三氟碘甲烷的气相催化合成及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CF3I具有较低的GWP值和ODP值,在哈龙替代灭火剂和制冷剂方面具有潜在的应用意义,本文针对CF3I目前合成方法得率低、间歇操作等缺陷,研究了气相CF3I合成反应的机理、工艺条件和催化剂技术。
     通过对气相合成CF3I的四条路线的吉布斯自由能计算,选择CHF3、碘和氧气为原料合成CF3I,设计了装置线路在550℃条件下进行反应,采用GC-MS、FTIR和分子量测定确认产物为CF3I,表明该反应能够合成CF3I。
     采用捕捉剂H2、2-甲基-2-丁烯对反应中间体进行捕捉,不同条件下分析产物组分变化;对吸附了中间体的载体进行氢化和热解实验,分析产物结构。空管热解CHF3能够产生CF_2卡宾中间体,与H2得到CH2F2,当有载体活性炭(AC)存在时,CHF3受热脱HF得到中间体CF2卡宾,CF2卡宾吸附在活性炭表面形成稳定结合,捕捉剂检测不到CF2卡宾,且CF2卡宾不能二聚形成四氟乙烯。结合在AC表面的CF2卡宾受热发生岐化反应得到CF3自由基,CF3自由基与碘自由基结合生成产物CF_3I, CF_3自由基与CF2卡宾结合形成CF_3CF_2自由基,CF_3CF_2自由基与H自由基结合形成CF_3CHF_2,与Ⅰ自由基结合生成CF_3CF_2I,CF_3自身结合生成CF_3CF3_。采用CHF_2C1和六氟环氧丙烷(HFPO)在AC或多孔氟化铝(PAF)表面进行类似的实验,发现生成类似的产物,表明实验条件下得到CF3自由基只与中间体CF2卡宾相关,CF2卡宾在AC或PAF上发生岐化反应生成CF3自由基。通过实验得到了气相催化合成CF3I的机理为CF2卡宾岐化机理。
     为验证CF2卡宾岐化机理成立,采用Material Studio的DMol3模块对CF2卡宾在AC表面吸附和岐化进行模拟计算,并依据机理设计了HFPO低温催化反应合成CF3I以验证反应机理成立。计算结果表明CF2卡宾能在AC表面形成较强的结合,与AC表面的共轭π键反应形成偕二氟环丙烷化合物。两个相邻CF2卡宾在AC表面吸附后,其中一个CF2卡宾上的F原子逐渐靠近另外一个CF2卡宾上的C原子形成CF3基团。CF2卡宾在AC表面的吸附能-36.32 kcal/mol,岐化反应第一步的活化能为36.4kcal/mol,岐化反应第二步的活化能为42.1kcal/mol。CF_2能够在AC表面能够形成稳定结合并发生岐化反应,与实验结果吻合。HFPO在较低温度下能够热解产生CF_2卡宾,在KF/AC催化剂作用下170℃与碘能够产生CF_3I,210℃时反应2h可使HFPO的转化率达到99%以上。理论计算和HFPO合成CF3I的实验证明CHF3与碘合成CF3I的CF2卡宾岐化机理成立。
     利用机理研究结果对反应工艺条件进行优化研究,研究了温度、空速、投料比对反应的影响规律。适宜的反应温度为550℃时;适宜的空速为300h-1;最佳投料量为CHF3为36ml/min; I_2: 8.2g/h; O_2:3ml/min(对应的催化剂的体积为16ml)。
     为提高反应的转化率和催化剂的使用寿命,研究了气相催化合成CF3I的催化剂活性物和载体对反应的影响。结果发现碱金属盐作为催化活性组分具较高的活性;AC作为载体时,CHF3的转化率较高,多孔金属氟化物氟化铝和氟化镁作为载体时转化率偏低,但金属氟化物对氧气和HF惰性,作为载体具有工业应用潜力。在优化条件下,RbNO_3-KF/AC催化剂使用寿命得到提高,达到120h。
CF_3I has potential applications in replacement of Halon extinguishing agents and refrigerants due to its low GWP value and low ODP value. Current methods do not seem likely candidates for large-scale production of CF_3I due to the low yield and batch processes. In this dissertation, a continuous vapor-phase catalytic process for preparation of CF3I was studied, especially in the reaction mechanism, process conditions and catalytic technique.
