新型过渡金属配合物的合成及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从顺铂应用于临床以来,以金属为基础的抗癌药物引起人们极大关注。近年研究表明某些铜、锌和金等金属配合物能够抑制肿瘤细胞的蛋白酶体活性,从而诱导癌细胞凋亡。泛素-蛋白酶体通路(Ubiquitin proteasome pathway)是真核细胞蛋白质降解的重要途径。它的主要组成部分20S蛋白酶体,是一种高分子量的蛋白酶,其蛋白水解核包含的亚基包括β1、β2和β5,分别与caspase活性、trypsin活性和chymotrypsin (CT)活性相关。特异性抑制蛋白酶体CT活性,可以抑制肿瘤细胞生长,从而诱导肿瘤细胞凋亡。泛素-蛋白酶体系统作为一种新型的分子靶标已被广泛地研究。因此,设计、合成新型金属配合物作为蛋白酶体抑制剂,对抗肿瘤活性药物的研究具有重要的意义。
     本论文以具有良好生物活性的化合物为配体,合成了一系列具有潜在抗癌活性的过渡金属配合物。考察了所合成配合物对人癌细胞增殖、蛋白酶体抑制和诱导细胞凋亡的能力,深入研究了抗肿瘤作用机制,确定了这些配合物的抗肿瘤作用靶标为蛋白酶体。具体内容如下:
     (1)利用植物生长激素3-吲哚乙酸、3-吲哚丙酸和3-吲哚丁酸作为配体,合成了二元双核铜配合物和三元铜配合物。探讨了配合物的结构对其转移铜进入癌细胞的影响。研究了配体以及铜配合物抑制人前列腺癌PC3细胞增殖能力,抑制纯化的20S蛋白酶体CT活性和细胞内蛋白酶活性能力以及诱导细胞凋亡的能力;比较了三元铜配合物对人乳腺癌MDA MB231和正常乳腺MCF10A细胞的毒性作用。结果表明:以1,10-邻菲啰啉作为第二配体的三元铜配合物能促进癌细胞吸收铜,从而抑制前列腺癌和乳腺癌细胞的蛋白酶体活性进而诱导癌细胞凋亡,三元铜配合物对正常细胞毒性较小。此类三元铜配合物有望成为临床上治疗前列腺癌和乳腺癌的潜在药物。
     (2)以3-吲哚丁酸(L1)和3-吲哚丙酸(L2)为配体合成了铜、锌和镉金属配合物。通过MTT法、细胞内蛋白酶体CT活性的测定、免疫蛋白印迹分析,比较了具有相似结构的铜、锌和镉金属配合物对乳腺癌阳性MCF7和阴性MDA MB231细胞增殖和蛋白酶体活性的抑制作用,发现两种镉配合物具有良好的抑制癌细胞增殖和蛋白酶体活性的能力。研究了镉配合物抑制纯化的20S蛋白酶体活性的作用,并通过电子云密度分析初步解释为什么镉配合物可以作为蛋白酶体活性的抑制剂。进一步考察了这两种镉配合物抑制细胞内蛋白酶体CT活性和诱导肿瘤细胞凋亡的能力,结果表明这两种镉配合物可以作为良好的蛋白酶体抑制剂和细胞凋亡的诱导剂,而且对正常细胞MCF10A的毒性相对较小。
     (3)以第四代头孢菌素头孢吡肟与铜、锌、镍、镉等过渡金属盐混合液作为研究对象,探讨这些混合液抑制阴性乳腺癌MDA MB231细胞增殖的能力。筛选得出头孢吡肟Mn(Ⅱ)混合液具有较强的抑制癌细胞增殖能力。进而研究了头孢吡肟Mn(Ⅱ)混合液抑制纯化的20S蛋白酶体CT活性和细胞内蛋白酶体CT活性以及诱导细胞凋亡能力。结果表明:头孢吡肟Mn(Ⅱ)混合液可以通过抑制乳腺癌MDA MB231细胞的蛋白酶体活性来诱导癌细胞凋亡。通过对乳腺癌细胞MDA MB231和正常细胞MCF10A对比,表明头孢吡肟Mn(Ⅱ)混合液对正常乳腺细胞的毒性较小。
     (4)合成了3,5-二氨基苯甲酸希夫碱铜、锌等过渡金属配合物。研究了它们抑制细胞增殖能力,筛选出抑制活性较强的配合物为3,5-二氨基苯甲酸缩水杨醛希夫碱镉配合物(LA5)和3,5-二氨基苯甲酸缩邻香草醛希夫碱镉配合物(LC3)。考察了它们对体外纯化20S蛋白酶体抑制活性,结果表明它们对纯化的20S蛋白酶体的抑制作用呈浓度依赖方式。LA5和LC3作用于人乳腺癌细胞MDA MB231的实验表明,二者以浓度及时间依赖方式抑制人乳腺癌细胞MDA MB231内蛋白酶体的CT活性进而诱导癌细胞凋亡。通过研究LC3作用于正常细胞MCF10A,得出配合物LC3对正常细胞的毒性相对较小。
     (5)探讨了二甲双胍(Metformin)和5-氨基-4-甲酰胺咪唑核糖核苷酸(AICAR)处理前列腺癌细胞后,引起雄激素受体(Androgen receptor, AR)阳性和阴性细胞的不同敏感性以及不同磷酸腺苷活化的蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)激活效应。结果表明AR在调节前列腺癌细胞对二甲双胍敏感性中起着重要的作用。在前列腺癌细胞中,AMPK激活和AR的存在之间存在很强的相关性,从而导致前列腺癌细胞对二甲双胍的敏感性差异。AR影响AMPK激活剂对AMPK的激活,迅速和长期的激活AMPK可能需要雄激素受体AR的存在。研究表明AR决定前列腺癌细胞对AMPK激活剂的敏感度,长时间的AMPK激活会导致AR蛋白降解。这些发现将有助于在不同的遗传背景和不同的病理阶段阐明前列腺癌中AMPK的作用,最终促进二甲双胍或其他AMPK激活剂在治疗前列腺癌中的临床应用。
Metal-based anti-cancer drugs were developed many years ago. In recent years, the study hasshown that a number of the metal-based drugs, including organic copper-, zinc-, and gold-basedcomplexes, are capable of inhibiting the tumor cell proteasome, thereby inducing cancer celldeath. Ubiquitin proteasome pathway is the major proteolytic mechanism which plays a criticalrole in the degradation of the proteins. The20S proteasome, the main component of the UP-S, isa high molecular weight protease complex with a proteolytic core containing subunits includingβ1, β2and β5, which are responsible for its caspase-like, trypsin-like and chymotrypsin-like(CT-like) activities, respectively. It is well established that inhibition of the β5proteasomalsubunit, and therefore its CT-like activity, is primarily associated with apoptosis induction intumor cells. The ubiquitin proteasome pathway has therefore been extensively studied as a novelmolecular target for the development of novel drugs in an attempt to restore protein homeostasisas the ultimate therapeutic strategy.
