水稻土中铁还原微生物纤维素利用特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验通过来源于不同水稻土微生物群落厌氧培养试验,以Fe(OH)3作为唯一电子受体研究了以纤维素粉作为电子供体时对氧化铁还原的影响。通过比较电子供体浓度与氧化铁还原能力的关系,以期明确不同来源的铁还原微生物对纤维素作为碳源时的利用特征。采用纯培养实验,进一步探讨一些分离纯化的铁还原菌株对纤维素粉的利用潜力。以土壤泥浆培养试验,研究了不同来源的纤维素在淹水条件下对土壤中微生物铁还原的影响,比较了对不同来源的有机物料在厌氧铁还原过程中的差异。对进一步阐明稻田生态系统中有机物代谢及其与微生物铁还原过程的关系提供了必要的理论依据。研究得出以下主要结论:
     (1)不同水稻土微生物群落利用纤维素的微生物铁还原能力具有显著的差异。由总体变化趋势来看,不同来源微生物群落利用纤维素的铁还原程度与设置纤维素浓度的大小成正比,Fe(II)的最终累积量表现为20 g/L处理>10 g/L处理>2 g/L处理,除TJ外的其余3种微生物群落利用浓度为20g/L的纤维素的Fe(II)浓度均可达到500 mg/L左右,接近添加的Fe(III)总量。随着添加纤维素浓度的增大,Fe(III)最大还原速率(Vmax)也表现出增大的趋势。从达到最大反应速率的时间来看,吉林和湖南水稻土微生物群落都随着添加纤维素浓度的增加,TVmax则由大变小。添加纤维素的浓度越高其到达最大反应速率的时间越早。在四川水稻土微生物群落中,不同浓度的纤维素处理到达最大反应速率的时间基本接近。
     (2)不同铁还原菌株利用纤维素的异化铁还原能力具有一定区别。菌株JX-a06、SC-a04、SC-a16和SC-a20在以纤维素为唯一碳源时其a较大,分别达到了71.82、76.68、79.92及71.07mg/L,Fe(III)还原率较高,分别达到21.16%、22.59%、23.55%和20.94%,菌株JX-a12、JX-a17、SC-a09、SC-a11、SC-a14和SC-a24的铁还原能力居中,分别达到16.17%~19.94%,而菌株JX-a03和JX-a08的铁还原反应活性较差,其Fe(III)还原率显著地低于其他菌株,仅为9.64%和9.66%。最大反应速率(Vmax)变化与其Fe(III)还原率变化趋势一致。12个菌株的TVmax分布在3.8d~5.7d,说明长期的纯培养过程对纤维素分解的促进作用并不明显。与接种不同水稻土微生物群落的铁还原过程相比,其Fe(II)累积量明显较低,说明试验中使用的12株具有铁还原能力的菌株直接利用纤维素碳源的能力是有限的,而纤维素的分解利用可能需要共代谢过程来加强,所以在水稻土微生物群落的铁还原过程中具有较高的铁还原效率。
     (3)从铁还原的程度比较,利用4种不同来源纤维素的能力表现为:三叶草﹥玉米芯﹥玉米秸杆﹥小麦秸杆。不同土壤微生物群落处理之间在玉米芯和小麦秸杆处理中有一定的差异,而在三叶草和玉米秸杆处理中其Fe(II)累积量基本相同。4种水稻土微生物群落利用不同来源纤维素时的Fe(III)还原率表现为:利用小麦秸杆时平均为35.28±8.05%,三叶草处理为76.38±3.32%,玉米芯处理为65.39±9.28%,玉米秸秆处理为48.64±7.58%,其变异系数(CV%)分别为22.83%、4.34%、14.19%和15.59%。由变异系数的变化说明,三叶草对4种水稻土微生物群落来说均属于易利用的碳源。4种水稻土微生物群落对小麦秸杆的利用率总体上说比较小,但不同水稻土微生物群落间相差较大;玉米秸秆和玉米芯作为碳源时,尽管Fe(III)还原率达到48.64%和65.39%,对碳源的利用率较高,但不同微生物群落间的变异系数亦达到15.59%和14.19%,利用率的差异比较明显。
     (4)添加Fe(OH)3及不同有机物料处理后对TJ水稻土的影响明显大于对SC水稻土的影响,反映了不同水稻土微生物铁还原过程的内在特征。四川水稻土中添加不同来源的纤维素的不同处理之间变化并不明显。CK的a值为6.130 mg/g,添加Fe(OH)3处理为6.513 mg/g,添加有机物料处理平均为6.233±0.215 mg/g,添加Fe(OH)3及不同有机物料处理为6.450±0.066 mg/g,总体上较CK有一定的增加,但变化并不明显。由Vmax变化看出,不同处理均较CK有明显增加,同时,TVmax在添加Fe(OH)3及不同有机物后都较之CK缩短。在TJ水稻土中,添加不同秸秆的处理,均表现为在前10天Fe(II)浓度增加迅速,随后变化缓慢,其中添加Fe(OH)3处理的Fe(II)产生量明显大于CK(自然土壤);秸秆加入可显著提高土壤中Fe(II)的累积量和生成速率,对土壤中的微生物铁还原具有明显的促进作用。TJ水稻土中添加Fe(OH)3处理的Fe(II)累积量(a)由CK的5.631 mg/g增加到5.905 mg/g,表明加入的Fe(OH)3能够迅速地被还原,其Vmax也由0.137 mg/(g·d)增加到0.245 mg/(g·d)。添加小麦秸杆、三叶草、玉米芯及玉米秸杆后,a值分别变化到6.046,6.209,6.461及6.467 mg/g,其增加量较添加Fe(OH)3处理高,表明有机物对TJ水稻土中铁还原的促进作用明显。对同时添加秸杆及Fe(OH)3处理,同样既增加了Fe(II)累积量(6.701~7.0 mg/g),又增加了Vmax(0.595~1.048 mg/g·d)。
     本研究通过厌氧泥浆培养、不同微生物群落混合培养和纯培养系统的研究了纤维素以及不同来源的纤维素对水稻土异化铁还原过程的影响。获得的主要结果为更全面的理解水稻土中异化铁还原过程提供了必要的理论依据。
Microbial communities from different paddy soil are tested with anaerobic cultivations, and researches on the effect when using Fe (OH) 3 as the sole electron acceptor, the use of cellulose as the electron donor have on the iron reduction. By comparing the relationship of the electron donor concentration and iron reducibility, and try to clarify the utilization characteristics of different sources of iron reducing microbial when cellulose are used as the carbon source. Pure cultivation experiments are operated to further explore some of the isolation and purification of iron reducing strain on the potential for the use of cellulose