     According to the Gibbs free energy, the reaction between CHF_3 with I_2 in the presence of O_2 is an appropriate synthetic route. Over an experimental line system, CHF_3,I_2 vapor and O_2 were mixed and fed into the reactor at 550℃, then the producted was collected and analyze by GC-MS, GC and FTIR. It was found that CF_3I can be synthesis by this method.
     H_2 or 2-methyl-2-butene, as capture agent, was fed into reactor with CHF_3 over catalysts or non-catalyst. And the intermediate absorbed on the surface was conducted pyrolysis reaction and hydrogenation reaction. It was found that in pyrolysis of CHF_3 through empty reactor in the presence of H_2, CH_2F_2 was obtained via the reaction of CF_2 carbene with H2. But over AC, the formed CF_2 carbene was adsorbed on the surface of AC. the CF_2 carbene intermediate can not be trapped by H_2,2-methyl-2-butene and CF_2 carbene itself. CF_2 carbene takes plcae disproportionation reaction takes place to generate CF3 radical. CF_3 radical reacts with I_2 to form CF_3I, whereas with H radical to form CHF_3. CF_3 radical reacts with CF2 carbene to form CF_3CF_2 radical, which generates CF_3CF_2I and CF_3CHF_2. When CHF_2Cl and hexafluoropropylene oxide (HFPO), as other CF_2 carbene sources, were conducted the same reactions over AC or porous AlF_3 (PAF), the similar products were detected. It was indicated that under experimental conditions, CF_3 radical generation associated only with the intermediate CF_2 carbene. CF_2 carbene disproportionation took palce over AC or PAF. It was verified that the reaction mechanism was CF_2 carbene disproportionation by experimental means.
     To check the above mechanism, the software of Material Studio was used to simulate the reaction process and a low temperature catalytic reaction for CF_3I synthesis was conducted. Calculation results showed that CF_2 carbene was strongly combined with AC and reacted with conjugatedπbond to form difluoro-cyclopropane compound. Between two closed CF_2 carbene, one F atom of one CF_2 carbene will close to the C atom of the other CF_2 carbene to form CF_3 group. The adsorption energy of CF_2 carbene with AC was-36.32 kcal/mol and activated energy of two steps of disproportionation reaction were 36.4kcal/mol and 42.1kcal/mol, respectively. Through the simulation, it is indicated that CF2 carbene can adsorb on the surface of AC and take palce disproportionation reaction to generate CF3 group. It was in accordance with experimental results. When HFPO reacted with I_2 over KF/AC catalyst at 170℃, CF3I was generated. When reaction temperature was increased to 200℃and hold for 2h, the conversion of HFPO reached 99%,. Calculation results and CF_3I synthesis via HFPO showed that the reaction mechanism is positive.
     Based on mechanism above, the reaction conditions were optimized. The appropriate reation temperature was 550℃.and the appropriate space velocity was 300h~(-1). The optimized amount of raw materials was CHF3:36ml/min, I_2:8.2g/h and O_2:3ml/min (catalyst volume was 16ml)
     To increase the conversion of CHF3 and prolong catalyst life, the catalytic technique of this catalytic reaction for CF3I synthesis was investigated, including activated substances supporters. It was found that alkali metal salts showed a higher catalytic activity than the alkaline earth metal salts. AC, as the catalytic supporter, showed higher activity due to its high surface area. Porous metal fluoride, such as porous aluminum fluoride and porous magnesium fluoride, as carriers showed medium activity and stable properties in the presence of O_2 and HF. So, Porous metal fluoride processed industrial potential application as carrier for this reaction. Under optimized conditions, the catalyst life of RbNO_3-KF/AC increased and reached 120h.
