复方金莲注射用粉针剂(冻干)的制备工艺和质量控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射用提取物是中药注射用粉针剂的直接原料,因此分别以总黄酮和绿原酸含量为指标,采用正交试验设计和单因素考察相结合的方法对复方金莲注射用粉针剂的2味原料药材(金莲花和金银花)的提取、纯化工艺进行考察和优化。确定金莲花注射用提取物的主要制备工艺为:金莲花药材以水为提取溶剂,提取3次,每次1 h,提取液浓缩后,经醇沉除杂,冷藏,滤过后,滤液回收乙醇,上大孔吸附树脂,收集乙醇洗脱液,干燥后得提取物。所得总固体中总黄酮的含量可达86.9%。金银花注射用提取物的主要制备工艺为:金银花药材以80%乙醇为提取溶剂,提取2次,每次1 h,提取液回收乙醇后,用0.2 mol/L HCl调pH值2~3,上大孔吸附树脂,收集乙醇洗脱液,干燥后得提取物。所得总固体中绿原酸的含量可达27.5%。
     采用冷冻干燥技术制备了复方金莲注射用粉针剂。以外观、成型性和复溶性为指标,优化冻干制剂处方,确定甘露醇(200 mg/支)为支撑剂,工艺条件为:-40℃预冻5 h,减压干燥(≦20 Pa),-20℃时保温12 h,最后于20℃保持3 h。所得产品外形饱满,成型性、复溶性良好,含水量较低。
     采用多种柱色谱分离技术,从短瓣金莲花中分离得到4个黄酮类化合物,经化学和光谱分析方法分别鉴定为:荭草苷-2″-O-β-L-半乳糖、荭草苷-2″-O-β-阿拉伯糖、荭草苷和牡荆苷,其中荭草苷-2″-O-β-阿拉伯糖为首次从金莲花属植物中分离得到。
     采用高效液相色谱法(HPLC)同时测定40个不同品种、采收期和来源的金莲花药材中的4个黄酮类成分(荭草苷2″-O-β-L-半乳糖,荭草苷-2″-O-β-阿拉伯糖,荭草苷和牡荆苷)的含量,其色谱条件为:Thermo Hypersil BDS C_(18) column(4.6 mm×250 mm,5μm)分析柱,检测波长为340 nm,流速为0.6 mL min~(-1),以乙腈-水-冰醋酸(14:86:0.05)为流动相等度洗脱。结果不同金莲花药材中4个黄酮类成分含量差异较大,该方法可用于金莲花药材的质量评价和控制。
     用C_(18)色谱柱,以乙腈-0.5%冰醋酸水溶液为流动相进行梯度洗脱,280 nm检测,建立了体现金莲花药材化学成分的HPLC指纹图谱。采用“指纹图谱相似度计算软件”分析,10批次金莲花药材的相似度在0.90以上。对其它30个不同品种及来源的金莲花药材进行了HPLC指纹图谱分析,获得反映药材化学成分信息的数据,进行相似度评价。
     采用超高效液相色谱-电喷雾离子化-串联质谱(UPLC-ESI-MS/MS)技术,对短瓣金莲花中的化学成分进行定性定量分析。色谱柱为AcQuity UPLC~(TM) BEH C_(18)柱,流动相为乙腈—0.1%冰醋酸水溶液,梯度洗脱,在全扫描模式下,获得总离子流色谱图(TIC),通过对正负离子模式下的准分子离子峰([M+H]~+和[M—H]-)的质荷比(m/z)进行分析确定了33个成分的分子量,并通过对各成分的MS和MS/MS光谱图进行分析及与文献比较,推测了其中15个成分的化学结构,分析时间为20 min。同一色谱条件下,在多反应监测(MRM)模式下实现了对其中4个黄酮类化合物的同时定量分析。
     采用UPLC-ESI-MS/MS技术,对忍冬科7个不同品种药材中的化学成分进行定性分析。通过对正负离子模式下全扫描图中所获得的质谱图进行分析,确定了33个成分的分子量,又通过分析MS/MS图及与对照品对照的方法,推测了其中22个成分的化学结构,包括6个有机酸类化合物、8个黄酮类化合物、8个环烯醚萜类化合物,分析时间为17 min。基于6个有机酸类化合物在不同品种间的含量差异,采用主成分分析法(PCA)实现了对忍冬科7个不同品种的分类判别。
     建立了复方金莲注射用粉针剂绿原酸、荭草苷、牡荆苷和指标Ⅳ4个主要的活性成分的含量测定方法,并在同一色谱条件下建立了粉针剂的指纹图谱,通过对10批粉针剂的指纹图谱的分析,确定了粉针剂指纹图谱的10个指纹峰,建立了注射剂指纹图谱的共有模式。相似度分析表明,10批粉针剂的相似度均大于0.95;注射剂和提取物的指纹图谱具有很好的相关性。该分析方法的建立为控制注射剂的制备工艺及产品的稳定性提供了保证,能够有效控制产品质量,保证临床用药的安全。
     建立了测定家兔血浆中荭草苷的HPLC-UV法,采用沉淀蛋白法进行血浆样品预处理。色谱柱为Diamonsil ODS柱(150×4.6 mm,5μm);流动相为0.1%冰醋酸-甲醇-乙腈(80:5:15,v/v)。利用该法分别研究了家兔静脉注射单体荭草苷、金莲花注射用提取物及复方金莲注射用粉针剂后的药物动力学行为。统计学检验结果表明,在所研究的剂量范围内,荭草苷在家兔体内呈非线性药物动力学特征。与给药单体荭草苷相比,给药金莲花注射用提取物和复方金莲注射用粉针剂的AUC均增加,这表明荭草苷的药动学行为受到金莲花中其他成分的影响。该研究为复方金莲注射用粉针剂的临床应用给药方案的设计提供参考。
Purified extracts for injection are direct raw materials of an injection of Traditional Chinese Medicine. Therefore, orthogonal experiment design and single factor tests were used in optimizing the extraction and purification technology for two of the medicinal materials (Flos Trollii and Flos Lonicerae) of Compound Jinlian Injection by taking the content of the total flavonoids and chlorogenic acid as the indices, respectively. The process for preparation of purified extracts from Flos Trollii for injection was as follows: dried flower of Flos Trollii was refluxed with water for 1h, and the extraction was repeated three times. The combined extracts were filtered, concentrated