powder. Test soil mud cultivation, study the impacts that cellulose from different sources under the condition of flooding have on the iron reduction of soil microbial, and compare the difference of organics of different resources during the iron reduction process which offer the necessary theoretical basis to further clarify the organic metabolism in the rice ecosystem and its relationship with microbial iron reduction. Main conclusions are drawn as follows:
     1. There are notable differences between microbial iron irreducibilities of different paddy soil microbial communities when use cellulose. Seen from the overall trend, the use of cellulose by different sources of microbial communities is proportional to the cellulose concentration, the performance of the final cumulant of Fe (II) are: treatment 20 g / L>treatment 10 g / L> treatment 2 g / L, with the exception of TJ, the remaining three kinds of microbial communities use concentration of 20 g / L starch Fe (II) concentration can be reached 500 mg / L, nearly added total Fe (III). With the addition of increasing concentrations of cellulose, Fe (III) reduction maximum rate (Vmax) also showed increasing trend. From the maximum rate of reaction time, Jilin and Hunan paddy soil microbial community, with the addition of increasing concentrations of cellulose, showed a turnaround from TVmax. The higher the adding cellulose concentration is the sooner it reaches its maximum rate. Microbial communities from Sichuan paddy soil took almost equal time to reach the maximum rate in dealing with different concentrations of cellulose.
     2. The reducibility of different iron reduction strains of using showed certain distinctions. When using cellulose as the sole carbon source, strain JX-a06、SC-a04、SC-a16 and SC-a20 all have large value of a, which respectively reached 71.82,76.68,79.92 and 71.07 mg / L, Fe (III) reduction is also high with the rate of respectively 21.16%, 22.59%, 23.55% and 20.94%, the iron of the strains JX-a12, JX-a17, SC -a09, SC-a11, SC-a14 and SC-a24 are among the middle, which respectively reached 16.17 percent to 19.94 percent, and strains JX-a03 and a08 JX-iron suffered with poor iron reducibility, among which the Fe (III) reduction rate was significantly lower than the other strains, with only 9.64 percent and 9.66 percent. The changes of maximum rate (Vmax) and the change rate of Fe (III) reduction are identical. TVmax of 12 strains are distributed between 3.8 d~ 5.7d, and which showed the role the long-term process of pure cultivation play in promoting cellulose decomposition is not obvious. Compared to the iron reduction which are inoculated with different soil microbial community from paddy soil, Fe (II) accumulation was significantly lower, which implies the capability of the 12 strains with iron reducing ability have limit direct use of cellulose carbon source, and the decomposition of cellulose may need the process of metabolism to strengthen, so in the paddy soil microbial community in the process of reduction of iron is with high iron reduction efficiency.