     In the current study, several transition metal complexes are synthesised which may havepotential anticancer activities. The abilities to inhibit cell proliferation, chymotrypsin-likeactivity of proteasome and induce apoptosis are investigated in human cancer cells. Themechanism of these complexes to inhibit proteasome and induce apoptosis in cancer cells arestudied, and make sure the antitumor target is proteasome.
     The details of the contents are as follows,
     (1) Two types of copper complexes, dinuclear complexes and ternary complexes aresynthesized, to investigate whether a certain structure could easily carry copper into cancer cellsand consequently inhibit tumor proteasome activity and induce apoptosis. The abilities of theligands and copper complexes to inhibit cell proliferation in human prostate cancer PC3cells andchymotrypsin-like activity of purified20S proteasome are investigated firstly. Furthermore, theproteasome-inhibitory and apoptosis–inducing activities of these compounds in the PC3prostatecancer cells are studied. Finally, compare the effects of proteasome inhibition and apoptosisinduction in breast cancer MDA MB231cells and normal MCF10A cells with ternarycomplexes. The new findings suggest that (i) copper binding with1,10-phenanthroline as the third ligand could promote tumor cells to uptake copper, resulting in potent proteasomeinhibition and apoptosis induction in cancer cells, and (ii) breast cancer MDA MB231cells aremore sensitive to the novel candidates ternary complexes than non-tumorigenic cells, suggestingtumor-selective targeting.
     (2) Novel metal-containing complexes are synthesized by using indole-3-butyric acid (L1)and indole-3-propionic acid (L2) respectively, as ligands. These Cd complexes are potentinhibitors of the proteasome and inducers of apoptosis, effects which appear to be specific totumor cells. Then use proteasome activity, MTT assay and western blot to compare the ability ofthe similar metal complexes containing copper (Cu), zinc (Zn) or Cd to inhibit breast cancer cellproliferation using the estrogen receptor (ER)-positive MCF7and ER-negative MDA MB231breast cancer cell lines. Of the compounds tested, the Cd-containing versions appear to be themost potent inhibitors of cellular proteasome CT-like activity and effective inducers of apoptosisin breast cancer cells, but not in non-tumorigenic breast epithelial MCF10A cells. Additionally,these newly synthesized Cd compounds are superior in potency and cancer selectivity to theDSF-Cd mixture.
     (3) The ligands (Cefepime) and the mixture of the transition metal with the ligands havebeen prepared. The activity of proteasome inhibition and the apoptosis induction in human breastcancer MDA MB231cells by the mixture are studied. Firstly, compare the ability of thedifferent metal complexes to inhibit breast cancer cell proliferation using the estrogen receptorER-negative MDA MB231breast cancer cell lines. All the results showed that only manganesemixture could inhibit cell proliferation in human breast cancer MDA MB231, and the calpainprotein which plays a critical role in apoptosis involve in manganese mixture induce apoptosis.Finally, compare the effects of the manganese mixture in breast cancer MDA MB231cells withthe effects in non-tumorigenic MCF10A cells. The results also clearly shows that theseimmortalized breast cells remain unharmed and are insensitive to the cytotoxic effects of themanganese mixture.
     (4)3,5-diaminobenzoic acid Schiff base complexes are synthesized, and their cellproliferation inhibition activity are studied firstly. The results show that LA5and LC3cadmiumcomplexes have anti-proliferation activity in cancer cells. The experiment also show that LC3potently inhibits chymotrypsin-like activity of20S proteasome and induce apoptosis in humanbreast cancer MDA MB231in dose and time dependent manner; finally, compare the effects of LC3in breast cancer MDA MB231cells with the effects in non-tumorigenic MCF10A cells.These immortalized breast cells remain unharmed and are insensitive to the cytotoxic effects ofLC3. These results support the notion that LC3induce proteasome inhibition, followed byapoptosis induction in breast tumor cells.
     (5) The study on metformin treatment induced greater levels of growth arrest and cell deathin AR positive PCa cells than AR-negative PCa cells. The results clearly shows AR might play arole in mediating differential sensitivity of PCa cells to metformin. Then investigate the differentAMPK activation profiles in AR-positive and AR-negative PCa cells after metformin or AICARtreatment. The results suggest AR influences AMPK activation profile in response to AMPKactivators in PCa cells and the presence of AR is likely required for prompt and prolong AMPKactivation. In summary, the current study demonstrates that AR is involved in determine thesensitivity of prostate cancer cells to AMPK activator and that prolonged AMPK activation leadsto AR degradation. These findings will help elucidate the role of AMPK in prostate cancer withdifferent genetic background and different pathological stages and eventually promote theclinical application of metformin or other AMPK activator in prostate cancer on a personalizedbasis.
引文
[1]罗勤慧等.配位化学.北京:科学出版社,2012.
    [2]章慧等.配位化学-原理和应用.北京:化学工业出版社,2009.
    [3] Dariusz P.L., Marek M., Grzegorz M., etal. New unsymmetrical Schiff base Ni(II) complexesas scaffolds for dendritic and amino acid superstructure. New. J. Chem.,2004,12(28):1615-1621.
    [4]潘再富,刘伟平,陈家林,夏永明.铂族金属均相催化剂的研究和应用.贵金属,2009,30(3):41-49.
    [5] Wilkinson S., Stone G. F., Abel E. W. The synthesis, Reaction, Properties and Application ofCoordinate Compounds. Comprehensive Coordination Chemistry. France: Pergamon Press,1987.
    [6] Dietrich B., Vion P., Lehn L.M. Macrocyclic Chemistry. Gremany: Federal Republic,1993.
    [7]胡红雨.无机探针在生物大分子研究中的应用.大学化学,1991,6(1):32-34.
    [8]杨懿焜,熊惠周,江敦润,熊嘉骢.顺式—二氯·二氨合铂的合成和鉴定.贵金属,1982,8(2):14-20.
    [9]徐刚,崔玉波,崔凯,苟少华.非铂类金属抗肿瘤药物的研究进展.化学进展,2006,18(1):107-113.
    [10] Proksch P., Edrada R. A., Ebel R. Drugs from the sea–current status and microbiologicalimplications. Appl Microb Biotechnol.,2002,59(23):125-134.
