折流板管状空气阴极微生物燃料电池构建及产电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随社会的发展,支柱性产业能耗高、效率低、对传统能源的过度依赖,新能源开发不足,导致了生态环境破坏严重,制约了我国的可持续发展。调整能源结构,实现结构多样化,发展清洁能源、加大新能源利用已成为我国能源结构调整的主攻方向。
     将厌氧折流板工艺与微生物燃料电池工艺相结合,设计开发了折流板管状空气阴极微生物燃料电池(baffled tubular air-cathode MFC, BTAMFC)(200810063876.5及PCT/CN2009/070168),该反应器既保留了厌氧折流板工艺在废水处理中的优势,又可进行电能的生产,提高了回收的经济效益。
     构建了BTAMFC的基本构型——单格室BTAMFC(Single-compartment BTAMFC,SBTAMFC)。考察了阳极结构对SBTAMFC的影响,三维立体阳极结构更有利于体系的产能与废水的去除。与碳板阳极BTAMFC相比,三维立体阳极BTAMFC总内阻由原来的19.8?降低为12.1?,最大功率密度升高至582.4 mW/m2, COD去除率也从47%增加至88%。对比了连续流与间歇流运行方式,连续流运行方式有效地提高了体系的产电性能。间歇流运行BTAMFC的总内阻增加了7.4?,功率密度降低至407.1mW/m2,COD去除率变化不明显。
     考察了分格数对BTAMFC的影响,将单室BTAMFC构建成双室BTAMFC(dual-compartment BTAMFC, DBTAMFC),不仅增大了输出电能,还增加了体系对废水的去除能力。以1g/L葡萄糖为底物,当HRT=6h时,最大功率密度为15.2 W/m3,COD去除率为88%,内阻为13.7?。随着进水负荷从4.11 kg COD/ (m~3 NAC·d)升高至16.0 kg COD/ (m~3 NAC·d)时,COD去除率从88%降低至70%。在此过程中,电池的内阻变化不大,始终低于15?;当进水负荷为9.60 kg COD/ (m~3 NAC·d)(HRT=2.5h)时,拥有最大输出功率密度(20.8 W/m3);最大库伦效率(48%)在6.96 kg COD/ (m~3 NAC·d)(HRT=3.5h)时获得,因此该体系最佳的水力停留时间范围为2.5-3.5h。考察了长期运行对电池性能的影响,结果显示,电池经过10个月的稳定运行,仍保持较高的电能输出及COD去除率,输出电压降低了6.4%,最大功率密度降低为原来的48.4%,但仍能输出7.9W/m3的电能, COD去除率由原来的88%升高至90%。进一步说明DBTAMFC体系的稳定性较好,适合于长期运行,电池的寿命至少在10个月以上。
     进一步增加分格数,优化BTAMFC的产电性能及废水处理效果。由双格室DBTAMFC增加成五格室BTAMFC ( Five-compartment BTAMFC ,FBTAMFC),体积增大了4.5倍。进水葡萄糖浓度为5 g/L,与DBTAMFC相比,各个格室在1000?下输出的电压并未改变,总输出功率从DBTAMFC的20.8 W/m~3提高至54.7 W/m3,总COD去除率为86%。各个格室的欧姆内阻相同,但源于电荷转移内阻及扩散内阻的差异使得总内阻相差不到1?(12-13?),说明了BTAMFC的内阻不会随着格室数的增加而增大,为BTAMFC分格数进一步增加提供了参考数据。除第一格室内阻外,其余各格室内阻均小于DBTAMFC。各格室按从前至后的顺序COD去除率分别为67%、25%、32%、3.5%和11%,揭示了BTAMFC体系一个普遍的规律,即第一个格室主要偏向于废水处理,超过50%以上的进水COD在此格室内得以去除。五格室BTAMFC在无回流时,各格室的最大功率密度均降低,总功率密度降低了13.6 W/m3,但总COD去除率由原来的86%升高至94%。虽然损失了部分电能,但节省了投资与运行费用,提高了废水处理效果。增加底物浓度(由5g/L增至10g/L)大大降低了第一、三格室的产电性能使得10g/L时总功率密度降低了33.9 W/m3,但COD去除率保持在94%。
     将秸秆纤维素燃料乙醇洗液废水稀释后直接用于DBTAMFC中产电,最大输出功率密度为10.7 W/m3, COD去除率达89.1%,并伴有脱色效果。首次将秸秆纤维素燃料乙醇醪液废水直接应用于FBTAMFC产电,总功率密度为20.8 W/m3,COD去除率为95%。首次将BTAMFC工艺与CSTR(产酸相)、EGS(产甲烷相)及SBR反应器(好氧段)的废水处理工艺联合应用,将秸秆纤维素燃料乙醇醪液废水SBR工艺段出水作为单室BTAMFC底物产电,电压由412mV降低至296mV,最大功率密度为2.7W/m3,出水COD可达96mg/L,去除率为72%,出水色度明显下降,为MFC工艺在废水领域内应用提供了新的方法。综上所述,BTAMFC可直接应用于处理高浓度高负荷的有机工业废水中,且具有一定的脱色效果及抗负荷及毒物冲击的特性。
Nowadays, the contradiction of supply over demand in energy has become very obvious. Sustainable development is seriously hampered by resources, energy and environment. The power supply structure should be optimized based on structural adjustment. Development of techniques of energy from wastewater has become the main direction of energy restructuring.