     3. Compare the extent of iron reduction, the abilities of using four different kinds of cellulose sources are: clover> corncob> corn straw> wheat straw. Between different treatments of soil microbial community in dealing with wheat straw and corn-cob are of some differences, and clover and corn straw in its handling of Fe (II) accumulation are basically the same. Four kinds of microbial communities from paddy soil, when use different sources of cellulose, Fe (III) reduction rates are as follows: The use of wheat straw are at an average of 35.28±8.05%, clover treatment are 76.38±3.32%, corn-cob treatment are 65.39±9.28%, and corn stalks treatment are 48.64±7.58%, the coefficient of variation (CV%) were 22.83%, 4.34%, 14.19% and 15.59% respectively. From the changes of the coefficient of variation, clover is a more easily used carbon source among four kinds of paddy soil microbial communities. The utilization of wheat straw for four kinds of paddy soil microbial community is relatively small, but among different paddy soil microbial communities, large difference are shown. When use maize stalks and corn-cob as carbon source, although Fe (III) reduction rate are of 48.64% and 65.39%, with high utilization of carbon sources, between different microbial communities, coefficient of variation also reached 15.59% and 14.19%, and the difference of utilization is more obvious.
     4. The impact of the addition of Fe (OH) 3 and different organic materials is significantly greater on TJ paddy soil than the impact on the soil of SC paddy soil; which reflect the intrinsic characteristics of different iron paddy soil microbial reduction. Changes of treatments with different sources of cellulose of Sichuan paddy soil are not significant. A value of CK is 6.130 mg / g, with Fe (OH) 3 adding in is 6.513 mg / g, treatment with organic material adding in are of an average of 6.233±0.215 mg / g, with Fe (OH) 3 and different organic materials adding in are 6.450±0.066 mg / g, on the whole, CK increases, but the change is not apparent. Seen from the changes of Vmax, different treatments all increased significantly than CK, while TVmax, after adding Fe (OH) 3 and different organic compounds all shortened than CK. For TJ paddy soil, treatments with different straws adding in, all appear increasing of the previous 10 days of Fe (II) concentrations, and then slow to change, addition of Fe (OH) 3 with Fe (II) produced significantly greater than in CK (natural soil); with straw added in can significantly enhance the cumulative production and producing rate of Fe (II), which played great role in improving rate of iron microbial reduction. TJ paddy soil added Fe (OH) 3 is with Fe (II) accumulation (a) from the CK 5.631 mg / g to 5.905 mg / g, that the accession of Fe (OH) 3 can be restored quickly, Vmax increased from 0.137 mg / (g ? d) to 0.245 mg / (g ? d). After adding wheat straw, clover, corn cob and corn straw, a value change to 6.046,6.209,6.461 and 6.467 mg / g, which show more increase than adding Fe (OH) 3, demonstrates the organic have great impacts on promoting Iron reduction in TJ paddy soil. Adding straw and Fe (OH) 3 at the same time, there is same increase in both the Fe (II) accumulation (6.701 to 7.0 mg / g), and Vmax (0.595 ~ 1.048 mg / g ? d).
     Through anaerobic mud test, mixed culture of different microbial community and the pure culture system, we study the different sources of cellulose, and the impact different sources cellulose have on paddy soil iron reduction. The main results of the study provided the necessary theoretical basis in understanding iron reduction in paddy soil.
引文
[1] Lovley D R, Philips E J P. Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River[J].Environ Microbial, 1986, 52:751-757.
    [2] Lovley D R, Stolz J F, Nord G L, et al. Anaerobic Production of Magnetite by a Dissimilatory Iron-Reducing Microorganism[J].Nature, 1987,3(30):252-254.
