移动荷载下复合路面的数值分析与检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多旧水泥混凝土路面已进入养护维修期,探讨如何在旧水泥混凝土上加铺新的路面已经成为一个非常有价值的研究课题,但路面维修仅靠路面弯沉指标作为路面结构理论计算和质量验收指标是远远不足的,不但无法真实反映路面内部结构的状态,而且分析结果也过于片面,容易出现失真的问题。本文结合当今比较成熟的有限元计算方法,分析路面内部结构响应特性,为将来养护维修路面和设计新的路面方案提供参考和依据。
     路面检测是路面内部真实状态的反映,是在路面理论分析上的进一步发展,但当今路面检测中可以直接引用的方法不多,对于目前比较关注的光纤应变检测技术,尚处于研究和开发阶段,技术还不成熟,且大部分技术属于国外拥有,价格也比较昂贵,不适合进行试验性研究,而对于电阻应变检测仪器,虽然价格低廉,但其稳定性能差,抗干扰能力低,也不适合应用在环境复杂的实际路面中。
     本文通过对国内外检测仪器的性能及适用范围的研究,在考虑环境影响因素和应用前景的基础上,决定采用JMZX-215型埋入式混凝土应变计。振弦式应变计具有良好的稳定性、抗干扰能力强、性价比高、采集数据方便和测试量为应变值累计值等特点,并通过对应变计结构上的改造,解决高温保护、腐蚀、抗压、耐用等问题.
     本文通过对在不同行车速度作用下的路面结构的数值计算,分析行车速度对路面结构响应的影响。分析结果表明,路面位移和应力(应变)响应不仅与它本身的固有频率有关,还与轮载的加载时间等因素有关,并且路面响应随着速度增加而减小,其中慢重车对路面影响最大。
     通过检测数据与计算数据的分析对比,研究路面内部结构的真实情况,并验证应变计检测方案。数据表明,路表弯沉数值符合设计要求,路面运行情况暂时较好。在重新开放交通后,路面面层稳定性比基层好,但在荷载作用下的基层应变比面层大,而且基层在重载作用下容易进入塑性.同时也证明,振弦式应变计能够有效的应用在路面检测中,为对路面进行长期监测提供一种新的检测技术。
A lot of old cement concrete pavements has entered the maintenance phase, exploring how to overlay the new pavement on the old cement concrete pavements has become a very valuable research topic, however, pavement maintenance can not only depend on deflection which is for theoretical calculation and quality acceptance, because it is not only a true reflection of the state of the internal pavement structure, analysis results are also too one-sided. The article uses more mature finite element method to analyze the responses of the internal pavement structure, and provides reference and basis for the maintenance and design of pavement in future.
     Pavement detection is a true reflection of the state of the internal pavement and further development of theoretical analysis of the pavement, but the way for pavement detection that can be used directly are limited, the fiber-optic sensor technique is pay much attention, but it still be placed in the research and development stage, the technique is still not mature and the price is expensive, it is not suitable for study, in the resistance strain checkout equipment aspect, although its price is low, its stability is poor and its anti-interference capability is low, it is also not suitable for using in the pavement which environment is complex.
     The article studies sphere of application and performance of checkout equipment, and then chooses JMZX-215 submerged concrete strain gauge in the consideration of environmental factors and application prospects. Vibrational chord strain gauge has characteristics of good stability, high anti-interference capability, cost-effective, convenient data collection and testing the accumulated value of strain, and through the transformation of the strain gauge structure to solve problems of high-temperature, corrosion, compression, durability.
     The article analysis the impact of speed to the pavement structure basing on the numerical analysis of pavement structure under the load in different speeds. The results show that the road displacement and stress (strain) not only have something to do with its own natural frequency and loading time, but also other factors, and pavement response decreases with the increase in speed, slow heavy vehicles most seriously affect the pavement.
     The article studies the real conditions of internal pavement structure and proves the strain gauge detection program through comparison and analysis between testing data and calculation data. The data show that the deflection complies with design requirement and the pavement is in good running now. After the reopening of traffic, the pavement surface is more stable than the grass-roots, but the grass-roots has lager strain than pavement surface under the load, and the grass-roots can easily become plastic under the heavy load. At the same time, it also proves that the vibrational chord strain gauge can be effectively used in the pavement detection and provides a new detection technique for long-term monitoring of the pavement.