     Based on the techniques of anaerobic baffled reactor, a baffled tubular air-cathode MFC (BTAMFC) configuration was designed (200810063876.5 and PCT/CN2009/070168). It was indicated that configuration of BTAMFC reserved excellent efficiency of ABR process in wastewater treatment. Modified parts (the graphite plate used as the guide plate and plastic tubes inserted in the reactor) did not affect removal efficiency of wastewater.
     Single-compartment BTAMFC (SBTAMFC) was developed. In order to establish a rational system, the construction of anode was selected. A three dimensional anode made from graphite granules was beneficial to both in COD removal and electricity generation. The internal resistance of MFC was decreased from 19.8? to 12.1?; the maximum power density was increased to 582.4 mW/m2. The COD removal rate was from 47% up to 88%. The charge-transfer resistance and diffusion resistance of the cell was affected by operational mode. In fed-batch mode, the internal resistance was increased 7.4?. Compared with that under continuous mode, the maximum power density was reduced to 407.1mW/m2; however the COD removal rate was kept in the same lever. Consequently continuous mode was more suitable for single-compartment BTAMFC.
     Dual- compartment BTAMFC (DBTAMFC) was set-up under continuous flow. With 1g/L glucose fed as substrate, an average voltage of 652 mV was obtained under the external resistance of 1000 ? (30 oC). The maximum power density was 15.2 W/m~3 with the chemical oxygen demand (COD) removal rate of 88%. The overall resistance was 13.7 ? while ohmic internal resistance was 10.8 ?. Average COD removal rate was 70% to 88%, when COD loading varied from 4.11 kg COD/ (m~3 NAC·d) to 16.0 kg COD/ (m~3 NAC·d). The maximum power density was 20.8 W/m~3 at HRT 2.5 h and COD loading 9.60 kg COD/ (m~3 NAC·d). The maximum coulombic efficiency of 48% was obtained when HRT was controlled at 3.5 h. Therefore, in DBTAMFC system, the optimized HRT could be regarded as 2.5 h to 3.5 h. DBTAMFC was operated for at least ten months. During this period, the HRT faceters were determined and a high volumetric loading was used in this system. And DBTAMFC was then running at the same condition as set-up. It was indicated that the cell was run well and kept a stable voltage and COD removal rate. The voltage output was decreased slightly, only 6%. Although decreased 48.4%, the maximum power density was still kept 7.9 W/m3. The COD removal rate was increased from 88% to 90%. It was documented that the DBTAMFC was stable and suitable for a long-term operation, and the life of the cell was at least ten months.