    [3] Lovley D R, Phillips E J P. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese[J].Appl Environ Microbial, 1988, 54(6):1472-1480.
    [4] Lovley D R, Phillips E J P. Organic Mater Mineralization with Reduction of Ferric Iron in Anaerobic Sediments[J]. Appl Environ Microbial, 1986, 51:683-689.
    [5] Lovley D R, John D C. Novel forms of an aerobic respiration of environmental relevance[J]. Current Opinion in Microbiology, 2000, 3:252-255.
    [6] Finneran, K.T., Claudia V. J., and Lovley D R. Rhodoferax ferrireducens sp. nov., a psychrotolerat, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)[J]. Int J Syst Evol Microbiol, 2003, 53: 669-673.
    [7] Francis, C. A., Anna Y. O, Bradley M. T, Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1[J]. Appl. Environ. Microbiol, 2000, 66(2): 543-548.
    [8] Küsel K, Tanja D, Georg A, Erko S. Micobial reduction of Fe(III) in acidic sediments: isolation of acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose[J]. Appl. Environ. Microbiol, 1999, 65(8): 3633-3640.
    [9] Cummings D. E., Anyhony. W.M., Benjamin B., et al. Evidence for microbial Fe(III) reduction in anoxic mining impacted lake sediments[J]. Appl. Environ. Microbiol, 2000, 66(1): 154-162.
    [10] Roh, Y, Shi, V. Liu., G. S. Li, et al. Isolation and characterization of metal-reducing thermoanaerobacter from deep subsurface environment of the Piceance basin, Colorado[J]. Appl. Environ. Microbiol, 2002, 68(12): 6013-6020.
    [11] Kieft, T. L., J. K. Fredrickson, T. C. Onstott, et al. Dissimilatory redution of Fe(III) and other electron acceptors by a Thermus isolate[J]. Appl. Environ. Microbiol, 1999, 65: 1214-1221.
    [12] Nielsen J L, Juretschko S, Wagner M, Nielseni P H. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography[J]. Appl. Environ. Microbiol, 2002, 68(9): 4629-4636.
    [13] 贺江舟,曲东,张莉利. Fe(Ⅲ)的微生物异化还原. 微生物学通报,2006,33(5):158-164.
    [14] Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(IV) reduction. Microbiological Reviews, 1991, 55(2): 259-287.
    [15] Lovley D R, Woodward J C, Chapelle F H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ⅲ) ligands. Nature, 1994, 370:128-131.
    [16] Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatoryFe(Ⅲ) reduction by Geothrixfermentans. Applied and Environmental Microbiology, 2002, 68(5):2294-2299.
    [17] Nevin K P, Lovley D R. Mechanisms for Fe(Ⅲ) oxide reduction insedimentary environments. Geomicrobiology Journal, 2002, 19:141-159.
    [18] Ciufo S, Childers S E, Lovley D R. Geobactermetalli reducens accesses insoluble Fe(Ⅲ) oxide by chemotaxis. Nature, 2002, 416-767.
    [19] Reguera G, Mccarthy K D, Mehta T, et al. Extracellular electron transfer rvia microbialnanowires. Nature, 2005435:1098-1101.
    [20] Cooper D C, Picardal F W, Schimmelmann A, et al. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200[J]. Appl. Environ. Microbiol, 2003, 69(6): 3517-3525.
    [21] Scheid D, Stubner S, Conrad R.. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition [J]. FEMS Microbiol. Ecol, 2004, 50(2): 101-110.
    [22] Lovley, D.R. Organic matter mineralization with the reduction of ferric iron: A review[J]. Geomicrobiol. J, 1987, 5: 375-399.
    [23] Lovley, D.R. and Phillips, E.J.P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Appl. Environ. Microbiol, 1988, 54: 1472-1480.
    [24] Stein, L.Y., La Duc, M.T., Grundl, T.J. and Nealson, K.H. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments[J]. Environ. Microbiol, 2001, 3: 10-18.
    [25] Anderson, R.T., Rooney-Varga, J., Gaw, C.V. et al. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers[J]. Environ. Sci. Technol, 1998, 32: 1222-1229.
    [26] Rooney-Varga, N.J., Anderson, R.T., Fraga, J.L.et al. Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer[J]. Appl. Environ. Microbiol, 1999,. 65: 3056-3063.
    [27] R?ling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B. and van Verseveld, H.W. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer[J]. Appl. Environ. Microbiol, 2001, 67: 4619-4629.