引文
[1]李鹏.哈龙替代灭火系统应用及造价对比研究.重庆大学,2007.
    [2]周晓猛.洁净气基灭火介质制备及其灭火性能研究.中国科学技术大学,2005.
    [3]F.S. Rowland, M. J. Molina. Stratospheric Sink of Chlorofluoromethanes:Chlorine Atomic—Analyzed Destruction Of Ozone. Nature.1974,249:810~812.
    [4]毛燕超.三氟碘甲烷的合成与表征.南京理工大学,2007.
    [5]王剑锋.浅谈制冷剂与环境保护.内蒙古环境保护.2005:63-66.
    [6]王纪戎孙伦.中国淘汰哈龙行动.第一版.北京:中国环境科学出版社,2000.
    [7]罗增英.《联合国气候变化框架公约》和《京都议定书》.中国建设信息供热制冷.2005(3):65~71.
    [8]石磊.三氟碘甲烷的合成.南京理工大学,2008.
    [9]朱明善,史琳.ODS替代制冷剂的发展态势和我国的对策建议.中国环保产业.2005(2):16~18.
    [10]公安部天津消防研究所.哈龙灭火剂替代品及哈龙灭火系统替代技术的分析及第一版.天津:天津消防研究所,2002:1~8.
    [11]徐晓楠.灭火剂与应用.第一版.北京:化学工业出版社,2006.
    [12]朱渝生.哈龙替代技术应用研究.重庆大学,2005.
    [13]陆春义.细水雾喷射系统及灭火机理研究.南京理工大学,2004.
    [14]潘仁明,周晓猛,刘玉海.”哈龙”替代物的现状和发展趋势.爆破器材.2001,30(4):30-34.
    [15]Kibert C J, Dierdorf D. Solid particulate aerosol frie suppressants. Frie Technology. 1994,30(4):387-399.
    [16]Rank N J, Vasi E C. Process and apparatus for extinguishing fires by a gas-aerosol mixture:EU,976423 A1[P]
    [17]司戈,何嘉兵.哈龙替代品研究的最新进展.消防技术与产品信息.2002(9):76~79.
    [18]田丽,付雷明.哈龙替代品的研究与进展.消防技术与产品信息.2001(7):35~3841.
    [19]陈亚红,张树海,奥成钢等.哈龙替代灭火剂的现状和发展趋势.中北大学学报.2007,28(4):341~345.
    [20]刘征,赵德君,杜(?)垣等.我国泡沫灭火剂面临的挑战和机遇--试评我国市售泡沫灭火剂灭含氧燃料汽油火的形势.消防科学与技术.2005,24(6):746~749.
    [21]俞雪兴,谈龙妹,吴京峰等.新型氟碳表面活性剂的合成及在灭火剂中的应用现代化工.2008,28(4):51~53.
    [22]王飞,孙志明.哈龙替代物—三氟甲烷灭火系统.消防技术与产品信息.2003(11):72~75.
    [23]王万钢.七氟丙烷灭火系统研制与应用研究.天津大学,2003.
    [24]山边正显,松尾仁.含氟材料的研究开发.第一版.上海:华东理工大学出版社,2003.
    [25]Obin, ML. Suppression of Class A fire with HFC-227ea. Process Safety Progress, 1998,17(3):209~212.
    [26]Baratov A.N, Kopylov N.P. About substitution for ozone depleting agents. Albuquerque, NM:2002.
    [27]Babushok V I, Noto T, Burgess D R, Hamins A. Tsang W. Combust Flame.1996,107: 351~367.
    [28]Lide D R and Frederikse H P. CRC Handbook of Chemistry and Physics. Florida:CRC Press,1997.
    [29]Nimitz J S and Lankford L. Fluoroiodocarbons as Halon Replacements. Washington, D.C.1993.
    [30]Moore T A, Weitz C A, and Tapscott R E. An update on NMERI cup-burner test results. Albuquerque, New Mexico:1996.
    [31]Association N F. NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems. Massachusetts:2000.
    [32]Tapscott R E. Best Values of Cup Burner Extinguishing Concentrations. Albuquerque, NM:1999.