    [11] Haefner B. Drugs from the deep: marine natural products as drug candidates. DDT.,2003,8(12):536-544.
    [12]王长云,耿美玉,管华诗.海洋药物研究进展与发展趋势.中国新药杂志,2005,14(3):278-182.
    [13]万茂盛.含氮杂环化合物-吲哚及吡唑衍生物的合成与生物活性研究:[硕士学位论文].济南:山东大学,2006.
    [14] Laramie M., Gaster, Graham F. N-[(1-Butyl-4-piperidinyl) methyl]-3,4-dihydro-2H-[1,3] oxazino [3,2-a] indole-10carboxamide hydrochloride: the first potent and selective5-HT4receptor antagonist amide with oral activity. J. Med. Chem.,1995,38(24):4760-4763.
    [15] Solanki A. K., Bhandari A. M. Indole3-acetates and indole3-butyrates of lanthanides. J.Inorg. Nucl. Chem.,1979,41(9):1311.
    [16]张爱萍,杨频,王越奎.吲哚羧酸铜、锌配合物的核磁共振光谱分析.山西医科大学学报,1997,28(4):260-262.
    [17]王流芳,吴集贵,马娴贤,任艳平,晏国洪.1-氨基-2-萘酚-4-磺酸邻菲啰啉稀土配合物的合成及性质.高等学校化学学报,1988,9(6):534.
    [18]张宏,彭金华,宋之刚.吲哚-3-乙酸邻菲啰啉镧三元配合物的合成及其生物活性.西北师范大学学报(自然科学版),2001,37(1):63-66.
    [19]张兵.吲哚-3-羧酸、Nd(Ⅲ)、邻菲咯啉配合物结构的XPS研究.化学物理学报,1997,10(3):265-268.
    [20]张宏,彭金华,王兰香,宋之刚.吲哚-3-丁酸邻菲口罗啉镧三元配合物的合成、表征和生物活性.甘肃教育学院学报(自然科学版),2000,14(3):37-41.
    [21]白凤英,吕晓,刘淑清,李晓天.以吲哚乙酸及邻菲啰啉为配体的镉配合物的合成、结构、荧光性质与抑菌活性研究.无机化学学报,2011,27(7):1261-1264.
    [22]张尔贤,俞丽君.海洋生物活性物质开发利用的现状与前景.台湾海峡,2000,19(3):388-395.
    [23]尤启东,彭司勋.药物化学.北京:化学工业出版社,2004.
    [24] Anacona J. R., Gladys D. S. Synthesis and antibacterial activity of cefotaxime metalcomplexes. Transition Metal Chemistry.,2005,30(7):897-901.
    [25]李宏宇.头孢曲松稀土配合物的合成、表征及活性研究:[硕士学位论文].太原:山西医科大学,2007.
    [26] Ahmed H. O.,Aref A. M., Nagwa A. E., Gamil A. A. An Investigation of the Cu(Ⅱ)Complexes of certain cephalosporin antibiotics: spectral, thermal, and photochemical studies.Synthesis and reactivity in inorganic and metal‐organic chemistry,2002,32(7):1289-1300.
    [27] Ahmed H. O., Nagwa A. E., Aref A. M. Gamil A. A. Spectral, thermal, and photochemicalstudies on certain first, second, and third generation cephalosporin antibiotics and their the Cd(Ⅱ)Complexes. Synthesis and reactivity in inorganic and metal‐organic chemistry,2002,32(4):763-781.
    [28] El-Maali N. A., Osman A. H., Al-Hazm G.A. Voltammetric analysis of Cu (II), Cd (II) andZn (II) complexes and their cyclic voltammetry with several cephalosporin antibioticsBioelectrochemistry,2005,65(8):95-104.
    [29] Rosenberg B., VanCamp L., Krigas T. Inhibition of Cell Division in Escherichia coli byElectrolysis Products from a Platinum Electrode. Nature,1965,205:698-699.
    [30] Schiff H. Annis Chem,1864,131,118
    [31] Drew M. G., Esho F. S., Nelson S. M. Trihapto-hexahapto fluxional behavior of amacrocyclic ligand: template synthesis, proton nuclear magnetic resonance spectra, and thecrystal and molecular structure of an eleven-coordinate barium (Ⅱ) complex. InorganicChemistry,1983,21(8):1653-1659.
    [32] West B.O. The magnetic moments and structures of some N-substituted salicylidene-iminecomplexes of cobalt (Ⅱ). J ournal of the Chemical Society,1962:1374-1387.
    [33] Chandra S., Sharma K. Synthesis and characterization of chrominum (Ⅲ) complex of somesemicarbazones and thiosemicarbazones. Synthesis and Reactivity in Inorganic, Metal-Organic,and Nano-Metal Chemistry,1982,12(6):647-659.
    [34] Csaszar J., Morvay J., Herczeg O. Study of5-nitro-2-furfuraldehyde Derivatives.Preparation, spectra and antibacterial activities of Schiff bases with sulfonamides. Acta PhysicaChemistry,1985,31(3):711-722.
    [35]祝心德,乐芝凤,吴自慎等.2,4-二羟基本甲醛缩氨基硫脲合铜(II),镍(II),锌(II),铁(II)的合成和表征及杀菌活性.高等学校化学学报,1991,12(8):1066-1068.
    [36] Chedini M., Pucci D., Cesarotti E., et al. Transition metals complexed to orderedmesophases. Synthesis, characterization, and mesomorphic properties of new potentiallyferroelectric liquid crystals: chiral p, p'-dialkoxyazobenzenes and their cyclopalladated dinuclearcomplexes. Crystal.,1993,5(15):331.
    [37]金晶,巩园园,武汉清,李雷,牛淑云.Mn(Ⅱ)配合物的晶体结构及表面光电性能物理化学学报,2011,27(7):1587-1594.
    [38]张丽,牛淑云,金晶,孙丽萍,史忠丰,李雷.以芳香族多羧酸为配体的Ni(Ⅱ)配位超分子的研制及光诱导下的表面电子行为.物理化学学报,2009,25(6):1161-1166.
    [39]魏丹毅,李冬成,姚克敏.稀土元素与β-丙氨酸席夫碱双核配合物的合成与表征及催化活性.无机化学学报,1998,14(2):209-213.
    [40] Majdi S., Jabbari A., Heli H., et al. Electrocatalytic oxidation of some amino acids on anickel–curcumin Complex modified glassy carbon electrode. Electrochimica. Acta.,2007,52:4622-4629.
    [41]李淑娟.新型杂环化合物的合成、结构及生物活性研究:[西北大学硕士学位论文].西安:西北大学,2006.