under reduced pressure and then deposited with ethanol aqueous solution. The filtration passed through a macroporous resin column after the ethanol was removed. The fraction of ethanol eluate from the column was collected to yield purified extract from Flos Trollii for injection. The content of the total flavonoids in total solid was 86.9%. The process for purified extracts from Flos Lonicerae for injection was as follows: Dried flower of Flos Lonieerae was refluxed with 80% ethanol for 1 h, and the extraction was repeated twice. The combined extracts were filtered and the ethanol was removed under reduced pressure. The extracts were adjusted to pH 2~3 with 0.2 mol/L HCl and then passed through a macroporous resin column. The fraction of ethanol eluate was collected to yield purified extract from Flos Lonicerae for injection. The content of chlorogenic acid in total solid was 27.5%.
     The prescription and technological process were optimized by the criterion of appearance, moisture and resolubility. Good products were produced with Mannitol (150 mg/ampule) as filler and the optimum freeze-drying process: pre-freezed for 5 h at -40℃, dried for 12 h under vacuum at -20℃and dried for another 3 h at 20℃under vacuum.
     Four flavonoids were isolated from Trollius ledibouri Reichb by using several techniques based on column chromatography. On the basis of their chemical properties and spectra, the compounds were fully characterized as orientin, vitexin, 2″-O-β-L-galactopyranosylorientin and 2″-O-β-arabinopyranosylorientin. Among them, 2″-O-β-arabinopyranosylorientin was isolated from the genus Trollius for the first time.
     A high-performance liquid chromatography (HPLC) method was developed for simultaneous quantitative determination of four flavonoids (2″-O-β-L-galactopyranosylorientin, 2″-O-β-arabinopyranosylorientin, orientin and vitexin) in Flos Trollii. The analysis was performed on a Thermo Hypersil BDS C_(18) column (4.6 mm×250 mm, 5μm) using isocratic elution with the mobile phase of acetonitrile-water-glacial acetic acid (14:86:0.05) at 340 nm. The flow rate was 0.6 mL min~(-1). The method was applied to the determination of four flavonoids in different species and different harvesting periods of Flos Trollii from multi sources. A significant variance in the contents of the flavonoids was found among the tested forty samples. The fully validated HPLC method for quantitative analyzing four flavonoids is applicable to the quality evaluation of Flos Trollii.
     The chemical variables as a whole were obtained by using HPLC fingerprint (HPLC-FPS) analysis. HPLC-FPS was developed on a C_(18) column using gradient elution with a mobile phase of acetonitrile and 0.5% acetic acid with ultraviolet detection at 280 nm. Analyzed by Computer Aided Similarity Evaluation System, good similarities with cosine coefficient above 0.90 were obtained in fingerprints of 10 batches Flos Trollii. The HPLC-FPS similarities of 30 samples of different species and different harvesting periods of Flos Trollii from multi sources were evaluated by Similarity Evaluation System.