    [33]Nimitz J S, and Lankford L. Fluoroiodocarbons as Halon Replacements. Washington, D.C.:1993.
    [34]Boit H G. Beilsteins Handbuch der Organischen Chemie.4 ed. Berlin,Germany:1972.
    [35]Clark R J, Dann J R, Foley L J. Photochemical reaction of ozone with 2-iodopropane and the four polyfluoroiodoethanes C_2F_5I, CF_3CH_2I, CF_2HCF_2I, and CF_3CHFI in solid argon at 14 K. Journal of Physical Chemistry A.1997,101(49):9260~9271.
    [36]Gilles M K, Talukdar R K, Ravishankara A R. Rate coefficients for the OH+CF3I reaction between 271 and 370 K. Journal of Physical Chemistry A.2000,104(39): 8945~8950.
    [37]Turnipseed A A, Gilles M K, Burkholder J B, et al. Kinetics of the IO radical.1. Reaction of IO with ClO. Journal of Physical Chemistry A.1997,101(30):5517~5525.
    [38]Gilles M K, Turnipseed A A, Burkholder J B, et al. A study of the Br+IO->I+BrO and the reverse reaction. Chemical Physics Letters.1997,272(1-2):75~82.
    [39]Vinegar A, Jepson G W, Cisneros M, et al. Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling. Inhalation Toxicology.2000,12(8):751~763.
    [40]Dodd D E, Leahy H F, Feldmann M L, et al. Reproductive toxicity screen of trifluoroiodomethane (CF_3I) in Sprague-Dawley rats. Inhalation Toxicology.1999,11(11): 1041-1055.
    [41]Vinegar A, Jepson G W, Hammann S J, et al. Simulated blood levels of CF3I in personnel exposed during its release from an F-15 jet engine nacelle and during intentional inhalation. American Industrial Hygiene Association Journal.1999,60(3):403~408.
    [42]Dodd D E, Vinegar A. Cardiac sensitization testing of the halon replacement candidates trifluoroiodomethane (CF_3I) and 1,1,2,2,3,3,3-heptafluoro-l-iodopropane (C_3F_7I). Drug and Chemical Toxicology.1998,21(2):137~149.
    [43]Dodd D E, Ledbetter A D, Mitchell A D. Genotoxicity testing of the halon replacement candidates trifluoroiodomethane (CF_3I) and 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) using the Salmonella typhimurium and L5178Y mouse lymphoma mutation assays and the mouse micronucleus test. Inhalation Toxicology.1997,9(2):111~131.
    [44]Dodd D E, Kinkead E R, Wolfe R E, et al. Acute and subchronic inhalation studies on trifluoroiodomethane vapor in Fischer 344 rats. Fundamental and Applied Toxicology.1997, 35(1):64~77.
    [45]Vinegar A, Jepson G W. Cardiac sensitization thresholds of halon replacement chemicals predicted in humans by physiologically-based pharmacokinetic modeling. Risk Analysis.1996,16(4):571~579.
    [46]Vinegar A, Jepson G W, Cisneros M, et al. Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling. Inhalation Toxicology.2000,12(8):751~763.
    [47]Dodd D E, Leahy H F, Feldmann M L, et al. Reproductive toxicity screen of trifluoroiodomethane (CF3I) in Sprague-Dawley rats. Inhalation Toxicology.1999,11(11): 1041~1055.
    [48]Vinegar A, Jepson G W, Hammann S J, et al. Simulated blood levels of CF3I in personnel exposed during its release from an F-15 jet engine nacelle and during intentional inhalation. American Industrial Hygiene Association Journal.1999,60(3):403~408.
    [49]Su J Z, Kim A K. Suppression of pool fires using halocarbon streaming agents. Fire Technology.2002,38(1):7-32.
    [50]Kristen Taddonio S O.R-134a作为ODS替代物的历史与当今全球车用空调系统面临 的新挑战.中国 江苏:2007.