     The volume of BTAMFC was increased 4.5 times from two compartments to five compartments. During this process, the electrogenic performance of BTAMFC was enhanced. The voltage out-put was kept stably, and maximum power density was up to 54.7 W/m3. As a result, the COD removal rate was increased obviously. 5g/L glucose was used as the substrate, and the COD removal rate was kept higher than 85%. The internal resistance was stable between 12? and13?, indicating the internal resistance was not changed by the adding of BTAMFC conmpartments. It was afford to further increasing of compartments. The effluent of each compartment was 67%, 25%, 32%, 3.5% and 11% in sequence, which indicated that more than half of influent COD was removed in compartment 1. Without the reflux in five-compartment BTAMFC, the maximum power density in each compartment was reduced, leading to the total maximum power density was decreased 13.6 W/m3. However, the COD removal rate was increased from 86% to 94%. Although the power density was reduced 24.9%, the COD removal was enhanced, and economic effectiveness was recovered. BTAMFC was affected by the concentration of influent. The performance of power production in compartment 1 and 3 was declined following the increasing of glucose concentration. When FBTAMFC was fed with 10 g/L glucose, the maximum power density was decreased 33.9W/m3. Nevertheless the COD removal rate was kept at 94%, when the influent COD was up to 10600mg/L. It was apparently shown that BTAMFC had good capacity of resisting the shock loads.
     The wastewater from COFCO’s corn stover cellulosic ethanol plant was directly treated by BTAMFC for the first time. The liquid from corn stover steam explosion process (COD=7160±50 mg/L) was treated by DBTAMFC, and the maximum power density was 10.7 W/m~3 with the average COD removal rate was 89.1%. The maximum power density was 10.7 W/m3, while the volumetric loading rate was as high as 29.5 kg COD/ (m~3 NAC·d). When FBTAMFC was used distillate wastewater as the substrate, the total maximum power density of 20.8 W/m~3 was obtained with the COD removal rate of 95%. Wastewater treatment process was designed and including CSTR ( hydrolysis-acidification reactor ), EGSB ( methanogenic reactor ), SBR (aerobic reactor ) and single-compartment BTAMFC. The effluent from SBR process was used as the substrate for the BTAMFC. The maximum power density was 2.7 W/m3. The COD removal rate was 72 %, and the COD for effluent of BTAMFC was below 100mg/L. The dark influent wastewater became light after treatment by BTAMFC, which also addressed the discoloring ability of the system. It was illustrated that BTAMFC preferred to high-concentration industrial wastewater treatment, which brought a good application prospect for this configuration. It was provided a new way of thinking in MFC technology for the application in the field of wastewater treatment.
引文
1 The British Petroleum Company plc. Statistical Review of World Energy. 2009:1~5
    2陈徐梅,马晓微,范英.世界主要国家生物质能战略及对我国的启示.中国能源. 2009, 31(4): 37~39
    3中华人民共和国环境保护部. 2008年中国环境公报. 2009:1~29
    4郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上).给水排水. 2002, 28(2): 6~11
    5中华人民共和国国家统计局.中国统计年鉴. 2009: 321~417
    6赵文玉,吴振斌.新型厌氧处理反应器的发展及应用.四川环境,2002,21(1):32~36
    7贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社, 1999:5~10
    8 G.L. Schroepfer. The Anaerobic Contact Process as Applied to Packing House Wastes. Sewage and Industrial Wastes. 2005, 27(4):460~480
    9唐受印.废水处理工程.化学工业出版社, 1998:295~301
    10任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社, 2004:70~71
    11胡纪萃.废水厌氧生物处理理论与技术.中国建筑工业出版社, 2003:13~17
    12汪洪生.现代废水厌氧处理应用技术进展.污染防治技术. 2002, 15(4):15~20
    13 A.G. Lettinga. Use of Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment. Biotechnology and Bioengineering. 2000, 22:699~734