     A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric (UPLC-ESI-MS/MS) method was developed for the qualitative and quantitative determination of the constituents of the flower of T. ledibouri Reichb. The analysis was performed on an AcQuity UPLCTM BEH C_(18) column using gradient elution with a mobile phase of 0.1% acetic acid and acetonitrile over 20 min. A tandem quadrupole spectrometer operating in either full scan mode or in MS/MS mode for multiple reaction monitoring (MRM) was used for the qualitative and quantitative analysis of the constituents, respectively. The molecular weights of the 33 constituents were concluded on the basis of their positive and negative ion electrospray mass spectra, which showed precursor ions ([M+H]~+ and [M--H]~-. The possible structures of 15 constituents were deduced on-line by careful studies on their MS and MS/MS spectra and four of them, 2″-O-β-L-galactopyranosylorientin, 2″-O-β-arabinopyranosylorientin, orientin and vitexin, were quantified.
     A UPLC-ESI-MS/MS method was developed for the qualitative identification of constituents in the fower buds of seven Lonicera species. The optimal separation and detection were achieved within 17 min. Among the 33 compounds detected, 22 constituents including 6 organic acids, 8 flavonoids and 8 iridoid glycosides were characterized based on their fragmentation patterns in collision-induced dissociation experiments and/or by comparison with standard compounds. In addition, to statistically establish the correlation and discrimination of the Lonicera species, principle component analysis (PCA) was applied in this study. Lonicera samples were divided into well-defined groups directly related to their species based on PCA in terms of the log transformed relative contents of the major organic acids as the variables. All results indicated that the method presented here is able to classify the sample species and to reveal characteristic details of the chemical constituents of different Lonicera species.
     The major active constituents (chlorogenic acid, orientin, vitexin and indexⅣ) in Compound Jinlian Injection were analyzed quantitatively by HPLC method. Under the same chromatographic conditions, the HPLC-FPS of Compound Jinlian Injection was analyzed and evaluated. Ten common peaks were achieved after analyzing 10 batches of injection samples and HPLC-FPS common pattern of the injection was developed. Analyzed by Similarity Evaluation System for Chromatographic Fingerprint of TCM of the Chinese Pharmacopoeia Committee, a similarity threshold of 0.95 was set up for Compound Jinlian Injection. Furthermore, good correaltions were found by comparing the fingerprints of Compound Jinlian Injection and purified extracts for injection. The developed method offered guarantee for the stability of the preparation technology and final products of Compound Jinlian Injection and it was beneficial to improving its quality and the clinical safety could be ensured.
