WO03000629.2003
    [3]John A.Dean.Lange's handbook of chemistry.1991,57
    [4]Slawomir Ostrowsld,Jan Cz.Dobrowolski,et al.Equilibrium mixture of the diisopropylbenzenes:a DFT study.Catalysis Communications 5(2004):733-737
    [5]王桂茹.催化剂与催化作用,2000,73
    [6]Scherzer J.Octane-Enhancing,Zeolitic FCC Catalysts:Scientific and Technical Aspects.Catal.Rev.-Sci.Eng.,1989,31(3):215-354
    [7]Corma A,Orchilles A V.Current views on the mechanism of catalytic cracking.Microporous and Mesoporous Materials,2000,35-36:21-30
    [8]潘惠芳,苏建明,王彪等.超稳Y沸石催化剂的积炭行为和酸性调变.石油学报(石油加工),1992,8(3):30-36
    [9]Pine L A,Maher P J,Wachter W A.Prediction of cracking catalyst behavior by a zeolite unit cell size model.J.Catal.,1984,85(2):466-476
    [10]He M Y.The development of catalytic cracking catalysts:acidic property related catalytic performance.Catal.Today,2002,73(1-2):49-55
    [11]曾昭槐编著.择形催化.中国石化出版社,1994:1-9
    [12]Tseng-Chang Tsai,Shang-Bin Liu,IkaiWang.Disp roportionation and Transalkylation of Alkylbenzenes over Zeolite Catalysts,App lied CatalysisA:General,1999,181:355-398
    [13]KaedingW W,Chu C,Young L B,et al.Shape-selective Reaction with Zeolite Catalysts Ⅱ.Selective Disp roportionation of Toluene to Produce Benzene and P-Xylene Journal of Catalysis,1981,69(2),:392-398
    [14]Shourong Zheng,Andreas Jentys,JohannesA.Lercher.On the Enhanced Para-selectivity of HZSM -5 Modified by Antimony Oxide.Journal of Catalysis,2003,219:310-319
    [15]Takehisa Kunieda,Jong-He Kim,Miki Niwa.Source of Selectivity of P-Xylene Formation in the Toluene Disp roportionation over HZSM-5Zeolites,Journal of Catalysis,1999,188:431-433
    [16]Eric G.Derouane,Zelimir Gabelica.A Novel Effect of Shape Selectivity:Molecular Traffic Control in Zeolite ZSM-5.Journal of Catalysis,1980,65:456-489
    [17]Chen N Y,Schlenker J L,Garwood W E,TMA-Offretite.Relation ship between Structural and Catalytic Properties.Journal of catalysis,1984,86:24-31
    [18]NeugebauerN,Brauer P,and Karger J.Priority Communication:Reactivity Enhancement byMolecular Traffic Control,Journal of Catalysis,2000,194:1-3
    [19]MulEoz Arroyo J A,Martens G G,Froment G F.Hydrocracking and Isomerization of n-ParaffinMixtures and A Hydrotreated Gasoil on Pt/ZSM-22:Confirmation of PoreMouth and Key-lock Catalysis in Liquid Phase.App lied catalysisA:General,2000,194(1):9-22
    [20]Martens J A,Vanbutsele G,Jacobs P A,et al.Evidences for PoreMouth and Key-lock Catalysis in Hydroisomerization of Long n-Alkanes over 10-Ring Tubular Pore Bifunctional Zeolites.Catalysis Today,2001,65:111-116
    [21]Campelo J M,Lafont F,Marinas J M.Hydroisomerization and Hydro cracking ofn-Hep tane on Pt/SAPO- 5 and Pt/SAPO- 11 Catalysts.Journal of Catalysis,1995,156(1):11-18
    [22]Borghard W S,Degnan T F,J r.and Mazzone DN,U.S.Pat.5,643,440,Jul.1,1997
    [23]O'Rear D J.and Scheuerman G L,paper presented at Div.Petrol.Chem.214th Nat.Mtg.,Am.Chem.Soc.Las Vegas,NV,Sep.7-11,1997
    [24]Martens A,Souverijns W,Verrelst W,Parton R F,Froment G F and Jacobs P A,Angew.Chem.Int.Ed.34,2528(1995)
    [25]石油与天然气化工,1998,27(3):131
    [26]Rubin M K and Chu P,U.S.Pat.4,954,325,Sep.4,1990
    [27]陈廴西沅.择形分子筛沸石催化作用的新进展.石油与天然气化工,1999,28(3):167-173
    [28]曾昭槐编著.择形催化.北京:中国石化出版社,1994
    [29]Chen N Y,Garwood W E.Some catalytic properties ofZSM-5,a new shape selective zeolite,J Catal,1978,52(2):453-458
    [30]张维萍,韩秀文,包信和.超细分子筛的合成、结构特性及在催化中的应用.分子催化,1999,13(5):393-399.