    [42]刘玉婷,张洁心,尹大伟.氨基酸schiff碱及其金属配合物的性能研究进展.氨基酸和生物资源,2008,30(3):51-54.
    [43]李娜.新型吡嗪酮类席夫碱化合物的设计合成及抑菌性能研究:[硕士学位论文].西安:西北大学,2009.
    [44]黄得和.氮杂环席夫碱及其配合物的合成、晶体结构与抑菌活性研究:[硕士学位论文].南昌:南昌航空航天大学,2010.
    [45]艾小康.新型希夫碱金属配合物的合成、表征及荧光特性研究:[博士学位论文].青岛:中国海洋大学,2007.
    [46]杨立荣.牛磺酸希夫碱金属配合物的合成、表征及生物活性研究:[博士学位论文].青岛:中国海洋大学,2006.
    [47]张志达.3,5-二氨基苯甲酸的合成及其在染料中的应用:[硕士学位论文].青岛:青岛科技大学,2009.
    [48] Ye Q., Chen X. B., Song Y. M., Wang X. S., Zhang J., Xiong R.G., Fun H. K., You X. Z. Ablue fluorescent Cd(II) coordination polymer with3,5-diaminobenzoic acid ligand: synthesis,crystal structure and fluorescent property Inorg. Chim. Acat,2005,358(4):1258-1262.
    [49]蒋春芳.氨基苯甲酸及其席夫碱金属配合物的研究:[硕士学位论文].桂林:广西师范大学,2006.
    [50] Mehmet T.,Eyup A., Sevil T., Ahmet K., Lale D. Synthesis and characterization of Schiffbase metal complexes: their antimicrobial, genotoxicity and electrochemical properties. Journalof Coordination Chemistry,2008,61(18):2935–2949.
    [51]黄娟,崔紫宁,李映,杨新玲.Schiff碱铜配合物的生物活性.有机化学,2008,28(4):598-604.
    [52]朱雄增,蒋国梁.临床肿瘤学概论.上海:复旦大学出版社,2005.
    [53]郁仁存.中医肿瘤学(上册).北京:科学出版社,1983.
    [54]曾益新等.肿瘤学.北京:人民卫生出版社,2012.
    [55] Stehelin D., Varmus H. E., Bishop J. M. Detection of nucleotide sequences associated withtransformation by avian sarcoma viruses. Bibl. Haematol.,1975,43:539
    [56] Friend S. H., Bernards R.,Rogelj S., et al. A human DNA segment with properties of thegene that predisposes to retinoblastoma and osteosarcoma. Nature,1986,323:643.
    [57] Lee W. H., Bookstein R., Hong F., et al. Human retinoblastoma susceptibility gene: cloning,identification, and sequence. Science,1987,235:1394.
    [58] Lane D. P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells.Nature,1979,278:261.
    [59] Oren M., Levine A. J. Molecular cloning of a cDNA specific for the murine p53cellulartumor antigen. Proc Natl Sca Sci USA,1983,80:56.
    [60] Carmeliet P., Jian R.K. Angiogenesis in cancer and other diseases. Nature,2000,407:249.
    [61] Helmliger G., Yuan F.,Dellian M., et al. Interstitial PH andPO2gradients in solid tumorsin vivo: high resolution measurements reveal a lack of correlation. Nat. Med.,1997,3:177.
    [62] Schafer M., Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat.Rev. Mol. Cell Bio.,2008,9:628.
    [63] Croix B.S., Rago C., Velculsecu V., et al. Gene expresses in human tumor endothelium.Science,2000,289:1197.
    [64] Li J., Zeng X. H., Mo H. Y., et al. Functional inactivation of EBV-specific T-lymphocytesin nasopharyngeal carcinoma: implications for tumor immunotherapy. PLoS ONE,2007,2:1122.
    [65] Li J., Qian C., Zeng N. Regulatory T cells and EBV associated malignancies. Int.Immunopharmacol,2009,9:590.
    [66] Diehl V., Marty M. Efficacy and safety of antiemetics. Cancer Treat Rev.,1994,20:379.
    [67] Ettinger D.S. Preventing chemotherapy-induced nausea and vomiting: an update and reviewof emesis. Semin Oncol.,1995,22:6.
    [68] Darrington D. L., Vose J. M., Anderson J. R., et al. Incidence and characterization ofsecondary myelodysplastic syndrome and acute myelogenous leukemia following high-donechemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies. J ClinOncol.,1994,12:2527.
    [69] Savage D.G., Antman K. H. Drug therapy: Imatinib Mesylate-A new oral targeted therapy.The new Eng J of Med.,2002,346:683.
    [70] Schirrmacher V., Ahlert T., Probstle T., et al. Immunization with virus-modified tumor cells.Semin Oncol.,1998,25:667.
    [71] Wolf I., Golan T., Shani A., et al. D.Cetuximab in metastatic colorectal cancer. LancetOncol.,2010,11:313
    [72] Lurje G., Lenz H.J. EGFR signaling and drug discovery. Oncology,2009,77:400.
    [73] Folkman J. What is the evidence that tumors are angiogenesis dependent? J. Natl. CancerInst.,1990,82:4.
    [74] Harris A. L. Are angiostatin and endostatin cure for cancer? Lancet,1998,351:1598.
    [75]黄牛.维甲酸类化合物的研究进展.国外医学药学分册,1997,24:78.
    [76] Brem S. Angiogenesis antagonists: current clinical trials. Angiogenesis,1998,2:977.
    [77] Reed J.C. Bcl-2and the regulation of programmed cell death. J Cell Biol.,1994,124:1.
    [78] Cantley L.C., Auger K.R., Carpenter C., et al. Oncogene and Signal transduction. Cell,1991,64:281.
    [79] Reed R. R. G protein diversity and the regulation of signaling pathways. New Biol.,1990,2:957.
    [80] Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl J. Med.,1971,285:1182.
    [81] Ruegg C., Hasmin M., Lejeune F. J., et al. Antiangiogenic peptides and proteins: fromexperimental tools to clinical drugs. Biochim Biophys Acta,2006,1765:155.
    [82] Wilhelm S., Carter C., Lynch M., et al. Discovery and development of sorafenib: amultikinase inhibitor for treating cancer. Nat Rev Drug Discov.,2006,5:835.
    [83] Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol.,2002,29:15.
    [84]岳原亦,张扬,张一奇.Caspase家族与细胞凋亡.中国医疗前沿,2011,6(6):25-26.
    [85] Timmer J. C., Salvesen G.S. Caspase substrates. Cell Death Differ.,2007,14:66.