    [28] Holmes, D.E., Finneran, K.T. and Lovley, D.R. Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments[J]. Appl. Environ. Microbiol, 2002, 68: 2300-2306.
    [29] Venkateswaran, K., Moser, D.P., Dollhopf, M.E., et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensissp novo[J]. Int. J. Syst. Bacteriol, 1999, 49, 705-724.
    [30] Heidelberg, J.F., Paulsen, LT., Nelson, K.E., et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnol, 2002, 20, 1093-1094.
    [31] Kashefi, K., Holmes, D.E., Reysenbach, A.L., et al. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens, gen., nov., sp. novo[J]. Appl. Environ. Microbiol, 2002, 68: 1735-1742.
    [32] Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, et al. Ferroglobus placidus gen nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions[J]. Arch. Microbiol, 1996, 166,:308-314
    [33] Tor, J.M., Kashefi, K. and Lovley, D.R. Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms[J]. Appl. Environ, Microbial, 2001, 67:1363-1365.
    [34] Fredrickson, J. K., H. M. Kostandarithes, S. W. Li, et al. Reduction of Fe (III), Cr (VI), U (VI), and Tc (VII) by Deinococcus radiodurans R1 [J]. Appl. Environ. Microbiol, 2000, 66(5): 2006-2011.
    [35] Kashefi, K., and D. R. Lovley. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum[J].Appl. Envrion. Microbiol, 2000, 66(3): 1050-1056.
    [36] Nelson K H, Litle B. Breathing manganese and iron: Solid-state respiration[C]. Advances in Applied Microbiology[M], New York: Academic Press, 1997, 213-221.
    [37] Lovley D H, Holmes D E, Nevin K P. Dissimilatory Fe(II) and Mn(IV) Reduction[J]. Advances in Microbial Physiology, 2004, 49:219-286.
    [38] 陈家坊,何群,邵宗臣等. 土壤中氧化铁的活化过程的探讨[J]. 土壤学报,1983,20(4):387-392.
    [39] Kumar S. Changes in some physico-chemical properties and activities of iron and zinc on submergence of some rice soils [J]. J. Indian Soc., Soil Sci., 1981, 29: 204-207.
    [40] Mozaffari M., Sims J.T. Phosphorus avail ability and sorption in an atlantics coastal plain watershed dominated by animal-based agriculture [J]. Soil Sci., 1994, 157(2): 97-107.
    [41] Mello J.W.V., Barron, V., Torrent, J. Phosphorus and iron mobilization in flooded soils from Brazil [J]. Soil Sci. 1998, 163:122-132.
    [42] 熊毅. 土壤胶体的物质基础[M]. 北京:科学出版社,1983,132-246.
    [43] 贾国东,钟佐桑. 铁的地球化学综述[J]. 环境科学进展,1999,7:74-84.
    [44] Yu N. Vodyanitskiy. 施用铁氧化物对土壤团聚作用的影响[J]. 土壤学进展,1989,1:36-39.
    [45] 陈家坊,何群,许祖贻 水稻土发僵原因的初步分析[J]. 土壤通报,1984,15:53-56.
    [46] 何群,陈家坊.中性水稻土的铁解及其影响[J]. 土壤学报,1986,23:184-188.
    [47] 陈家坊. 土壤粘粒中的氧化物. 见:于天仁,土壤化学原理[M]. 北京:科学出版社,1987,pp 73-105.
    [48] 何念祖. 植物的铁营养[J]. 土壤学进展.1986,14(1):19-23.
    [49] 苏玲.水稻土淹水过程中铁化学行为变化对磷有效性影响研究[D]. 浙江大学博士学位论文. 2001.
    [50] 章申,王立军,王同山. 土壤水介质中Cr(VI)与Fe(II)氧化还原反应环境动力学的研究[J]. 环境化学,1982,1(2):133-139.
    [51] Qu Dong,Stefan R,Schnell S. Microbial Reduction of Weakly Crystalline Iron(III) Oxides and Suppression on Methanogenesis in Paddy Soil[J]. Bulletin of Environmental Contamination and Toxicology. 2004, 72(6):1172-1181.
    [52] Aristovskaya, T.V., Zavarzin, G.A. Biochemistry of iron in soil. In: Soil Biochemistry [M]. A.D., Mclaren et al. Marcel Decker Inc. New York,1971, pp 385-408.