    [31]杨付.超细HZSM-5的改性、表征及催化汽油改质催化剂的研制:(博士学位论文).大连:大连理工大学,2003.
    [32]Vedrine J C.Plenum Pub Corp,"Mass transport in Heterogeneous",Beniere F and Cotlow C R.A (Eds.),York,1983,505-536
    [33]Ducarme V,VedrineJ C.ZSM-5 catalytic and ZSM-11 zeolites:zeolites:Influence of morphological and chemical parameters on catalytic selectivity and deactivation.Appl Catal,1985,17(1):175-184
    [34]Rajagopalan K,Peters A W and Edwards G C.Influence of zeolite particle size on selectivity during fluid catalytic cracking.Appl Catal,1986,23(1):69-80
    [35]Wojciechowski B W and Corma A.Catalytic Cracking:Catalysts,Chemistry and Kinetics,Marcel Dekker,New York,1986
    [36]Voogd P and Van Bekkum H.Limitation of n-hexane and 3-methylpentane conversion overzeolite ZSM-5 by intracrystalline diffusion.Appl Catal,1990,59(2):311-331
    [37]Volter J,Caro J,Bulow M,et al.Diffusion,cracking and cokingon HZSM-5 of various morphologies.Appl Catal,1988,42(1-2):15-27
    [38]Behrsing T,Jaeger H and Sanders J V.Coke deposits on HZSM-5 zeolite.Appl Catal,1989,54(3):289-302
    [39]Santacesaria E,Dzserio M and Ciambelli P.Catalytic alkylation of phenol with methanol:Factors influencing activities and selectivities,Ⅱ.Effect of intracrystalline diffusion and shape selectivity on HZSM-5 zeolite.Appl Catal,1990,64(1-2):101-118
    [40]Hagg W O,Lago R M and Weisz P B.Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite.Faraday Discuss Chem Soc,1982,72:317-330
    [41]Ratnesamy P,Babu G P,Chandwadkar A J and Kulkarni S B.Influence of crystal size of HZSM-5 on activity and shape selectivity in xylene isomerization.Zeolites,1986,6(2)98-100
    [42]Herrmarm C,Haascatalysts J and Fetting F.Effect of the crystal size on the activity of ZSM-5 in various reactions.Appl Catal,1987,35(2):299-310
    [43]朱向学,刘盛林,牛雄雷,等.ZSM-5分子筛上烯烃催化裂化制丙烯和乙烯[J].石油化工,2004,33(4):320-324.
    [44]郭新闻,王祥生,沈建平,等.改性HZSM-5上42甲基联苯与甲醇的甲基化反应性[J].催化学报,2003,24(5):333-337
    [45]李明慧,杨毅,王井.碱土和稀土金属化合物对H-ZSM-5沸石催化剂改性的反应性能[J].大连轻工业学院学报,2004,23(1):224-227
    [46]薛英,吴宇,万家义.M-ZSM-5分子筛的结构及催化性能研究进展[J].绵阳师范学院学报,2005,24(5),5-10
    [47]王珏,赵璧英,谢有畅等.MgO/HZSM-5中Mgo分散状态和催化性能的关系.物理化学学报,2001,17(11):966-971
    [48]Y.-G.Li et al.Applied Catalysis A:General 150(1997)231-242
    [49]Engelhardt G,Lohse U,Patzelov6 V,Magi M,Lippmaa E.High resolution 29Si NMR of dealuminated Y zeolites.2.Silicon,aluminium ordering in the tetrahedral zeolite lattice.Zeolites,1983,3(3):239-243
    [50]王辉,张汉军,孔德金,陈庆龄,高滋.石油化工.(Wang H,Zhang H J,Kong D J,Chen Q L,Gao Z.Pet rochem Technol),2000,29(6):401
    [51]Yu-Guang Li,Wei-Hong Xie,Shen Yong.The acidity and catalytic behavior of Hydrothermal Treatment on ZSM-5.Applied Catalysis A:General 150(1997)231-242
    [52]田震,秦张峰,王国富等.柠檬酸改性H β分子筛上的苯与丙烯烷基化反应.燃料化学学报,2006,34(3):359-363
    [53]朱向学,张士博,钱新华等.水蒸气处理对ZSM-5酸性及其催化丁烯裂解性能的影响.催化学报,2004,25(7):572-576
    [54]硅改性ZSM-5催化剂上甲苯歧化反应性能的研究.张秀斌,李歧峰,柳云骐等.石油大学学报,2005,29(3):130-138
    [55]Hu Zeshan,Shi Yonggang,Luang Chuanghui et al.Modification of HZSM-5 by metal surfactant for aromatization.Microporous and Mesoporous Materials 25(1998)201-206
    [56]陈戈.ZSM-5型沸石催化剂的结焦与失活[J].精细石油化工,1981,2(31):45-48
    [57]孙万付,马波,索继栓.加氢裂化催化剂积炭行为的研究[J].催化学报,2000,21(3):41-44
    [58]Bhat ia S,Belt ram ini J,Do D D.Deactivat ion of zeolite catalysts[J].Catal Rev Sci Eng,1989-90,31(4):431-480.