    [86] De M.R., Lentil L., Malisan F., et a1. Requirement for GD3ganglioside in CD95andceramide-induced apoptosis. Science,1997,277:1652-1655.
    [87] Liu X., Kim C.N., Yang J., et al. Induction of apoptotic program in cell-free extracts:requirement for dATP andcytochrome. Cell,1996,86:147.
    [88] Newmeyer D.D., Farschon D.M., Reed J.C. Cell-free apoptosis in Xenopus egg extracts:inhibition by Bcl-2and requirement for an organelle fraction enriched in mitochondria. Cell,1994,79:353.
    [89] Hermann P.C., Huber S.L., Herrler T., et al. Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell,2007,1:313.
    [90] Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and deathdecisions. J. Clin Invest.,2005,115:2656.
    [91] Szegezdi E., Fitzgerald U., Samali A. Caspase-12and ER-stress-mediated apoptosis: thestory so far. Ann N Y Acad Sci,2003,1010:186.
    [92] Salvesen G.S. Caspases and apoptosis. Essays Biochem.,2002,38:9.
    [93] Christofferson D.E., Yuan J. Necroptosis as an alternative form of programmed cell death.Curr Opin Cell Biol.,2010,22:263.
    [94] Yuan J., Shaham S., Ledoux S., et al. The C. elegans cell death gene ced-3encodes a proteinsimilar to mammalian interleukin-1beta-converting enzyme. Cell,1993,75:641.
    [95] Milatovich A., Song K., Heller R. A., et al. Tumor necrosis factor receptor genes, TNFR1and TNFR2, on human chromosomes12and1. Somat Cell Mol Genet,1991,17:519.
    [96] Chauhan D., Neri P., Velankar M., et al. Targeting mitochondrial factor Smac/DIABLO astherapy for multiple myeloma(MM). Blood,2007,109:1220.
    [97] Peters J. M., Franke W.W., Kleinschmidt J.A. Distinct19S and20S subcomplexes of the26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem,1994,269(10):7709–18.
    [98] Lodish, H., Berk A., Matsudaira P., Kaiser C. A., Krieger M., Scott M. P., Zipursky S. L.Molecular Biology of the Cell. J. Molecular Cell Biology,2004,19(2):66–72.
    [99] Whitby F.G., Masters E. I., Kramer L., Knowlton J. R., Yao Y., Wang C. C., Hill C. P.Structural basis for the activation of20S proteasomes by11S regulators. Nature,2000,408(6808):115-120.
    [100] Voges D., Zwickl P., Baumeister W. The26S proteasome: a molecular machine designedfor controlled proteolysis. Annu Rev Biochem.,1999,68:1015–1068.
    [101] Kruger E., Kloetzel P.M., Enenkel C.20S proteasome biogenesis. Biochimie,2001,83(4):289-93.
    [102] L we J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the20Sproteasome from the archaeon T. acidophilum at3.4resolution. Science,1995,268:533–539.
    [103] Heinemeyer W., Fischer M., Krimmer T., Stachon U., Wolf D. H. The Active Sites of theEukaryotic20S Proteasome and Their Involvement in Subunit Precursor Processing. J BiolChem.,1997,272(40):25200–25209.
    [104] Dou Q. P. Proteasome inhibition and cancer therapy. Nature reviews,2011.
    [105] Wang J., Maldonado M. A. The Ubiquitin-Proteasome System and Its Role inInflammatory and Autoimmune Diseases. Cell Mol Immunol,2006,3(4):255.
    [106] Knowlton I. R., Johnston S. C., Whitby, F. G., Rechsteiner M., Hill C. P. Structure of theproteasome activator REGalpha (PA28alpha). Nature,1997,390:639-643.
    [107] Whitby F. G., Master E. I., Kramer L., Knowlton I. R., Yao Y., Wang C. C., Hill C. P.Structural basis for the activation of20S proteasomes by11S regulators. Nature,2000,408:115-120.
    [108] Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of20S proteasome from yeast at2.4A resolution. Nature,1997,386:463-471.
    [109] Hershko A. Early work on the ubiquitin proteasome system, an interview with AvramHershko. Cell Death Differ.,2005,12:1158–1161.
    [110] Nandi D., Tahiliani P., Kumar A., Chandu D. The ubiquitin-proteasome system. J Biosci.,2006,31(1):137-55.
    [111] Orlowski R. Z. The role of the ubiquitin-proteasome pathway in apoptosis. Cell DeathDiffer.,1999,6:303–313.
    [112] Garrido C., Brunet M., Didelot C., Zermati Y., Schmitt E., Kroemer G. Heat ShockProteins27and70: Anti-Apoptotic Proteins with Tumorigenic Properties. Cell Cycle,2006,5:22.
    [113] Pickart C.M., Cohen R. E. Proteasomes and their kin: proteases in the machine age. Nat.Rev. Mol. Cell Biol,2004,5(3):177-187.
    [114]陈茂营,徐文方.蛋白酶体与蛋白酶体抑制剂.中国药物化学杂志.2007,4:249-153.
    [115] Sakamoto K M. Ubiquitin-dependent proteolysis: its role in human diseases and the designof therapeutic strategies. Mol. Gen. Metabol.,2002,77(2):44-56.
    [116] Bogyo M., McMaster J. S., Gaczynska M., et al. Covalent modification of the active sitethreonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class ofinhibitors. Proc. Natl. Acad. Sci. USA.,1997,94(13):6629-6634.
    [117] Daniel K.G., Chen D., Orlu S., Cui Q. C., Miller F. R., Dou Q.P. Clioquinol andpyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosisinducers in human breast cancer cells. Breast Cancer Res.,2005,7(6):8976-908.
    [118] Chen D., Cui Q. Z., Yang H. J., Dou QP. Disulfiram, a clinically used anti-alcoholism drugand copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenograftsvia inhibition of the proteasome activity. Cancer Res.,2006,66:10425-10433.
    [119] Zhang X., Bi C.F., Fan Y. H., Cui Q. Z, Chen D., Xiao Y., Dou Q. P. Induction of tumorcell apoptosis by taurine Schiff base copper complex is associated with the inhibition ofproteasomal activity. International Journal of Molecular Medicine,2008,22:677-682.
    [120] Daniel K. G., Gupta P., Harbach R.H., Guida W. C., Dou Q. P. Organic copper complexesas a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. BiochemPharmacol,2004,67:1139-1151.
    [121] Xiao Y., Bi C. F., Fan Y. H., Zhang X., Dou Q. P. L-glutamine Schiff base coppercomplex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. InternationalJournal of Oncology,2008,33:1073-1079.