    [53] 王胜春,刘可星,游植麟等.不同母质发育的水稻土中铁、锰对甲烷排放的影响[J]. 农村生态环境.1998,14(1):52-54.
    [54] Patrick W.H., Jr. R.A., Khalid. Phosphate release and sorption by soils and sediments: Effect of aerobic and anaerobic conditions [J]. Science. 1974,186: 53-55.
    [55] 于天仁. 土壤发生中的化学过程[M]. 北京:科学出版社,1990.
    [56] 张家铭,王明光. 台湾红壤及森林土壤之氧化铁[J]. 土壤学报,1995,32(1):14-22.
    [57] 王建林. 土壤中铁形态转化的根际效应[J]. 土壤,1991,22(3):165.
    [58] 雷文进. 江苏里下河土壤的发生与改良[J]. 土壤学报,1959,7(3-4):227-236.
    [59] 沈梓培,陈家坊. 潴育层和潜育层之间化学性质. 福建地质调查所年报,1944,4:23-50.
    [60] Dudal R., Pseudogley and gley. Transection of Commission V and VI of the Int [J]. Soil Sci., 1973,275-285.
    [61] Joffe I.S. Soil profile studies VII The glei process [J]. Soil Sci., 1935, 29:391-401.
    [62] Yamane, L. Electrochemical changes in rice soil [J]. Soils & Rice, IRRI, 1979,392-395.
    [63] 于天仁,丁昌璞. 红壤性水稻土中代换性盐基的状况及其在发生上的意义[J]. 土壤学报.1958,33:31-43.
    [64] 关舒元. 铁还原微生物的分离鉴定及系统发育学分析[D]. 西北农林科技大学硕士毕业生论文,2007.
    [65] Gold S.,谭正喜. 铁铝氧化物与粘土矿物的相互作用及其对土壤物理性质的影响[J]. 土壤学进展,1991,19(2):18-22.
    [66] 赵安珍,张效年. 氧化铁对红壤电荷性质的影响[J]. 土壤.1991,23(5):231-235.
    [67] Gates W.P., Wilkinson HT, tucki J.W. Swelling properties of microbially reduced Ferruginous smectites [J]. Clays and clay Minerals. 1993, 41: 360-364.
    [68] Aristovskaya Taxonomic implications of reproductive mechanisms of Hyphomicrobium-facies and Pedomicrobium-facies of apleomorphic budding bacterium. Antonie van Leeuwenhoek [J]. 1971,37(1),417-424
    [69] Stucki, J.W. Redox Processes In Smecties: Soil Environmental Significance [J]. Adv. In GeoEcology.1997, 30:395-406.
    [70] 白燕,近10年来我国泥炭地学的研究进展[J]. 地球科学进展,2002,6 36-45
    [71] Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments [J]. Adv. Microb. Ecol. 2000,16:41-84.
    [72] 曲东,Schnell S. 外源氧化铁对水稻土甲烷形成的抑制[J]. 环境科学学报, 2002, 22(1): 65-69.
    [73] 曲东, Schnell S.外源氧化铁对水稻土甲烷形成的影响[J]. 环境科学学报. 2002, 22(1):65-69.
    [74] Conrad R. Concentration of hydrogen to methane production and control of hydrogen contrations in methanogenic soils and sediments[J]. FEMS. Microbiology Ecology. 1999,28: 193-202.
    [75] Yao H, Conrad R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy [J]. Soil Biology & Biochemistry. 1999, 31:463-473.
    [76] Jaeckel U, Schnell S. Suppression of methane emission from rice paddies by ferric iron fertilization [J]. Soil Biology & Biochemistry. 1999, 32:1700-1714.
    [77] Roden EE. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms[J] Appl. Environ. Microbiol, 2003, 69(9): 5702-5706.
    [78] Kennedy LG, Everett JW. Microbial degradation of simulated landfill leachate: solid iron/sulfur interactions[J] Advances in Environmental Research, 2001, 5:103-116.
    [79] Hoden JF, Adams MW. Microbe–metal interactions in marine hydrothermal environments[J]. Curro Opin. Microbiol, 2003, 7: 160-165.
    [80] O’Loughlin EJ, Kelly SD, Kemner KM, et al. Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust[J]. Chemosphere. 2003, 53: 437-446.