     An HPLC method was developed and validated for the determination of orientin in rabbit plasma using ultraviolet (UV) detection. Protein precipitation was used as the sample preparation technique. A Diamonsil C_(18) column (150mm×4.6mm, 5μm) was equilibrated with a mobile phase composed of 0.1% acetic acid/methanol/acetonitrile (80/5/15, v/v). This validated method was successfully applied to a pharmacokinetic study in rabbits after the intravenous administrations of orientin, purified extract (TRO PE) from Flos Trollii and Compound Jinlian Injection. Orientin showed nonlinear pharmacokinetics in rabbits in the studied dose range. Significant increase in AUC was found from TROPE and Compound Jinlian Injection dosing compared with orientin dosing at the same dosage levels in the comparative pharmacokinetic study. This result indicated that the pharmacokinetic characterisitic of orientin was affected by other constituents in TROPE. The pharmacokinetic results are useful for further study of the clinical applications of Compound Jinlian Injection.
引文
[1] 杨泉海,潘力.新技术的应用与中药注射剂发展的关系——传统中医药发展中面临的困惑(之五).首都医药 2000;7(02):13.
    [2] 冯福海,武继涛.天眩清注射液治疗椎基底动脉供血不足50例.陕西中医 2002;23(10):902-3.
    [3] 刘志峰,李桂生,傅风华,刘珂.8种中药注射剂体外抗内毒素作用的观察.中草药 2002;33(01):58-9.
    [4] 张洁,孙秀珍,李雅莉.黄芪注射液治疗支气管哮喘急性发作62例.陕西中医 2002;23(10):868-9.
    [5] 唐求,陈斌,柳己海,陈志刚,潘洪,张元泽.艾迪注射液治疗晚期原发性肝癌38例临床研究.中华肿瘤防治杂志 2006;13(12):958-60.
    [6] 周小雅.中药注射剂的研究与开发.中国中医药信息杂志 1999;6(01):35-6.
    [7] 叶时英,李认书,黄水雅.中药注射剂发展现状及开发思路探讨.中国中医药信息杂志 2004;11(09):832-3.
    [8] 刘涛,凌娅,王振中.中药注射剂质量控制有关问题的探讨.临床药物治疗杂志 2006;4(06):11,21-6.
    [9] 宋冬梅,孙启时.金莲花属植物研究进展.沈阳药科大学学报 2005(03):7-11.
    [10] 国家中医药局中华本草编委会.中华本草 1998:277.
    [11] 沈志平.中药金莲花药源考证与应用.时珍国医国药 2000;11(12):1110.
    [12] 康少文,于永芳.金莲花化学成分的研究.承德医学院学报 1984;15(6):7-9.
    [13] 林秋凤,冯顺卿,李药兰,岑颖洲,杨宜婷,王凌云.金莲花抑菌抗病毒活性成分的初步研究.浙江大学学报(理学版)2004;31(04):412-5.
    [14] Cai SQ, Wang R, Yang X, Shang M, Ma C, Shoyama Y. Antiviral flavonoid-type C-glycosides from the flowers of Trollius chinensis. Chem Biodivers 2006;3(3):343-8.
    [15] 刘丽娟,王秀坤,匡海学.长瓣金莲花茎叶化学成分的研究.药学学报 1992;27(11):837-40.
    [16] 苏连杰,李滨,曲凤春,刘丽娟,杨东辉.长瓣金莲花中牡荆素-2″-木糖甙和荭草素-2″-木糖甙的分离和结构测定.中草药 1997;28(9):525-6.
    [17] 黄文哲,王磊,段金廒.短瓣金莲花化学成分的研究.中草药 2000;31(10):731-2.
    [18] 邹建华,杨峻山.短瓣金莲花的化学成分研究.中国药学杂志 2005;40(10):733-6.
    [19] Zhou X, Peng J, Fan G, Wu Y. Isolation and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. J Chromatogr A 2005; 1092(2):216-21.
    [20] Zou JH, Yang J, Zhou L. Acylated flavone C-glycosides from Trollius ledebouri. J Nat Prod 2004;67(4):664-7.