    [51]段远源.三氟碘甲烷和二氟甲烷的热物理性质研究.北京:清华大学,1998.
    [52]吕金虎,宋壵臻.替代制冷剂的研究与应用现状.制冷.2006(1):29~34.
    [53]Back G G, Beyler C L. The capabilities and Limitations of total flooding water mist fire suppression system in machinery space applications. Fire Technology,2000,36(1).:8~23.
    [54]Darwin R L, Willims F W. The development of water mist fire protection system for US navy ships. Naval Engineer Journal.2000,112(6):49~57.
    [55]Hansen R L, Back G G. Water spray protection of machinery spaces. Fire Technology. 2001,37(4):317~326.
    [56]王怀信,张宇,郑臣明等.三氟碘甲烷作为冰箱制冷剂的理论循环分析.制冷学报.2005(1):33~37.
    [57]王怀信,郑臣明,马利敏.适用于三氟碘甲烷的PT状态方程.天津大学学报.2005(6):4~8.
    [58]Levy R A, Zaitsev V B, Aryusook K, et al. Investigation of CF3I as an environmentally benign dielectric etchant. Journal of Materials Research.1998,13(9):2643~2648.
    [59]Fracassi F R. Evaluation of trifluoroiodomethane as SiO_2 etchant for global warming reduction. Journal of Vacuum Science & Technology B.1998,16(4):1867~1872.
    [60]Takechi N, Ait-mohand S, Medebielle M, et al. Nucleophilic trifluoromethylation of acyl chlorides using the trifluoromethyl iodide/TDAE reagent. Tetrahedron Letters.2002, 43(24):4317~4319.
    [61]Petrik V, Cahard D. Radical trifluoromethylation of ammonium enolates. Tetrahedron Letters.2007,48(19):3327~3330.
    [62]Naumann D, Kischkewitz J. Trifluoromethylation reactions of CF3I, Te(CF_3)_2, Sb(CF_3)_3, Hg(CF3)2, and Cd(CF3)2.D with furan, thiophene, pyrrole and para-benzoquinone. Journal of Fluorine Chemistry.1990,46(2):265~281.
    [63]Naumann D W. Polar trifluoromethylation reactions:the formation of bis-(trifluoromethyl)iodine(Ⅲ) compounds and trifluoromethyl iodine. cations and anionsl Canadian Journal of Chemistry-Revue Canadienne de Chimie.1991(69).
    [64]朱士正,吴永明.当代有机氟化学-合成反应应用实验.上海:华东理工大学出版社出版,206.
    [65]Kirk K L, Nishida M, Fujii S, et al. Photochemical trifluoromethylation of tyramine and L-tyrosine derivatives. Journal of Fluorine Chemistry.1992,59(2):197~202.
    [66]Nishida M, Kimoto H, Fujii S, et al. Photochemical trifluoromethylation of 1-methylimidazoles and 1-methylpyrroles containing methylthio groups. Bulletin of the Chemical Society of Japan.1991,64(7):2255~2259.
    [67]Takechi N, Ait-mohand S, Medebielle M, et al. Nucleophilic trifluoromethylation of acyl chlorides using the trifluoromethyl iodide/TDAE reagent. Tetrahedron Letters.2002, 43(24):4317~4319.
    [68]Nimitz P. Low environmental impact, high performance foam blowing agents based on iodofluorocarbons. Huntsville, AL:2000.
    [69]Banks A A, Emeleus H J, AszeldineR N and errigan V K. The reaction of bromine trifluoride and iodine pentafluoride with carbon tetrachloride, tetrabromide, and tetraiodide and with tetraiodoethylene. Journal of Chemical Society.1948:2188~2190.
    [70]Emeleus H J and AszeldineR N. Organometallic fluorine compounds. Part Ⅱ. The synthesis of bistrifluoromethylmercury.journal of chemical societies.1949:2953~2956.
    [71]Naumann D. The preparations and properties of tris(perfluoroorgano)bismuth compounds Bi(Rf)_3 (Rf= CF_3, C_2F_5, n-C_3F_7, n-C_4F_9, n-C_6F_(13), n-C_8F_(17), C_6F_5). Journal of Organometallic Chemistry.1987,334,(3):323~328.