    14 U. Shigeki, H. Hideki. Treatment of Sewage by a UASB Reactor under Moderate to Low Temperature Conditions.Bioresource Technology. 2000, 72:275~282
    15 P. L. McCarty. One Hundred Years of Anaerobic Treatment. Anaerobic Digestion. Elsevier biomedical press B.V. 2002:3~22
    16 R. Boopathy and D. M. Sievers. Performance of a Modified Anaerobic Baffled Reactor to Treat Swine Waste.Trans. ASAE. 1999, 34(6):2573~2578
    17 P. Weiland and A. Rozzi. The Start-up, Operation and Monitoring of High RateAnaerobic Treatment Systems: discusser’s report. Water science and technology. 2001, 24(8): 257~277
    18 N. Suyanee and C. D. David. The Effect of Shock Loads on the Performance of an Anaerobic Baffled Reactor (ABR). Step Changes in Feed Concentration at Constant Retention Time. Water Research. 1997, 31(11):2737~2746
    19贺嵩邡,易辰俞,戴友芝.厌氧折流板反应器处理有机磷农药废水的研究.工业用水与废水. 2002, 33(4):26~28
    20 S. Nachaiyasit, and D. C. Stukey. Microbial Response to Environmental Changes in an Anaerobic Baffled Reactor. Antonie van Leeuwenhoek. 1995, 67(2):111~123
    21 A. M. W. Grobicki and D. C. Stuckey. Performance of the Anaerobic Baffled Reactor under Steady State and Shock Loading Conditions. Biotechnol. Bioeng. 2001, (37):344~355
    22贾洪斌,赵大传,王力民.挡板式水解酸化法处理印染废水的中试试验研究.工业水处理. 2001, 21(1):39~41
    23曾国驱,任随周,许玫英,等. ABR结合SBR法处理印染废水的研究.微生物学通报. 2005, 32(6):68~73
    24吴慧芳,王世和,夏明芳,等. ABR处理印染废水水温影响特性及降解模型.工业水处理. 2006, 26(10):39~43
    25沈耀良,王宝贞.厌氧折流板反应器处理垃圾渗滤液混合废水.中国给水排水. 1999, 15(5):10~12
    26戴友芝,冀静平,施汉昌,等.厌氧折流板反应器对有毒有机物冲击负荷的适应性.环境科学. 2000, 21(1):94~97
    27 B. E. Logan, B. Hamelers, R. A. Rozendal,, et al. Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology. 2006, 17: 5181~5191
    28 D. R. Bond, D. R. Lovely. Anaerobic Production of Magnetite by a Dissimilatory Iron-Reducing Microorganism. Nature. 1987, 330:252~254
    29 R. A. Rozendal, H. V. M. Hamelers, and C. J. N. Buisman. Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science and Technology. 2006, 40(17):5206~5211
    30 H. Liu, S. Cheng and B. E. Logan. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology. 2005, 39(14): 5488~5493
    31 H. Liu, S. A. Cheng, and B. E. Logan. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology. 2005, 39: 658~662
    32 B. E. Logan, C. Murano, K. Scott, et al. Electricity generation from cysteine in a microbial fuel cell. Water Research. 2005, 39: 942~952
    33 M. Rosenbaum, U. Schroder, F. Scholz. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. Journal of Solid State Electrochemistry. 2006, 10: 872~878
    34 S. Freguia, K. Rabaey, Z. Yuan, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes, Environmental Science and Technology. 2008, 41: 7937~7943
    35 J. J. Heijnen. Bioenergetics of microbial growth. John Wiley and Sons. 1999: 267~291
    36 K. Rabaey, N. Boon, M. Hofte, et al. Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells. Environmental Science and Technology. 2005, 39:3401~3408
    37 M. E. Hernandez, A. Kappler, D. K. Newman. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology. 2004, 70:921~928
    38 D. R. Bond and D. R. Lovley. Electricity production by Geobacter sulfurreducens attached toelectrodes. Applied and Environmental Microbiology. 2003, 69:1548~1555
    39 Y. A. Gorby, S. Yanina, J. S. McLean, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006, 103:11358~11363
    40 C. A. Pham, S. J. Jung, N. T. Phung, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiology Letter. 2003, 223:129-134
    41 K. Rabaey and W. Verstraete. Microbial fuel cells: A Novel Biotechnology for Energy Generation. Trends in Biotechnology. 2005, 23:291~298
    42 S. K. Lowera M. F. Hochella, T. J. Beveridge. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and a-FeOOH. Science. 2001, 292(5520): 1360~1363
    43 Y. A. Gorby and T. J. Beveridge. Composition, reactivity, and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria. 2005: Warrenton, VA