    [122] Chen, D., Dou, Q. P. New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer.Expert Opin.Ther.Targets.2008,12(6):739-748.
    [123] Skata N., Dixon J. L. Ubiquifin-proteasome-dependent degradation of apolipoprotein B100in vitro. Biochem Biophys Acta,1999,1437(1):71-79.
    [124] Gabriel F., Stuart L. S. Lactacystin, Proteasome Function, and Cell Fate. The Journal ofBiological Chemistry,1998,273:8545-8548.
    [125]贤景春,哈日巴拉,李春等.新型Schiff碱配合物的合成及其对超氧离子的抑制作用.合成化学,2000,8(1):12-15.
    [126] Chen D., Daniel K. G., Chen M. S., Kuhn, D. J., Landis-Piwowar, K. R., Dou Q. P. Dietaryflavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem.Pharmacol,2005,69(10):1421–1432.
    [127]易国斌,崔英德,陈德余.天冬酰胺Schiff碱稀土配合物的合成、表征与抗O2-.性能.化学通报,2002,65(2):119-122.
    [128]史卫良,陈德余,陈士明,严小敏.水杨醛天冬氨酸过渡金属配合物的ESR波谱及抗O2-.性能.无机化学学报,2001,17(2):239-243.
    [129] Julian A. The proteasome: a suitable antineoplastic target. Cancer,2004,4(5):349-360.
    [130] Yang H. J., Chen D., Cui Q. C., Yuan X., Dou Q. P. Celastrol, a Triterpene Extracted fromthe Chinese “Thunder God Vine” is a Potent Proteasome Inhibitor and Suppress Human ProstateCancer Growth in Nude Mice. Cancer Res.,2006,66(9):4758-4765.
    [131] Yang H., Landis-Piwowar K.R., Lu D., Yuan P., Li, L., Reddy G. P., Yuan X., Dou Q. P.Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J CellBiochem,2007,103(1):234-244.
    [132] Yang, H., Shi G., Dou Q. P. The Tumor Proteasome Is a Primary Target for the NaturalAnticancer Compound Withaferin A Isolated from “India Winter Cherry”. Mol Pharmacol,2007,71:426-437.
    [133] Hochstrasser M. Ubiquitin, proteasomes and the regulation of intra-cellular proteindegradation Curr. Opin. Cell Biol.,1995,7(2):215-223.
    [134] Murray R. Z., Norbury C., Proteasome inhibitors as anti-cancer agents. Anticancer Drugs,2000,11(6):407-17.
    [135] Clechanover. The ubiquitin-proteasome proteolytic pathway. Cell,1994,79:13-21.
    [136] Seemuller E., Lupas A., Stock D., Lowe J., Huber R., Baumeister W. Proteasome fromThermoplasma acidophilum: a threonine protease. Science,1995,268:579-582.
    [137] Sun J. Z., Nam S. K., Lee C. S., Li B. Y, Domenico C., Hamilton A. D., Dou Q. P.CEP1612, a Dipeptidyl Proteasome Inhibitor, Induces p21WAF1and p27KIP1Expression andApoptosis and Inhibits the Growth of the Human Lung Adenocarcinoma A-549in Nude Mice1.Cancer Research,2001,61:1280–1284.
    [138] An B., Goldfarb R. H., Siman R., Dou Q. P. Novel dipeptidyl proteasome inhibitorsovercome Bcl-2protective function and selectively accumulate the cyclin-dependent kinaseinhibitor p27and induce apoptosis in transformed, but not normal, human fibroblasts. Cell DeathDiffer.,1998,5(12):1062-1075.
    [139] Lopes U. G., Erhardt P., Yao R., Cooper G. M. p53-dependent induction of apoptosis byproteasome inhibitors. J. Biol. Chem.,1997,272(20):12893-12896.
    [140] Seemuller E., Lupas A., Stock D., Lowe J., Huber R., Baumeister W. Proteasome fromThermoplasma acidophilum: a threonine protease. Science,1995,268:579-582.
    [141] Linder, M. Biochemistry of Copper. New York: Plenum Press,1991.
    [142] Labbe S., Thiele D.J. Pipes and wiring: the regulation of copper uptake and distribution inyeast. Trends Microbiol,1999,7(12):500-505.
    [143] Aggett P. J., Fairweather-Tait S. Adaptation to high and low copper intakes: its relevanceto estimated safe and adequate daily dietary intakes. Am J Clin Nutr,1998,67(5Suppl):1061-1063.
    [144] Tapiero H., Townsend D. M., Tew K. D. Trace elements in human physiology andpathology. Copper. Biomed Pharmacother,2003,57(9):386-98.
    [145] Finney L., Vogt S., Fukai T., Glesne D. Copper and angiogenesis: unravelling arelationship key to cancer progression. Clin Exp Pharmacol Physiol,2009,36:88-94.
    [146] Eatock M.M., Schatzlein A., Kaye S.B. Tumour vasculature as a target for anticancertherapy. Cancer Treat Rev.,2000,26:191-204.
    [147] Dutcher J.P. Angiogenesis and melanoma. Curr Oncol Rep.,2001,3:353-358.
    [148] Fox S.B., Gasparini G., Harris A.L. Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol.,2001,2(5):278-289.
    [149] Gourley M., Williamson J.S. Angiogenesis: new targets for the development of anticancerchemotherapies. Curr Pharm Des.,2000,6(4):417-439.
    [150] Bennett M.J., Marchant A., May S.T., Swarup R. Going the distance with auxin:unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci.,1998,353:1511-1515.
    [151] Grossmann K. Auxin herbicides: current status of mechanism and mode of action. PestManag Sci.,2010,66(2):113-120.
    [152] Kim S.Y., Ryu J. S., Li H., Park W. J., Yun H. Y., Baek K. J., Kwon N. S., Sohn U. D.,Kim D. S. UVB-activated indole-3-acetic acid induces apoptosis of PC-3prostate cancer cells.Anticancer Res.,2010,11:4607-12.
    [153] An B., Dou Q. P. Cleavage of retinoblastoma protein during apoptosis: an interleukin1beta-converting enzyme-like protease as candidate. Cancer Res.,1996,56:438-442.
    [154] Milacic V., Chen D., Ronconi L., Kristin R., Piwowar L., Fregona D. and Dou Q. P. Anovel anticancer gold (III) dithiocarbamate compound inhibits the activity of a purified20Sproteasome and26S proteasome in human breast cancer cell cultures and xenografts. CancerRes.,2006,66(10):478-86.