    [81] Bernad IO, Anderson RT, Vrionis HA, et al. Vanadium respiration by Geobacter metallireducens: novel strategy for In situ removal of vanadium from Groundwater[J]. Appl. Environ. Microbiol, 2004, 70(5):3091-3095.
    [82] Parmar N, Warren LA, Roden EE, et al. Solid phase capture of strontium by the iron reducing bacteria Shewanella alga strain BrY[J].Chemical Geology, 2000, 169:281-288.
    [83] Roden RE, Leonardo MR, Ferris FG. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochim. Cosmochim.Acta, 2002, 66(16): 2823-2839.
    [84] Zachara JM, Fredrickson JK, Smith SC, et al. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III)reducing bacterium[J]. Geochim. Cosmochim.Acta, 2000, 65(1): 75-93.
    [85] Ona-nguema G, Abdelmoula M, Jorand F, et al. Microbial Reduction of Lepidocrocite by Shewanella putrefaciens; The Formation of Green Rust [J]. Hyperfine Interactions. 2002, 139/140: 231-237.
    [86] Dong HL, Fredrickson JK, Kennedy DW, et al. Mineral transformation associated with the microbial reduction of magnetite[J]. Chemical Geology, 2000, 169: 299-318.
    [87] Zachara JM, Kukkadapu RK, Fredrickson JK,et al. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria[J]. Geomicrobiol. J. 2002, 19, 179-207.
    [88] Karlin R. Magnetic mineral diagenesis in Suboxic sediments at Bettis Site W-N, NE Pacific Ocean[J]. Journal of Geophysical Research. 1990, 95, 4421-4436.
    [89] Pyzik AJ, Sommer SE. Sedimentary Iron Monosulfides: Kinetics and Mechanism of Formation[J]. Geochim. Cosmochim. Acta. 1981, 45, 687-698.
    [90] Yao W, Millero FJ. Oxidation of Hydrogen Sulfide by Hydrous Fe(III) Oxides in Seawater[J], Mar.Chem.1996, 52, 1-16.
    [91] Rickard DT. The Microbiological Formation of Iron Sulfides[J]. Stokholm Contrib. Geol., 1969, 20, 49-66.
    [92] Herbert RB, Benner SG, Pratt AR, et al. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria[J]. Chem. Geol. 1998, 144, 87-97.
    [93] Thamdrup B, Finster K, Hansen JW, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese [J]. Appl. Environ. Microbiol. 1993, 59, 101-108.
    [94] Neal AL, Techkarnjanaruk S, Dohnalkova A, et al. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria[J]. Geochim. Cosmochim. Acta. 2001, 65, 223-235.
    [95] Berner RA. Sedimentary pyrite formation: an update[J]. Geochim. Cosmochim. Acta, 1984, 48, 605-615.
    [96] Kashefi K, Tor J, Nevin KP, et al. Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea[J]. Appl. Environ. Microbiol. 2001, 67:3275-3279.
    [97] Krumholz LR. Desulfuromonas chloroethenica sp. novo uses tetrachloroethylene and trichloroethylene as electron acceptors[J]. Internet. J. Syst. Bacteriol. 1997, 47, 1262-1263.
    [98] Sung Y, Ritalahti KM, Sanford RA, et al. Characterization of two tetrachloroethene-reducing, acetateoxidizing bacteria and their description as Desulfuromonas michiganensis sp. Novo[J]. Appl. Environ. Microbiol. 2003, 69, 2964-2974.
    [99] Finneran K, Forbush HM, VanPraagh CVG, et al. Desuljitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals, humics, and chlorinated compounds [J]. Int. J. Syst. Evol. Microbiol. 2002, 52, 1929-1935.
    [100] Niggemyer A, Spring S, Stackebrandt E, et al. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium[J]. Appl. Environ. Microbiol, 2001, 67(12): 2256-5580.
    [101] Holmes DE, Bond DR, Lovley DR. Electron transfer to Fe(III) and graphite electrodes by Desulfobulbus propionicus[J]. Appl. Environ. Microbiol. 2004, 70:1234-1237.
    [102] De Wever H, Cole JR, Fettig MR, et al. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogens gen. novo sp. Novo [J]. Appl. Environ. Microbiol. 2000, 66, 2297-2301.
    [103] He Q, Sanford RA. Characterization of Fe(III) reduction by Anaeromxyobacter dehalogens[J]. Appl. Environ. Microbiol. 2003, 69, 2712-2718.