    44 G. Reguera, K. D. McCarthy, T. Mehta, et al. Extracellular electron transfer via microbial nanowires. Nature. 2005, 435:1098~1101
    45 K. Rabaey, N. Boon, S. D. Siciliano, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology. 2004, 70(9): 5373~5382
    46 T. Mehta, M. V. Coppi, S. E.Childers, et al. Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology. 2005, 71: 8634~8641
    47 K. P. Nevin and D. R. Lovley. Lack of production of electron-shuttling compounds or solubilization of Fe (III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens. Applied and Environmental Microbiology. 2000, 66:2248~2251
    48 M. E. Hernandez, A. Kappler, D. K. Newman. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology. 2004, 70:921~928
    49 D. R. Lovley, J. D. Coates, E. L. Blunt Harris, et al. Humic substances as electron acceptors for microbial respiration. Nature. 1996, 382:445~448
    50孙丽蓉,曲东.腐殖酸对水稻土中异化铁还原的影响.西北农业学报. 2008, 17:315~321
    51 X. Wang, Y. Feng, H. Ren, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochimica acta. 2009, 54: 1109~1114
    52 G. M. Delaney, H. P. Bennetto, J. R. Mason, et al. Electron-transfer coupling in microbial fuel cells. II. Performance of fuel cells containing selected microorganism-mediator combinations. Journal of Chemical Technology and Biotechnology. 1984, 34B:13~27
    53 D. H. Park and J. G. Zeikus. Electricity generation in microbial fuel cell using neutral red as electronophore. Applied and Environmental Microbiology. 2000, 66:1292~1297
    54 M. C. Potter. Electrical effects accompanying the decomposition of organiccompounds. Proc. Roy. Soc. London Ser. B. 1911, 84: 260~276
    55 R M. Allen and H. P. Bennetto. Microbial fuel cells: electricity production from carbohydrates. Applied Biochemistry and Biotechnology. 1993, 39(2): 27~40
    56 H. J. Kim, M. S. Hyun, I. S. Chang, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology. 1999, 9(3): 365~367
    57 K. Rabaey, G. Lissens, S. D. Siciliano, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 2003, 25(18):1531~1535
    58 B. H. Kim, H. S. Park, H. J. Kim, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology. 2004, 63: 672-681
    59 H. Liu, R. Ramnarayanan, B. E. Logan. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology. 2004, 38: 2281~2285
    60 J. Heilmann, B. E. Logan. Production of electricity from proteins using a single chamber microbial fuel cell. Water Environment Research. 2006, 78(5): 531~537
    61 H. Liu, S. A. Cheng, B. E. Logan Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology. 2005, 39(2): 658~662
    62 S. J. You, Q. L. Zhao, J. Q. Jiang, et al. Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances and Environmental Engineering. 2006, 41(12): 2721~2734
    63 S. Cheng, H. Liu, B. E. Logan. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science and Technology. 2006, 40(7): 2426~2432
    64 R. A. Rozendal, H. V. M. Hamelers, C. J. N. Buisman. Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science and Technology. 2006, 40(17): 5206~5211
    65 S. V. Mohan, S. V. Raghavulu, S. Srikanth and P. N. Sarma. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: Influence of substrate loading rate. CurrentScience. 2007, 92(12): 1720~1726
    66 S. Cheng, H. Liu, B. E. Logan. Increased performance of single chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications. 2006, 8:489~494
    67 K. Rabaey, P. Clauwaert, P. Aelterman and et al. Tubular microbial fuel cells for efficient electricity generation. Environmental Science and Technology. 2005, 39(20): 8077~8082
    68 Z. He, N. Wagner, S. D. Minteer, et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy. Environmental Science and Technology. 2006, 40(17): 5212~5217
    69 S. J. You, Q. L. Zhao, J. N. Zhang, et al. Graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources. 2007, 173(1): 172-177