    [21] Zou JH, Yang JS, Dong YS, Zhou L, Lin G. Flavone C-glycosides from flowers of Trollius ledebouri. Phytochemistry 2005;66(10):1121-5.
    [22] 宋冬梅,孙启时.阿尔泰金莲花化学成分的研究(Ⅰ).中国药物化学杂志 2004;14(04):233-5.
    [23] 任正博,张振学,周伟利,王金辉.金莲花化学成分研究.中国现代中药 2006;8(02):14-5.
    [24] Wang RF, Yang XW, Ma CM, Liu HY, Shang MY, Zhang QY, Cai SQ, Park JH. Trollioside, a new compound from the flowers of Trollius chinensis. J Asian Nat Prod Res 2004;6(2):139-44.
    [25] 李药兰,叶绍明,王凌云,岑颖洲.长瓣金莲花中原金莲酸的分离和生物活性.暨南大学学报 2002;23(01):124-6.
    [26] Wang R, Yang X. A bioactive alkaloid from the flowers of Trollius Chinensis. Heterocycles 2004;63(6):1443-8.
    [27] 张大军,王兆华,张育新.长瓣金莲花挥发油成分的研究.中草药 1991(4):172.
    [28] 周炎勋,任晓伟,李莉茜.蒙药金莲花中九种元素的含量分析.中国民族医药杂志 2000(S1):74.
    [29] Zou JH, Yang JS, Zhou L, Lin G. A new labdane type diterpenoid from Trollius ledebouri. Nat Prod Res 2006;20(12):1031-5.
    [30] 吴新安,赵毅民.短瓣金链花的化学成分研究.中草药 2005;36(03):344-5.
    [31] 林晨,沈伟哉,李药兰,杨宜婷,江振友,岑颖洲,李小兰,袁桂秀.不同溶媒中金莲花提取物体外抑菌作用的比较.暨南大学学报(自然科学与医学版) 2001;22(06):54-5.
    [32] 刘丽娟,王秀坤.金莲花茎叶的抑菌作用研究.中医药学报 1992(3):33-4.
    [33] 苏连杰,刘丽娟,郭桂滨,张平,李艳波.长瓣金莲花不同药用部位的综合研究.中医药信息 1996;13(02):49-50.
    [34] 温云海,林岳生,黄海,刘小朋,魏国志,付芬兰,吴佩环,杨才生.金莲花水浸提取液抗病毒的实验研究.中华微生物学和免疫学杂志 1999;19(01):21.
    [35] Li YL, Ma SC, Yang YT, Ye SM, But PP. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J Ethnopharmacol 2002;79(3):365-8.
    [36] 唐津忠,鲁晓翔,陈瑞芳.金莲花中黄酮类化合物的提取及其抗氧化性研究.食品科学 2003;24(06):89-91.
    [37] 北京制药厂.金莲花的药理试验和临床观察报告.新医药学杂志 1973(5):31-4.
    [38] 黄敬,雍爱琳,李艾珍,李明花.金莲花黄酮膜剂治疗慢性支气管炎的疗效观察——兼作用机理的初步探讨.承德医学院学报 1984(01):47-54.
    [39] 王平.金莲花冲剂治疗上呼吸道感染疗效观察.中成药 1996(03):50.
    [40] 王平.金莲花冲剂治疗泌尿系感染疗效观察.中成药 1995(08):51.
    [41] 杨洗尘,佟义如.长瓣金莲花抑菌试验和临床观察.中成药 1982(05):42.
    [42] 周雪梅,李建成,张丽华.蒙药金莲花片质量标准的研究.中国民族医药杂志 1999;5 (03):42-3.
    [43] 鞠爱华,杨来秀,渠弼,栗志文,吴佳升.金莲花袋泡剂中总黄酮的含量测定.中成药 1999;21(04):207-8.
    [44] 白云娥,漆小梅,高运玲.金莲花总黄酮成分的含量测定.山西医科大学学报 2000;31(06):502-4.
    [45] 李守拙.金莲花片剂中总黄酮甙含量测定.中成药 1988(04):17-8.
    [46] 白云娥,漆小梅,史旭军,李青山.金莲花中多糖的含量测定.中国医院药学杂志 2006;26(01):19-20.
    [47] 王凌云,叶绍明,李药兰,岑颖洲.薄层扫描法测定长瓣金莲花中牡荆甙和荭草甙的含量.暨南大学学报 2002;23(03):98-9.
    [48] 黄文哲,梁旭.HPLC测定短瓣金莲花中两种黄酮苷的含量.中国药学杂志 2000;35(10):658-9.
    [49] 王萍,刘智,王丽,李雯.反相高效液相色谱法测定金莲花胶囊中牡荆苷的含量.贵阳医学院学报 2004;29(04):333-4.
    [50] 刘智,王丽,李雯,黄勇,许祖超.HPLC测定金莲花制剂中荭草苷和牡荆苷的含量.中国中药杂志 2004;29(11):1049-51.
    [51] 杨雅信,张贵君.金莲花中荭草素-2″-0-β-L-半乳糖苷的含量测定.中药材 2006;29(12):1312-3.
    [52] 沈洪宽,刘艳新.金莲花质量标准研究.黑龙江医药科学 2007;30(01):62.
    [53] 马英丽,胡冰,田振坤,苏连杰.金莲花药材HPLC指纹图谱研究.中草药 2006;37(12):1873-5.
    [54] 聂波,张贵君,孙素琴,周群,丁万隆.不同金莲花药材的IR鉴别研究.中药材 2006;29(04):323-6.
    [55] 刘元,侯滨滨.关于金莲花中提取黄酮类化合物的研究.食品研究与开发 2005;26(06):33-7.
    [56] 刘丽娜,蒋柏泉,白兰莉.水提法从金莲花中提取黄酮的研究.江西化工 2006(02):46-7.
    [57] 原雪梅,于翔龙,徐晓,陈国芳,张怡.金莲花中总黄酮提取工艺探讨.中国林副特产 1999(04):10-1.
    [58] 林秋凤,王凌云,李药兰,岑颖洲.AB-8大孔吸附树脂分离长瓣金莲花总黄酮.暨南大学学报 2003;24(01):55-8.