    [72]Naumann D. On pentavalent perfluoroorgano bismuth compounds. Canadian Journal of Chemistry-Revue Canadienne de Chimie.1989,67.
    [73]Dieter N, Wieland T K. Preparation and properties of ZnBr(CF_3)-2L-A convenient route for the preparation of CF_3I. Journal of Fluorine Chemistry.1994,67:91~93.
    [74]Finnegan A. The degradation of silver trifluoroacetate to trifluoroiodomethane. Journal of Amerrica Chemical Societies.1950,72:3806.
    [75]De-bao Su. A simple, novel method for the preparation of trifluoromethyl iodide and diiododifluoromethane. Journal of the Chemical Society, Chemical Communications.1992: 807~808.
    [76]Nomura N. Trifluoromethyl iodide:JP, [P].1977-06-06.
    [77]Nagasaki N, Morikuni Y, Kawada K, et al. Study on a novel catalytic reaction and its mechanism for CF_3I synthesis. Catalysis Today.2004,88(3-4):121~126.
    [78]Sudip M. Direct one-step synthesis of CF_3I:WO, [P].2006-01-15.
    [79]Hollenstein H, Quack M, Richard E. Slit Jet Diode-Laser and Ftir Spectroscopy of CF_3I and improved analysis of the symmetrical CF3 stretching chromophore absorption. Chemical Physics Letters.1994,222(1-2):176~184.
    [80]Burger H, Rahner A, Amrein A, et al. Free-jet high-resolution ftir spectroscopy of the complex structure of the Nu-1 band of CF_3I near 9-Mu-M. Chemical Physics Letters.1989, 156(6):557~563.
    [82]Hollenstein H, Quack M, Richard E. Slit jet diode-laser and FTIR spectroscopy of CF3I and improved analysis of the symmetrical CF_3 stretching chromophore absorption. Chemical Physics Letters.1994,222(1-2):176~184.
    [83]Burger H, Rahner A, Amrein A, et al. Free-jet high-resolution FTIR spectroscopy of the complex structure of the Nu-1 band of CF3I near 9-Mu-M. Chemical Physics Letters.1989, 156(6):557~563.
    [84]Burger H, Burczyk K, Hollenstein H, et al. Vibrational-spectra and force-constants of symmetric tops.46. High-resolution FTIR spectra of (CF3I)-C-12, (CF_3I)-C-13 and (CF3)-C-12 BR-79 near 1050 CM-1 and 550 CM-1. Molecular Physics.1985,55(2): 255~275.
    [85]陈锡如.有机化学机理概论.第一版.成都:成都科技大学出版社,1990.
    [86]Y. Le Coata, N. M. Hedhilia, R. Azriaa, M. Troncb F. Kinetic energy release of F desorption from condensed CF4 following low energy electron impact. International Journal of Mass Spectrometry and Ion Processes.1997,164:231~239.
    [87]John N. Bradley D. Kinetic study of the reaction of hydrogen atoms with chlorotrifluoromethane. Journal of the Chemical Society, Faraday Transactions.1976,72: 2284~2288.
    [88]Kitajima M, Suzuki R, Tanaka H, et al. Electron impact excitation and dissociation of halogen-containing molecules. Nukleonika.2003,48(2):89~93.
    [89]Whittle J. Photochlorination of methane and fluoroform. Dissociation energy D(CF3— H) and entropy of CF3 radical. Transactions of the Faraday Society.1966,62:2183~2190.
    [90]Andrews L, Prochaska F T. Infrared spectra of the CH_2F_2~+, CHF_2~+, CHF~+, and FH~-(CHF)~- molecular ions in solid argon. Journal of Chemical physics.1979,70:4714~4723.
    [91]Dailey D. Fluorinated Carbenes. Chemical Review.1996,96:1585~1632.
    [92]Dixon D A. Singlet-triplet splittings in CF3-substituted carbenes. Journal of Physical Chemistry.1986,90:54~56.