    70 H. Liu and B. E. Logan. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology. 2004, 38: 4040~4046
    71 F. Zhao, F. Harnisch, U. Schroder, et al. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications. 2005, 7(12): 1405~1410
    72 B. E. Logan, S. Cheng, V. Watson, et al. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environmental Science and Technology. 2007, 41(9): 3341~3346
    73 Logan B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology. 2009, 7(5): 375~381
    74 H. Y. Gu, X. W. Zhang, Z. J. Li, et al. Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chinese Science Bulletin. 2007, 52(24): 3448~3451
    75 B. G. Zhang, H. Z. Zhao, S.G. Zhou, et al. Novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technology. 2009, 100(23): 5687~5693
    76 J. Y. Nam, H. W. Kim, K. H.Lim, et al. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresource Technology. 2010, 101: S33~S37
    77 P. Clauwaert, S. Mulenga, P. Aelterman, et al. Litre-scale microbial fuel cells operated in a complete loop. Applied Microbiology and Biotechnology. 2009, 83(2): 241~247
    78 A. Dekker, A. T. Heijne, M. Saakes, et al. Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell. Environmental Science and Technology. 2009, 43(23): 9038~9042
    79 H. Liu, S. Cheng, L. P. Huang, et al. Scale-Lip of membrane-free single-chamber microbial fuel cells. Journal of Power Sources. 2008, 179(1): 274~279
    80 P. Clauwaert, D. Ha, N. Boon, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science and Technology. 2007, 41:7564~7569
    81 S. E. Oh and B. E. Logan. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Resources. 2005, 39:4673~4682
    82 J. R. Kim, S. H. Jung, B. E. Logan, et al. Electricity generation and microbial community analysis of ethanol powered microbial fuel cells. Bioresource Technology. 2007, 98: 2568~2577
    83 Y. J. Feng, Q. Yang, X. Wang, et al. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresource Technology. 2010, in press.
    84 T. Catal, S. Xu, K. Li, et al. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors and Bioelectronics. 2008, 24(4): 855~860
    85冯雅丽,李浩然,祝学远.单室直接微生物燃料电池性能影响因素分析.北京科技大学学报. 2007, 29(2):162~165
    86蒋胜韬,管玉江,白书立,等.以葡萄糖为底物的微生物燃料电池产电特性研究.中国给水排水. 2009, 25(23):14~19
    87 T. Catal, K. Li, H. Bermek, et al. Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources. 2008, 175:196~200
    88温青,孙茜,赵立新,等.微生物燃料电池对废水中对硝基苯酚的去除.现代化工. 2009, 4:40~42
    89 H. P. Luo, G. L. Liu, R. D. Zhang, et al. Phenol degradation in microbial fuelcells. Chemical Engineering Journal. 2009, 147:259~264
    90 C. P. Zhang, M. C. Li, G. L. Liu, et al. Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials. 2009, 172:465~471
    91 C. Zhang, G. Liu, R. Zhang, et al. Electricity production from and biodegradation of quinoline in the microbial fuel cell. Journal of Environmental Science and Health. 2010, 45:250~256
    92 Y. Luo, R. Zhang, G. Liu, et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials. 2010, 176:759~764
    93 J. Sun, Y. Y. Hu, Z. Bi, et al. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology. 2009, 100:3185~3192
    94宋天顺,叶晔捷,徐源,等.用于废水处理及产能的微生物燃料电池研究进展.现代化工. 2008, 28:23~27
    95 M. I. Book and B. E. Logan. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science and Technology. 2004, (38):5809~5814
    96 B. Min, J. R. Kim, S. E. Oh, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Resources. 2005(39):4961~4968.
    97 X. Wang, Y. Feng, H. Lee, et al. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology. 2009, 57: 1117~1121.
    98 Y. Zuo, P. C. Maness, B. E. Logan. Electricity production from steam-exploded corn stover biomass. Energy and Fuel. 2006, 20: 1716-1721
    99 X. Wang, Y. Feng, H. Wang, et al. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells. Environmental Science and Technology. 2009, 43: 6088-6093
    100康峰,伍艳辉.生物燃料电池研究进展.电源技术. 2004, 28(11):723-727.