    [104] Finneran K, Forbush HM, VanPraagh CVG, et al. Desuljitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals, humics, and chlorinated compounds [J]. Int. J. Syst. Evol. Microbiol. 2002, 52, 1929-1935.
    [105] Vogel TM, Criddle CS, McCarty PL. Transformations of halogenated aliphatic compounds[J]. Environ Sci Technol, 1987, 21(8): 722-736.
    [106] Lovley DR, Woodward JC, Chapelle FH. Stimulated anoxic biodegradation of aromatichydrocarbons using Fe(III) ligands [J]. Nature. 1994, 370: 128-131.
    [107] Lovley DR, Lonergan DJ. Anaerobic oxidtion of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15[J]. Appl. Environ. Microbiol. 1990, 56:1858-1864.
    [108] Lovley DR, Baedecker MJ, Lonergan DJ, et al. Oxidation of aromatic contaminants coupled to microbial iron reduction [J]. Nature. 1989, 339: 297-299.
    [109] Lovley DR, Anderson RT. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal. 2000, 8:77-88.
    [110] Lovley DR, Blunt-Harris EL. Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction[J]. Appl Environ Microbiol. 1999, 65:4252-4254.
    [111] 许玫英,钟小燕,曹渭等. 脱色西瓦氏菌(Shewanella decolorations)S12的脱色特性[J]. 微生物学通报. 2005, 32(1): 5-9.
    [112] Hong Y, Chen X, Guo J, Effects of electron donors and acceptors on anaerobic reduction of azodyes by Shewanella decolorationis S12 [J]. Appl Microbiol Biotechnol. 2007,2 230-238.
    [113] Chen Y, Zhong X, Cao W, et al. Shewanella decolorationis sp. nov., decolorizing bacterium isolated from activated sludge of a waste-water treatment plant [J]. Int J Syst Evol Microbiol.2005, 55: 363-368.
    [114] Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment[J]. 2003, 58:179-196.
    [115] Rau J, Knackmuss H-J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria [J]. Environ Sci Technol. 2002, 36:1497-1504.
    [116] Xu M, Guo J, Kong X, Fe(III)-enhanced Azo Reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol.2007.74:1342-1349
    [117] 傅大放, 赵联芳. Cr6+对厌氧微生物的毒性作用研究[J]. 东南大学学报(自然科学版). 2002, 32(4):672-675.
    [118] 刘金胜, 廖晓兰, 黄璜. 双季稻厌氧纤维素分解菌的分离与筛选[J]. 江苏农业科学, 2005, 5:112-114.
    [119] 韩如旸, 闵航, 陈美慈, 等. 嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析[J]. 微生物学报, 2002, 42(2):138-144.
    [120] 冯克宽, 王明谊. 黑曲霉Sta-122菌株产纤维素酶的研究[J]. 西北师范大学学报(自然科学版), 1991, 27(1):61-65.
    [121] 赵明文, 史玉英, 李玉祥, 等. 纤维分解菌群对水稻秸秆田间腐熟效果的研究[J]. 江苏农业科学, 2000, 7(1):51-53.
    [122] 曲东, 谭中欣, 王保莉等. 外源物质对水稻土铁还原的影响[J]. 西北农林科技大学学报(自然科学版). 2003, 31(4):6-10.
    [123] 曲东, 曹宁, 王保莉. 添加EDTA及黄腐酸对水稻土中有效磷浓度的影响[J]. 西北农林科技大学学报(自然科学版). 2003, 31(3):127-130.
    [124] 曲东, Schnell S, Conrad R. 外源氧化铁对水稻土中有机酸含量的影响[J]. 应用生态学报. 2002, 13(11):1425-1428.
    [125] 曲东, 张一平, Schnell S, Conrad R. 水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J]. 土壤学报. 2003, (6):858-863.
    [126] 曲东,Schnell S. 纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报,2001,41(6):744-749.
    [127] Schwertmann U, Cornell RM. Iron oxides in the laboratory preparation and characterization[J]. VCH Verlagsgesellschaft, Weinheim, 1991, 69-144.
    [128] 易维洁.水稻土中铁还原微生物的碳源利用特征[D]. 西北农林科技大学硕士毕业生论文,2007.
    [129] 孙丽蓉.水稻土中异化铁还原过程及其影响因素研究[D]. 西北农林科技大学博士毕业生论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700