    [93]Politanskii S F, Shevchuk V U. Thermal conversion of fluoromethane. Kinetics and Catalysis.1968,9:411~417.
    [94]Edwards J W, Small P A. Kinetics of the pyrolysis of chlorodifluoromethane. Industrial and Engineering Chemistry Fundamentals.1965,4:396~400.
    [95]Tomonari Y. Ab Initio Calculations on Reactions of CHF3 with its fragments. Journal Physical Chemistry A.2000,104:2729~2733.
    [96]Viets D, Mews R, Noltemeyer M, et al. Synthesis and reactions of bis(fluorosulfinyl) -difluoromethane, F_2C(SOF)_2. Chemische Berichte.1991,124(6):1353~1356.
    [97]Balcerzak P, Fedorynski M, Jonczyk A. Synthesis of gem-difluorocyclopropanes in a phase-transfer catalysed system. Journal of chemical society.1991:826~827.
    [98]Balcerzak P, Jonczk A. A simple synthesis of gem-difluorocyclopropanes from bromoform-dibromodifluoromethane in a basic phase transfer catalytic system. Journal of chemical research. Synopses.1994:200~201.
    [99]Rautenstrauch V, Scholl H J, Vogel E. Addition of dihalocarbenes to corannulene. A fullerene-type reaction. Angewandte Chemie International Edition Angew.1968,7:288~289.
    [100]Raphaele Romelaer, Virginie Kruger, J. Marshall Baker, And William R. Dolbier J. Pyrolyses of Chlorodifluoromethane and Trifluoromethane in the Presence of Hydrogen. Mechanism and Optimization of Reaction Conditions. Journal of Chemical Society.2001, 123:6767~672.
    [101]Lopez-ramon M.V, Stoeckli F, Moreno-castilla CFC on the characterization of acidic and basic surface sites on carbons by various techniques. Carbon.1999,37:1215~1221.
    [102]Garcia T, Murillo R, Cazorla-amoros D, Mastral A.. Role of the activated carbon surface chemistry in the adsorption of phenanthrene. Carbon.2004,42:1683~1689.
    [103]Briggs D. Handbook of X-Ray and ultraviolet photoelectron spectroscopy.1977.
    [104]Beamson G.. High resolution XPS of organic polymers:the Scienta ESCA300 Database. 1992.
    [105]Clark D T, Feast W J, Kilcast D, Musgrave W. J. Polym. Journal of Polymer Science: Polymer Chemistry Edition 1973,11:389.
    [106]Myli K B, Grassian V H. Adsorption and reaction of trifluoromethyl iodide on Ni(111). Journal Of Physical Chemistry.1995,99(15):5581~5587.
    [107]Chen Q. Trifluoromethylation of organic halides with difluorocarbene precursors. Journal of Fluorine Chemistry.1995,72:241~246.
    [108]Chiang Y. Selective and facile C-F bond activation of trifluoromethyl groups on Cu(111). Journal of Aerrica Society.1999,121:8116~8117.
    [109]Dae J S, Dong J M, Yong J. Catalytic Ppyrolysis of difluorochloromethane to produce tetrafluoroethylene. International Journal of Chemical Reactor Engineering.2004,2.
    [110]Sung D J, Moon D J, Ahn, B S, Kim S K, Lee Y J, Hong S G, and Hong S. Pyrolysis of R22 over cu-base catalysts. Applied Chemistry.2002,6(01):1412~1415.
    [111]Sung D J, Moon D J, Ahn, B S, Kim S K, Lee Y J, Hong S G, and Hong S. Pyrolysis of Trifluoromethane to Produce Hexafluoropropylene. Industrial and Engineering Chemistry Research.2003,41:2895~2902.
    [112]Sung D J, Moon D J, Ahn, B S, Kim S K, Lee Y J, Hong S G. Simultaneous preparation of tetrafluoroethylene and hexafluorpropylene:U S, [P].