    101 N. Wagner. Characterization of membrane electrode assembliesin polymer electrolyte fuel cells using a.c. impedance spectroscopy. Appllied Electrochemistry. 2002, 32:859~863
    102 B. Min, J. R. Kim, S. E. Oh, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Resources. 2005(39):4961~4968
    103 S. E. Oh and B. E. Logan. Hydrogen and electricity production from a foodprocessing wastewater using fermentation and microbial fuel cell technologies. Water Resources. 2005, (39):4673~4682
    104 M. I. Book and B. E. Logan. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science and Technology. 2004, 38:5809~5814
    105 Y. Zuo, P. C. Maness, B. E. Logan. Electricity production from steam-exploded corn stover biomass. Energy Fuel. 2006, 20:1716~1721
    106 Y. J. Feng, X. Wang, B. E. Logan, et al. Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology. 2008, 78:873~880
    107 U. Schroder, F. Scholz. Bacterial batteries. Nature Biotechnology. 2003, 21:1151~1152
    108冯玉杰,王鑫,李贺,等.微生物燃料电池.化学工业出版社, 2009
    109 Z. He, S. D. Minteer, L. T. Angenent. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science and Technology. 2005, 39(14):5262~5267
    110 P. Aelterman, K. Rabaey, T. H. Pham, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science and Technology.2006, 40:3388~3394
    111 K. Rabaey, V. D. Sompel, L. Maignien, et al. Microbial fuel cells for sulfide removal. Environmental Science and Technology. 2006, 40(17):5218~5224
    112 B. E. Logan. Microbial Fuel Cell. John Wiley & Sons, 2008
    113 S. Cheng and B. E. Logan. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications., 2007, 9:492~496
    114 S. Cheng, H. Liu, B. E. Logan. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology. 2006, 40:364~369
    115 D. H. Park and J. G. Zeikus. Impact of electrode composition on electricity generation in a single-copartment fuel cell using Shewanella putrefacians. Applied Microbiology and Biotechnology. 2002, 59:58~61
    116 D. H. Park and J. G. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology andBioengineering. 2003, 81(3): 348~355
    117 Y. Zuo, S. Cheng, D. Call, et al. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environmental Science and Technology. 2007, 41(9):3347~3353
    118 Z. H. Wang, C. Y. Wang, K. S. Chen. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources. 2001, 94: 40~50
    119 Y. J. Feng, Q.Yang, X. Wang, et al. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresource Technology. 2010, in press.
    120 J. R. Kim, S. H. Jung, B. E. Logan, et al. Electricity generation and microbial community analysis of ethanol powered microbial fuel cells. Bioresource Technology. 2007, 98: 2568~2577
    121 P. A. Selembo, M. D. Merrill, Logan, B. E. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources. 2009, 190: 271~278
    122 J. K. Jang, T. H. Pham, I. S. Chang, et al, Construction and operation of a novel mediator- and membrane-less microbial fuel. 2004, 39:1007~1012
    123 H. Moon, I. S. Chang, B. H. Kim. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresoure Technology. 2006, 97:621~627
    124 S. J. You, Q. L. Zhao, J. N. Zhang, et al. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosensors and Bioelectronics. 2008, 23(7):1157~1160
    125 B. H. Kim, H. J. Kim, M. S. Hyun, et al. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology. 1999, 9(2):127~131
    126 B. H. Kim, T. I. keda, H. S. Park, et al. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques. 1999, 13(7):475~478
    127 D. R. Bond, D. E. Holmes, L. M. Tender, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002, 295(5554):483~485
    128 C. E. Reimers, L. M. Tender, S. Fertig, et al. Harvesting energy from themarine sediment-water interface. Environmental Science and Technology. 2001, 35(1):192~195
    129 B. Min, S. Cheng, B. E. Logan Electricity generation using membrane and salt bridge microbial fuel cells. Water Resoures. 2005, 39(9):1675~1686
    130孙寓姣,左剑恶,崔龙涛,等.不同废水基质条件下微生物燃料电池中细菌群落解析[J].中国环境科学2008,28(12):1068-1073
    131黄霞,范明志,梁鹏,等.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007, 23(3):8-13
    132张锦涛,倪晋仁,周顺桂.基于铁还原菌的微生物燃料电池研究进展[J].应用与环境生物学报2008, 14(2):290-295
    133付洁,戚天胜,蔡小波,等.微生物燃料电池产电研究及微生物多样性分析.应用与环境生物学报2009, 15 (4):568-573
    134陈姗姗,张翠萍,刘广立,等.一株以喹啉为燃料的产电假单胞菌(P seudomonas sp. ) Q1的特性研究.环境科学学报.2010, 30(6):1130-1137
    135李颖,孙永明,孔晓英,等.微生物燃料电池中产电微生物的研究进展.微生物学通报. 2009, 36(9): 1404-1409
    136陈洪章,刘健,李佐虎.半纤维素蒸汽爆破水解物抽提及其发酵生产单细胞蛋白工艺.化工冶金. 1999, 20(4): 428~431
    137 APHA, 1998. Standard methods for the examination of water and wastewater.
    20th, American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC.