    [155] Chen D., Peng F., Cui Q. C., Daniel K.G., Qrlu S., Liu J., Dou Q.P. Inhibition of prostatecancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex isassociated with suppression of proliferation and induction of apoptosis. Front Biosci.,2005,10:2932-9.
    [156]董丽丽.3-吲哚羧酸过渡金属配合物的合成、表征及生物活性研究:[硕士学位论文].青岛:中国海洋大学化学系,2012.
    [157] Ryan C.J., Wilding G. Angiogenesis inhibitors. New agents in cancer therapy. DrugsAging,2000,17(4):249-55.
    [158] Adams J. Potential for proteasome inhibition in the treatment of cancer. Drug Discov.,2003,8(7):307–315.
    [159] Almond J.B., Cohen G.M. The proteasome: a novel target for cancer chemotherapy.Leukemia,2002,16(4):433–443.
    [160] Dou Q.P., Li B. Proteasome inhibitors as potential novel anticancer agents. Drug ResistUpdates,1999,2(4):215–223.
    [161] Milacic V., Chen D., Giovagnini L., Diez A., Fregona D., Dou Q. P. Pyrrolidinedithiocarbamate-zinc(II) and-copper(II) complexes induce apoptosis in tumor cells by inhibitingthe proteasomal activity. Toxicol. Appl. Pharm.,2008,231(1):24–33.
    [162] Li L. H., Yang H. J., Chen D., Cui Q. C., Dou Q. P. Disulfiram promotes the conversion ofcarcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancercells. Toxicol. Appl. Pharm.,2008,229(2):206–214.
    [163] Nogawa K., Kobayashi E., Okubo Y., Suwazono Y. Environmental cadmium exposure,adverse effects and preventive measures in Japan. BioMetals,2004,17(5):581-587.
    [164] Siewit C. L., Gengler B., Vegas E., Puckett R., Louie M.C. Cadmium promotes breastcancer cell proliferation by potentiating the interaction between ERalpha and c-Jun. MolEndocrinol,2010,24(5):981-92
    [165] Casano C., Agnello M., Sirchia R., Luparello C. Cadmium effects on p38/MAPK isoformsin MDA-MB231breast cancer cells. Biometals,2010,23(1):83-92.
    [166] Christina L., Siewit B. G., Esera V., Rachel P., Maggie C. Cadmium promotes breastcancer cell proliferation by potentiating the interaction between ERalpha and c-Jun. MolEndocrinol,2010,24(5)981-992.
    [167] Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol.,2009,238(3):272-9.
    [168] Filipic M. Mechanisms of cadmium induced genomic instability. Mutat Res.,2011,733(2)69-77.
    [169] Aimola P., Carmignani M., Volpe A. R., Benedetto A., Claudio L., Waalkes M. P.,Bokhoven A., Tokar E.J., Claudio P. P. Cadmium induces p53-dependent apoptosis in humanprostate epithelial cells. PLoS One,2012,7(3): e33647.
    [170] Golovine K., Makhov P., Uzzo R. G., Kutikov A., Kaplan D. J., Fox E., Kolenko V. M.Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancercells through an NF-kappaB-independent, proteasome-mediated mechanism. Mol Cancer,2010,9:183.
    [171] Kovala D. D., Staninska M., Garcia-Santos I., Castineiras A., Demertzis M. A. Synthesis,crystal structures and spectroscopy of meclofenamic acid and its metal complexes withmanganese(II), copper(II), zinc(II) and cadmium(II). Antiproliferative and superoxide dismutaseactivity. J Inorg Biochem,2011,105(9):1187-95.
    [172] Pacini S., Punzi T., Morucci G., Gulisano M., Ruggiero M.. A paradox of cadmium: acarcinogen that impairs the capability of human breast cancer cells to induce angiogenesis. J.Environ Pathol. Toxicol. Oncol.,2009,28(1):85-8.
    [173] Ma gorzata K., Russel J. R., Joaquin J. G., Javier C., Susanne B., Carmen O., Andrzej L.Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranesfrom iron-induced oxidative damage: relevance to cancer reduction. J. Cell Biochem,2001,81(3):507-513.
    [174] Romanowicz-Makowska H., Forma E., Bry M., Krajewska W. M., Smolarz B.,Concentration of cadmium, nickel and aluminium in female breast cancer. Pol. J. Pathol.,2011,62:257-61.
    [175] Park R. M., Stayner L.T., Petersen M. R., Finley-Couch M., Hornung R., Rice C.Cadmium and lung cancer mortality accounting for simultaneous arsenic exposure. OccupEnviron Med.,2012,69:303-9.
    [176] Neslund-Dudas C., Mitra B., Kandegedara A., Chen D., Schmitt S., Shen M., Cui Q.,Rybicki B. A., Dou Q. P. Association of metals and proteasome activity in erythrocytes ofprostate cancer patients and controls. Biol Trace Elem Res.,2012,149(1):5-9.
    [177] Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H. D., Huber R.,'Structureof20S Proteasome from Yeast at2.4A'. Nature,1997.386:463-471.
    [178]孟红.第四代头孢菌素药物盐酸头孢吡肟的合成研究:[硕士学位论文].天津:天津大学,2005.
    [179] Teicher B. A., Abrams M. J., Rosbe K. W., et al. Cytotoxicity, radio sensitization,antitumor activity, and interaction with hyperthermia of a Co(III) mustard complex. CancerResearch,1990,50(1):6971-6975.
    [180] He S.Y., Chen J.L., Zhang W.P., et al. Interactions and Biological Activity of Rare EarthPerchlorate Complexes with Alanine and Imidazole. Journal of Rare Earths,2001,19(1):66.
    [181] Mital S. P., Sharma S.K., Singh R.V., et al. Antifungal activity of some novel lanthanumthiosemicarbazone complexes. Cancer Science,1981,50:483.
    [182] Li Q.G., Ye L. J., Qu J. N., et al. Thermochemical study on coordination complex ofneodymium trichloroacetate with8-hydroxyquinoline chin. Journal of Rare Earths,2002,20(4):293.
    [183]陈德余,张平,史卫良.邻香草醛缩天冬氨酸铜、锌、钴、镍配合物的合成.应用化学,1999,16(2):76-77.
    [184]孔德源,谢毓元.氨基酸类Schiff base稀土配合物的合成及抗肿瘤活性(I,II,III).中国药物化学,1998,l18(14):245-253;1999,119(13):162-166;2000,110(11):13-17.
    [185] Tümer M., Akgün E., Toro lu S., Kayraldiz A., D nbak L. Synthesis and characterizationof Schiff base metal complexes: their antimicrobial, genotoxicity and electrochemical propertiesJ.Coord. Chem.,2008,61(18):2935–2949.