    [59] 白云娥,漆小梅,赵华,高建平,李青山.聚酰胺分离金莲花总黄酮.中国医院药学杂志 2006;26(05):512-4.
    [60] 刘丹,彭定伟,齐刚.金银花的研究进展.武警医学院学报 2005;14(01):78-80.
    [61] 张会敏,石俊英.近五年金银花研究进展.食品与药品 2006;8(12A):11-4.
    [62] 刑学锋,陈飞龙,安春志,罗佳波.河南省密县金银花挥发油化学成分研究.第一军医大学 分校学报 2005;28(2):114-5.
    [63] 邢俊波,李会军,李萍,刘云.忍冬花蕾化学成分研究.中国新药杂志 2002;11(11):856-9.
    [64] 陈君,许小方,柴兴云.灰毡毛忍冬花蕾的化学成分.中国天然药物 2006;4(05):347-51.
    [65] 黄丽瑛,吕植桢,李继彪,周炳南.中药金银花化学成分的研究.中草药 1996;27(11):645-7.
    [66] 刘佳川,于丽丽.金银花的化学成分研究.渤海大学学报(自然科学版)2006;27(02):109-10.
    [67] 张体灯,潘瑞娥,毕志明,李会军.金花忍冬地上部分的黄酮类成分研究.中国药学杂志 2006;41(10):741-3.
    [68] 毕跃峰,田野,裴姗姗,张聪,刘宏民.金银花化学成分分析.郑州大学学报(理学版) 2007;39(02):184-6.
    [69] 陈敏.灰毡毛忍冬化学成分研究.药学学报 1994;29(8):617.
    [70] 李会军.金银花中一个罕见的二聚体环烯醚萜苷.中国药学杂志 2006;41(11):818-9.
    [71] 李会军,李萍,王闽川,叶文才.金银花中一个新的裂环环烯醚萜苷(英文).中国天然药物 2003;1(03):132-3.
    [72] Kakuda R, Imai M, Yaoita Y, Machida K, Kikuchi M. Secoiridoid glycosides from the flower buds of Lonicera japonica. Phytochemistry 2000;55(8):879-81.
    [73] Lee JS, Kim HJ, Woo ER, Park YA, Lee YS, Park H. 7-feruloylloganin: an iridoid glucoside from stems of Lonicera insularis. Planta Med 2001;67(1):99-102.
    [74] Kumar S, Sati OP, Semwal VD, Nautiyal M, Sati S, Takeda Y. Iridoid glycosides from Lonicera quinquelocularis. Phytochemistry 2000;53(4):499-501.
    [75] 王玉莉,戴静秋,侯立芬,杨立.金花忍冬中一个新的二聚体环烯醚萜甙的2D NMR研究.波谱学杂志 2003;20(02):137-41.
    [76] Prasad D, Juyal V, Singh R, Singh V, Pant G, Rawat MS. A new secoiridoid glycoside from Lonicera angustifolia. Fitoterapia 2000;71(4):420-4.
    [77] Xiang T, Tezuka Y, Wu L J, Banskota AH, Kadota S. Saponins from Lonicera bournei. Phytochemistry 2000;54(8):795-9.
    [78] 钱正明,李会军,李萍,贺清辉,齐芳芳.红花忍冬的三萜类成分研究.林产化学与工业 2006;26(04):23-5.
    [79] 杨军娣.灰毡毛忍冬的高效液相色谱指纹图谱研究.药学与临床研究 2007;15(01):42-4.
    [80] 孙国祥,杨宏涛,邓湘昱,孙毓庆.金银花的毛细管电泳指纹图谱研究.色谱 2007;25(01):96-100.
    [81] 容蓉,闫斌,吕青涛,杨勇,孙玉波.不同产地金银花药材的HPCE指纹图谱分析.化学分析计量 2006;15(06):66-8.
    [82] 段和祥,刘永锁,罗国安,王义明.程度相似度结合聚类分析在金银花药材质量评价中的应用.中成药 2007;29(03):318-21.
    [83] 张尊建,余静,杨春华,王兴旺,徐向阳,张蕙.忍冬、山银花HPLC/UV/MS指纹图谱研究.中成药 2003;25(11):863-5.
    [84] 杨红娟,李发美.几种金银花的模式识别.沈阳药科大学学报 2003;20(01):19-22.
    [85] 梁生旺,崔永霞,王淑美,吴明侠.金银花的HPLC药效指纹图谱研究.中草药 2006;37(10):1489-93.
    [86] Li F, Yuan B, Xiong Z, Lu X, Qin F, Chen H, Liu Z. Fingerprint analysis of Flos Lonicerae japonicae using binary HPLC profiling. Biomed Chromatogr 2006;20(6-7):634-41.
    [87] 孟彦,徐军,李天锡.反相高效液相色谱法测定金银花中绿原酸的含量.药物分析杂志 1998(S1):219.
    [88] 王德先,赵敬湘,杨更亮,张婷.毛细管区带电泳法测定中药金银花中绿原酸的含量.中草药 2000;31(06):432.
    [89] 王天志,李永梅,王志霄.金银花中3种有机酸的反相高效液相色谱法定量分析.药物分析杂志 2000;20(05):293-6.
    [90] 刘永刚,卢建秋,高晓燕,乔延江,刘倩,孙严彤.HPLC-MS~n法分析不同时期金银花中酸性成分及含量变化.西部药学 2006;13(03):174-6.
    [91] 刘永刚,卢建秋,高晓燕,乔延江,刘倩,孙严彤.高效液相色谱-电喷雾电离质谱法分析不同时期金银花中酸性成分及含量变化.中国药房 2006;17(22):1756-7.
    [92] 胥秀英,郑一敏,傅善权,杨艳红.高效液相色谱法测定金银花中木犀草素的含量.食品科学 2006;27(05):221-2.
    [93] 郭朝晖,蒋生祥.高效液相色谱法测定甘肃金银花中槲皮素和木樨草素的含量.时珍国医国药 2006;17(04):552-3.
    [94] 方传代,邹盛勤.反相高效液相色谱法测定金银花中黄酮类成分的含量.安徽农业科学 2006;34(11):2321-2.