    138 K. Rabaey, W. Ossieur, M. Verhaege, et al. Continuous microbial fuel cells convert carbohydrates to electricity. Water Science and Technology. 2005, 52 (1-2): 515~523
    139 S. Cheng, H. Liu, B. E. Logan. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications. 2006, 8:489~494
    140任南琪,王爱杰.厌氧生物技术原理与应用.化学工业出版社. 2004: 313~317
    141 D. R. Lovley and E. J. P. Phillips. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl Environ Microbiol. 1988, 54(6):1472~1480
    142 Z. L. Li, L. Yao, L. Kong, H. Liu. Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresource Technology. 2008,99:1650~1655
    143 A. Bachmann, V. L. Beard, P. L. McCarty. Comparison of fixed-film reactors with a modified sludge blanket reactor. Pollution Technology Review Series. 1983, 10, 384~402
    144 W. P. Barber and D. C. Stuckey. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Resoures. 1999, 33:1559~1578
    145 H. J. Feng, L. F. Hu. Q. Mahmood, et al. Anaerobic domestic wastewater treatment with bamboo carrier anaerobic baffled reactor. International Biodeterioration and Biodegradation. 2008, 62: 232~238
    146 Z. He, F. Mansfeld. Exploring the use of electrochemical impedance spectroscopy in microbial fuel cell studies. Energy and Environmental Science. 2009, 2:251~219
    147 J. Amirfakhri, M. Vossoughi, M. Soltanieh. Assessment of desulfurization of natural gas by chemoautotrophic bacteria in an anaerobic baffled reactor (ABR). Chemical Engineering and Processing.2006, 45: 232~237
    148 A. Bachmann, V. L. Beard, P. L. McCarty. Performance characteristics of the anaerobic baffled reactor. Water Resoures. 1985, 19: 99-106
    149 A. Bayrakdar, E. Sahinkaya, M. Gungor, et al. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bioresource Technology. 2009, 100:4354~4360
    150 H. J. Feng, L. F. Hu, D. Shan, et al. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor. Biomedical and Environmental sciences. 2000, 21:460~466
    151 Y. S. Wong, M. O. Kadir, T. T. Teng, et al. Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresource Technology. 2009, 100: 4969~4975
    152李建政,朱葛夫,张妮,等.有机负荷对厌氧活性污泥发酵产氢系统的影响.武汉理工大学学报. 2006,28(增刊)Ⅱ:202~208
    153王英姿,侯宪钦.带能谱分析的扫描电子显微镜在材料分析中的应用.制造技术与机床. 2007, 9: 80-83
    154刘尧兰.产电菌的分离及不同温度下MFC产电特性的研究[D].哈尔滨工业大学. 2008
    155朱葛夫.厌氧折流板反应器应用技术及微生物群落生态学研究[D].哈尔滨工业大学. 2007
    156刘莹.碱度对厌氧折流板反应系统启动及优势种群形成的影响[D].哈尔滨工业大学. 2006
    157管荣辉.厌氧折流板反应器(ABR)处理高浓度退浆废水特性研究[D].东华大学. 2010
    158汪丽娜,张朝踵,蔡英.薄膜样品X射线能量色散谱仪测试方法研究.浙江理工大学学报. 2010, 4: 540-543
    159彭举威,韩相奎,康春莉,等:进水方式对厌氧才斤流板反应器运行效果的影响.吉林大学学报. 2010, 2:592-597
    160郑虎斌.污水生化处理技术在涠洲终端的应用研究.价值工程. 2010, 29.
    161郭静,李清雪,马华年,等.ABR反应器的性能及水力特性研究卢国给水排水,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700