    [186] Siegel R., Naishadham D., Jemal A. Cancer statistics,2012. CA Cancer J Clin.,2012,62(1):10-29.
    [187] Richter E., Srivastava S., Dobi A. Androgen receptor and prostate cancer. Prostate cancerand prostatic diseases,2007,10(2):114-118.
    [188] Feldman B. J., Feldman D. The development of androgen-independent prostate cancer.Nature reviews Cancer,2001,1(1):34-45.
    [189] Chen C. D., Welsbie D. S., Tran C., Baek S. H., Chen R., Vessella R., Rosenfeld M. G.,Sawyers C. L. Molecular determinants of resistance to antiandrogen therapy. Nature medicine,2004,10(1):33-39.
    [190] Aljada A., Mousa S. A. Metformin and neoplasia: implications and indications.Pharmacology&therapeutics,2012,133(1):108-115.
    [191] Jalving M., Gietema J. A., Lefrandt J. D., Jong S., Reyners A. K., Gans R. O., Vries E. G.Metformin: taking away the candy for cancer? European journal of cancer,2010,46(13):2369-2380.
    [192] Wright J. L., Stanford J. L. Metformin use and prostate cancer in Caucasian men: resultsfrom a population-based case-control study. Cancer causes&control,2009,20(9):1617-1622.
    [193] Clements A., Gao B., Yeap S. H., Wong M. K., Ali S. S., Gurney H. Metformin in prostatecancer: two for the price of one. Annals of oncology: official journal of the European Society forMedical Oncology/ESMO,2011,22(12):2556-2560.
    [194] Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., DoebberT., Fujii N., Musi N., Hirshman M. F., Goodyear L. J., Moller D. E. Role of AMPactivatedprotein kinase in mechanism of metformin action. The Journal of clinical investigation,2001,108(8):1167-1174.
    [195] Fogarty S., Hardie D.G. Development of protein kinase activators: AMPK as a target inmetabolic disorders and cancer. Biochimica et biophysica acta,2010,1804(3):581-591.
    [196] Lage R., Dieguez C., Vidal-Puig A., Lopez M. AMPK: a metabolic gauge regulatingwhole-body energy homeostasis. Trends in molecular medicine,2008,14(12):539-549.
    [197] Jorgensen S. B., Rose A. J. How is AMPK activity regulated in skeletal muscles duringexercise? Frontiers in bioscience: a journal and virtual library,2008,13:5589-5604.
    [198] Godlewski J., Nowicki M. O., Bronisz A., Nuovo G., Palatini J., De L. M., Van B. J.,Ostrowski M. C., Chiocca E. A., Lawler S. E. MicroRNA-451regulates LKB1/AMPK signalingand allows adaptation to metabolic stress in glioma cells. Mol Cell,2010,37(5):620-632.
    [199] Hardie D. G., Ross F. A., Hawley S. A. AMP-Activated Protein Kinase: A Target forDrugs both Ancient and Modern. Chemistry&biology,2012,19(10):1222-1236.
    [200] Chen D., Banerjee S., Cui Q. C., Kong D., Fazlul H., Sarkar M., Dou Q. P. Activation ofAMP-Activated Protein Kinase by3,3′-Diindolylmethane (DIM) Is Associated with HumanProstate Cancer Cell Death In Vitro and In Vivo. PLoS ONE,2012,7(10): e47186.
    [201] Motoshima H., Goldstein B. J., Igata M., Araki E. AMPK and cell proliferation--AMPK asa therapeutic target for atherosclerosis and cancer. The Journal of physiology,2006,574(Pt1):63-71.
    [202] Li J., Cao B., Liu X., Fu X., Xiong Z., Chen L., Sartor O., Dong Y., Zhang H. Berberinesuppresses androgen receptor signaling in prostate cancer. Molecular cancer therapeutics,2011,10(8):1346-1356.
    [203] Shi Q., Shih C. C., Lee K. H. Novel anti-prostate cancer curcumin analogues that enhanceandrogen receptor degradation activity. Anti-cancer agents in medicinal chemistry,2009,9(8):904-912.
    [204] Sheflin L., Keegan B., Zhang W., Spaulding S. W. Inhibiting proteasomes in humanHepG2and LNCaP cells increases endogenous androgen receptor levels. Biochemical andbiophysical research communications,2000,276(1):144-150.
    [205] Lin H. K., Hu Y. C., Lee D. K., Chang C. Regulation of androgen receptor signaling byPTEN (phosphatase and tensin homolog deleted on chromosome10) tumor suppressor throughdistinct mechanisms in prostate cancer cells. Molecular endocrinology,2004,18(10):2409-2423.
    [206] Pelley R. P., Chinnakannu K., Murthy S., Strickland F. M., Menon M., Dou Q. P., BarrackER, Reddy GP. Calmodulin-androgen receptor (AR) interaction: calciumdependent, calpain-mediated breakdown of AR in LNCaP prostate cancer cells. Cancer research,2006,66(24):11754-11762.
    [207] Massie C. E., Lynch A., Ramos-Montoya A., Boren J., Stark R., Fazli L., Warren A., ScottH., Madhu B., Sharma N., Bon H., Zecchini V., Smith D. M., Denicola G. M., Mathews N.,Osborne M, Hadfield J., Macarthur S., Adryan B., Lyons S. K., Brindle K. M., Griffiths J.,Gleave M. E., Rennie P. S., Mills I. G. The androgen receptor fuels prostate cancer by regulatingcentral metabolism and biosynthesis. The EMBO journal,2011,30(13):2719-2733.
    [208] Yun H., Lee M., Kim S. S., Ha J. Glucose deprivation increases mRNA stability ofvascular endothelial growth factor through activation of AMP-activated protein kinase in DU145prostate carcinoma. The Journal of biological chemistry,2005,280(11):9963-9972.
    [209] Park H. U., Suy S., Danner M., Dailey V., Zhang Y., Li H., Hyduke D. R., Collins B. T.,Gagnon G., Kallakury B., Kumar D., Brown M. L., Fornace A., Dritschilo A., Collins S. P.AMP-activated protein kinase promotes human prostate cancer cell growth and survival.Molecular cancer therapeutics,2009,8(4):733-741.
    [210] Jung S. N., Park I. J., Kim M. J., Kang I., Choe W., Kim S. S., Ha J. Down-regulation ofAMP-activated protein kinase sensitizes DU145carcinoma to Fas-induced apoptosis via c-FLIPdegradation. Experimental cell research,2009,315(14):2433-2441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700