    [95] 金晓玲,王宇峰.HPLC法测定金银花中木犀草苷的含量.数理医药学杂志 2006;19(06):637.
    [96] 黄雄,李萍,张重义,李会军.HPLC同时分析金银花中绿原酸和黄酮类成分的方法建立及其应用.中国药学杂志 2005;40(10):780-2.
    [97] 黄雄,李松林,李萍,李会军,柴兴云,宋越.HPLC法同时测定金银花中8种黄酮的含量(英文).药学学报 2005;40(03):285-8.
    [98] 陈军,马双成.HPLC法测定忍冬藤中当药苷和马钱苷的含量.药物分析杂志 2005;25(12):1451.
    [99] Chai XY, Li SL, Li P. Quality evaluation of Flos lonicerae through a simultaneous determination of seven saponins by HPLC with ELSD. J Chromatogr A 2005;1070(1-2):43-8.
    [100] Li HJ, Li P, Ye WC. Determination of five major iridoid glucosides in Flos Lonicerae by high-performance liquid chromatography coupled with evaporative light scattering detection. J Chromatogr A 2003; 1008(2):167-72.
    [101] Song Y, Li SL, Wu M, Li HJ, Li P. Qualitative and quantitative analysis of iridoid glycosedes in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector. Analytica Chimica Acta 2006; 564: 211-8.
    [102] 胡秋芬,杨光宇,黄章杰,李海涛,尹家元.微柱高效液相色谱法测定金银花中的多酚类物质.分析化学 2005;33(01):69-72.
    [103] Yao X, Gongyu G, Chen G. Determination of active constituents in Lonicera confusa DC. by capillary electrophoresis with amperometric detection. Biomed Chromatogr 2006; 20(11): 1192-9.
    [104] Exarchou V, Fiamegos YC, van Beek TA, Nanos C, Vervoort J. Hyphenated chromatographic techniques for the rapid screening and identification of antioxidants in methanolic extracts of pharmaceutically used plants. J Chromatogr A 2006; 1112(1-2): 293-302.
    [105] 府旗中,王伯初,许祥武.应用超声波法提取金银花中绿原酸.重庆大学学报(自然科学版)2007;30(01):123-5.
    [106] 杨志学,万顺,张亮君.正交试验优选金银花中总黄酮的最佳提取工艺.中国民族医药杂志2004(S1):186-8.
    [107] 陈有根,王志斌,戴俊东.3种经典工艺生产的金银花提取物中绿原酸类成分含量比较.中成药 2007;29(03):362-4.
    [108] 许东颖,盛家荣,覃永周.金银花中绿原酸提取方法的比较和优化研究.广西师范学院学报(自然科学版) 2003;20(02):17-20.
    [109] 白海波,王剑飞,周蒂.金银花提取条件对绿原酸含量的影响.中国现代应用药学 2003;20(02):130-2.
    [110] 阎东海.提取三要素在金银花提取过程中对氯原酸提出率及稳定性的相关性研究.中国中药杂志 1994;19(09):545-7.
    [111] 林缎嫦,宋劲诗,吴应 金银花中绿原酸提取工艺探讨.中成药 1994;16(07):2-3,58.
    [112] 阎巧娟,韩鲁佳,江正强.金银花中绿原酸提取纯化工艺的优化.中国农业大学学报 2002;7(02):22-6.
    [113] 刘恩荔,李青山.大孔吸附树脂分离纯化金银花中总有机酸的研究.中草药 2006;37(12):1792-6.
    [114] 邢俊波,李萍,刘云.正交实验法优选金银花中绿原酸提取工艺的研究.时珍国医国药2002(06).
    [115] Webby RF, Markham KR. Isoswertiajaponin 2"-O-beta-arabinopyranoside and other flavone-C-glycosides from the Antarctic grass Deschampsia antarctica. Phytochemistry 1994; 36 (5): 1323-6.
    [116] 苏连杰,李春,刘丽娟,许桂兰.长瓣金莲花中荭草甙和牡荆甙的含量测定.中草药 1997;28(03):151-2.
    [117] 杨宜婷,叶绍明,李药兰,岑颖洲.长瓣金莲花中总黄酮的含量测定.中药材 2000;23(12):758-9.
    [118] Hsieh YJ, Lin LC, Tsai TH. Determination and identification of plumbagin from the roots of Plumbago zeylanica L. by liquid chromatography with tandem mass spectrometry. J Chromatogr A 2005; 1083(1-2): 141-5.
    [119] Ong ES, Ong CN. Qualitative and quantitative analysis of toosendanin in Melia toosendan Sieb. Et Zucc (Meliaceae) with liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2007;21 (4):589-98.
    