    [59]B ibby D M,Milestone N B,Pat terson J E,et al.Coke format ion in zeolite ZSM 25[J].J Catal,1986,97:493-502.
    [60]陆铭,孙洪敏等.ZSM-5沸石催化剂的失活历程和活性稳定性
    [61]J.L.Sotelo,L.Calvo,A.Perez-Velazquez,et al.A comparative study on the transalkylation of diisopropyl-benzene with benzene over several zeolitic materials in supercritical CO_2 and liquid phase.Applied CatalysisA:General,2006,312(6):194-201
    [62]C.Perego,S.Amarilli,R.Millini,et al.Experimental and Computational Study of Beta,ZSM-12,Y,Mordenite and ERB-1 in Cumene Synthesis.Microporous Materials,1996,6:395-404
    [63]盖新军,王莅,邓建标.分子筛孔结构和酸性对苯与丙烯烷基化的影响.石化技术,2006,13(2):57-61
    [64]师希娥,张晔,戴立益等.NBMAS,AIMCM-41,无定形硅铝和HZSM-5催化裂化性能的比较研究.化学学报,2003,61(9):1388-1392
    [65]Aguiar EFS,Valle M L M.Influence of external surface area of rare-earth containing Y zeolites on the cracking of 1,3,5-triisopropylbenzene.Zeolites,1995,15:620-623
    [66]Suresh B.Waghmode,Shyamal Kumar Saha,et al.Isopropylation of benzene with 2-propanol over AFI aluminophosphatemolecular sieves substituted with alkaline earth metal.Journal of Catalysis,228(2004)192-205
    [67]Voter J,Caro J,Bulow M.Diffusion,Cracking and Coking on HZSM-5 of Various Morphologies.Apply Catal A:General,1988,42:15-27
    [68]Voter J,Caro J,Bulow M.Diffusion,Cracking and Coking on HZSM-5 of Various Morphologies.Apply Catal A:General,1988,42:15-27
    [69]Yu-Guang Li,Wei-Hong Xie,Shen Yong.Tbe acidity and catalytic behavior of Mg-ZSM-Sprepared via a solid-state reaction.Applied Catalysis A:General 150(1997)231-242;
    [70]MgO/HZSM-5中MgO分散状态和催化性能的关系,王珏,赵壁英,谢有畅,物理化学学报Acta Phys.-Chim.Sin.,2001,17(11):966-971
    [71]王桂茹,韩翠英,于桂燕等.ZSM-5沸石催化剂外表面的化学修饰.催化学报,1993,14(1):65-68
    [72]Gu XM.Series of Inorganic Chemistry,Vol 2,1998,187
    [73]刘子玉,王振旅,朱万春等。高等学校化学学报,2002,23(5):857
    [74]Puente G.de le,Souza-Aguiar E.F,Zoutiu F.M.Z.Appl.Catal.A:General,2000,197:41
    [75]杨刚,王妍,周丹红等.La/ZSM-5分子筛热稳定性及镧存在形态研究.物理化学学报,2004,20(1):60-64
    [76]张培青,王祥生,郭宏臣等.水热处理对纳米HZSM_5沸石酸性质及其降低汽油烯烃性能的影响.催化学报,2003,24(12):900-904
    [77]Ruckenstein E,Hu X D.The effect of steam on supported metal catalysts.J Catal,1986,100(1):1-16
    [78]Lueas A,Canizares P,Duran A,et al.Dealumination of HZSM-5 zeolites:Effect of steaming on acidity and aromatization activity.Appli Catal A,1997,154(1-2):221-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700