    [113]Edwards J W. and Small P A. Kinetics of the chlorodifluoromethane. Industrial and Engineering Chemistry Research Fundamentals.1965,4(4):396~402.
    [114]Broyer E, Bekker A Y. and Ritter A B. Kinetics of the pyrolysis of chlorodifluoromethane. Ind. Eng. Chem. Res.1988,27:208~211.
    [115]Chinoy P B. and Sunavala P D. Thermodynamics and kinetics for the manufacture of tetrafluoroethylene by the pyrolysis of chlorodifluoromethane. Industrial and Engineering Chemistry Research.1987,26:1340~1344.
    [116]Resnick W R. The reversible difluorocarbene elimination from hexafluoropropylene epoxide. Journal of Fluorine Chemistry.1973,3:451~452.
    [117]Hans M, Werner S S. Hexafluoropropene oxide-a key compound in organofluorine chemistry. Angewandte Chemie International Edition 1985,24.
    [118]Sargea P B. Fluorocyclopropanes. I. Preparation and nuclear magnetic resonance spectra. The Journal of Organic Chemistry.1970,35(3):678~682.
    [119]Zheng X, Cheng V P. Fluorinated alumina as a catalyst for skeletal isomerization of n-butene. Applied Catalysis A:General.1994,118:127~138.
    [120]Christopher H. B, Hamid B, Kemnitz M N. Reactivity of fluorinated-alumina and-aluminium(Ⅲ) fluoride surfaces towards hydrogen halides and tert-butyl chloride. Journal of the Chemical Society, Dalton Transactions 2002:40~47.
    [121]Guisent P M. Coking, Ageing and regeneration of zeolites. Applied Catalysis.1988,38: 341~352.
    [122]孙万付 马波 索继栓 李树本 张喜文 李文麾 罗锡辉.加氢裂化催化剂积碳行为的研究.催化学报.2000,21(3):269~272.
    [123]Bibby D M. Coke formation in high-silica zeolites. Applied Catalysis A:general. 1992,93:1~34.
    [124]Mcdougall J. The physical nature and manufacture of activated carbon. Journal of the South African Institute of Mining and Metallurgy.1991,91(4):109~120.
    [125]Yang G.C, Shi L, Pan R M, Quan H D. Investigation of CF2 carbene on the surface of activated charcoal in the synthesis of trifluoroiodomethane via vapor-phase catalytic reaction. Journal of Fluorine Chemistry.2009,130:231~235.
    [126]Birchall J M, Fields R, Haszeldine R N, et al. Cyclopropane. Chemistry. Part 5. Hexafluorocyclopropane. Journal of Fluorine Chemistry.1980,15:487~495.
    [127]Marte E E. Thermal decomposition of fluoroform in a single-plulse scock tube. The Chemical Physics.1965,42(6):2049~2056.
    [128]Takashi A Y. Thermal decomposition of halon alternatives. Chemoshere.1997,35(3): 643~654.
    [129]Keating E L. The high temperature oxidation of tetrafluoroethylene. The Journal of Chemical Physics.1977,66(3):1237~1244.
    [130]Nip W. S, M. Drouin, P. A. Hackett A W. Multiphoton Chemistry of Perfluoropropene. Journal Physical Chemstry.1980,84(8):932~935.
    [131]Charsley E L, Laye P G, Markham H M. Determinationof the equilibrium temperatures andenthalpies ofthe solid-solid transitions of rubidium nitrate bydifferential scanning calorimetry. Thermochimica Acta.2008,469:65~70.
    [132]Shuwu Yang. Catalyst for the Synthesis of CF_3I and CF_3CF_2I:US,2008/0200735 A1[P]. 20080200735.
    [133]Hillary A. Prescott, Zhi-jian L, Kemnitz J L. New magnesium oxide fluorides with hydroxy group as catalysts for Michael additions. Jornal of Material Chemistry.2005,15: 4616~4628.
    [134]Young S H, Hyundamjeong Y, Hoonsikkim Y. Enhanced ctalytic ativity of ar-clined fuorination ctalyst. Journal of Catalysis.1998,175:220~225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700