    [120] Hu P, Luo GA, Zhao ZZ, Jiang ZH. Quantitative determination of four diterpenoids in Radix Salviae Miltiorrhizae using LC-MS-MS. Chem Pharm Bull (Tokyo) 2005;53 (6):705-9.
    
    [121] Wren SA. Peak capacity in gradient ultra performance liquid chromatography (UPLC). J Pharm Biomed Anal 2005;38 (2):337-43.
    
    [122] Clifford MN, Knight S, Surucu B, Kuhnert N. Characterization by LC-MS(n) of four new classes of chlorogenic acids in green coffee beans: dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. J Agric Food Chem 2006;54 (6): 1957-69.
    
    [123] Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS(n). J Agric Food Chem 2005;53 (10):3821-32.
    
    [124] Clifford MN, Johnston KL, Knight S, Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 2003 ;51 (10):2900-11.
    
    [125] March R, Levars E, Stadey C, Miao X, Zhao X, Metcalfe C. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. International Journal of Mass Spectrometry 2006 (248):61-85.
    
    [126] Ye M, Yan Y, Guo DA. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2005;19 (11):1469-84.
    
    [127] Suryawanshi S, Mehrotra N, Asthana RK, Gupta RC. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic. Rapid Commun Mass Spectrom 2006;20 (24):3761-8.
    
    [128] Chang WT, Thissen U, Ehlert KA, Koek MM, Jellema RH, Hankemeier T, van der Greef J, Wang M. Effects of growth conditions and processing on Rehmannia glutinosa using fingerprint strategy. Planta Med 2006;72 (5):458-67.
    
    [129] Yan SK, Xin WF, Luo GA, Wang YM, Cheng YY. An approach to develop two-dimensional fingerprint for the quality control of Qingkailing injection by high-performance liquid chromatography with diode array detection. J Chromatogr A 2005; 1090 (1-2):90-7.
    
    [130] Chan EC, Yap SL, Lau AJ, Leow PC, Toh DF, Koh HL. Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Commun Mass Spectrom 2007;21 (4):519-28.
    
    [131] Li F, Lu X, Liu H, Liu M, Xiong Z. A pharmaco-metabonomic study on the therapeutic basis and metabolic effects of Epimedium brevicornum Maxim, on hydrocortisone-induced rat using UPLC-MS. Biomed Chromatogr 2007;21 (4):397-405.
    
    [132] Wei MJ, Luo X, Wang X, Zhu JS. [Study of chemical pattern recognition as applied to quality assessment of the traditional Chinese medicine "wei ling xian"]. Yao Xue Xue Bao 1991;26 (10):772-6.
    
    [133] Dietrych-Szostak D, Oleszek W. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. J Agric Food Chem 1999;47 (10):4384-7.
    
    [134] Nassar MI, Abdel-Razik AF, El-Khrisy Eel D, Dawidar AA, Bystrom A, Mabry TJ. A benzoquinone and flavonoids from Cyperus alopecuroides. Phytochemistry 2002;60 (4):385-7.
    [135] Budzianowski J, Budzianowska A, Kromer K. Naphthalene glucoside and other phenolics from the shoot and callus cultures of Drosophyllum lusitanicum. Phytochemistry 2002;61 (4):421-5.
    
    [136] Latte KP, Ferreira D, Venkatraman MS, Kolodziej H. O-Galloyl-C-glycosylflavones from Pelargonium reniforme. Phytochemistry 2002;59 (4):419-24.
    
    [137] Mun'im A, Negishi O, Ozawa T. Antioxidative compounds from Crotalaria sessiliflora. Biosci Biotechnol Biochem 2003;67 (2):410-4.
    
    [138] McNally DJ, Wurms KV, Labbe C, Quideau S, Belanger RR. Complex C-glycosyl flavonoid phytoalexins from Cucumis sativus. J Nat Prod 2003;66 (9): 1280-3.
    
    [139] Cheel J, Theoduloz C, Rodriguez J, Schmeda-Hirschmann G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.). J Agric Food Chem 2005;53 (7):2511-7.
    
    [140] Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat Res 2000; 154 (4):455-60.
    
    [141] Uma Devi P, Satyamitra M. Protection against prenatal irradiation-induced genomic instability and its consequences in adult mice by Ocimum flavonoids, orientin and vicenin. Int J Radiat Biol 2004;80 (9):653-62.
    
    [142] Fu XC, Wang MW, Li SP, Zhang Y, Wang HL. Vasodilatation produced by orientin and its mechanism study. Biol Pharm Bull 2005;28 (1):37-41.
    
    [143] Nayak V, Devi PU. Protection of mouse bone marrow against radiation-induced chromosome damage and stem cell death by the ocimum flavonoids orientin and vicenin. Radiat Res 2005; 163 (2):165-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700