引文
[1]沈金安.如何解决路面结构设计中存在的问题.第二届全国公路科技创新高层论坛报告,2005,9
    [2]李林生.广东省旧水泥混凝土路面修复技术方案评价研究.华南理工大学硕士学位论文,2003,5
    [3]交通部公路司.公路工程质量通病防治指南[M].北京:人民交通出版社,2002
    [4]姚祖康.沥青路面设计指标的探讨一在道路工程分会2004年学术年会上的发言概要[C].道路交通科技.2005(1):9-16
    [5]姚红云,梁乃兴,孙立军,蒙井玉.羧基丁苯聚合物改性水泥砼路面设计及试验路分析[J].重庆交通学院学报.2005,6(24):83-87
    [6]Saraf,C.L.,and B.F.McCollough.Controlling congitudinal cracking in concrete pavements.In transportation research record 1043,TRB,National Research Council,Washington,D.C.,1985,pp.8-13.
    [7]Joint and crack sealing and repair for concrete pavements.TB012P.American Concrete Pavement Association,Arlington Heights,IL,1993.
    [8]James K.Cable et al.Design and construction procedures for concrete overlay and widening of existing pavements.FHWA DTFH61-01-X-00042(Project 6),IHRB Project TR-511,September 2005
    [9]刘荥等.旧水泥混凝土路面改建中的新技术与方法的研究[J].华东公路2003,(2):7-9
    [10]黄尚林.旧水泥混凝土路面加铺沥青混凝土面层改造技术[J].中南公路工程,2001(3):19-21
    [11]谢勇利.水泥混凝土路面加铺沥青混凝土的设计技术[J].2002,(3):29-31
    [12]张超.水泥混凝土路面加铺沥青混凝土面层后反射裂缝的防治[J].公路,2002,(1):61-63
    [13]刘先淼.水泥混凝土加铺沥青罩面层预防或延缓反射裂缝技术探讨[J].广东公路交通,2002(4):40-43
    [14]罗晓辉,旧水泥混凝土路面加铺沥青混凝土面层后反射裂缝的防治.公路,2004,(8):171-173
    [15]Shreenath Rao and Jeffery Roesler.Characterization of effective built-in curling and concrete pavement cracking on the palmdale test sections.University of California Berkeley Institute of Transportation Studies Pavement Research Center draft,May 2005
    [16]Seong-Min Kim,Patricia Kim Nelson.Experimental and numerical analyses of PCC overlays on PCC slabs-on-grade subjected to climatic loading.International Journal of Solids and Structures,2004,41(3):785-800
    [17]陈常松,颜东煌,陈政清.混凝土振弦式应变计测试技术研究.中国公路学报,2004,(17)1:29-33
    [18]蒋小钢,辛松林.振弦式仪器及其长期稳定性[J].大坝观测与土木工程测试.1994,18(1):20-25
    [19]毛良明,王为胜,沈省三.振弦式传感器及自动化网络测量系统在桥梁安全监测系统中的应用[J].传感技术学报,2002,(1):73-76
    [20]巴里.塞勒斯,袁远.振弦式传感器在大坝安全监测中的应用[J].水利水电快报,2001,.22(19):19-20
    [21]Liu C,McCullough BF,Oey HS.Response of rigid pavements due to vehicle-road interaction.ASCE Journal of Transportation Engineering,2000,126(3):37-42
    [22]耿大新,钟才根,杨琳德.行车荷载作用下刚性路面结构体系的动力响应[J].中南公路工程,2003,28(4):16-19
    [23]王林玉,谢永利,朱向荣.循环荷载作用下路面模型试验研究[J].西安公路交通大学学报,1999,19(4):11-14
    [24]常志权,罗虹,褚志刚等.谐波叠加路面输入模型建立及数字模拟.重庆大学学报(自然科学版),2004,27(12):5-8
    [25]M.N.S.Hadi,Y.Arfiadi.Optimum rigid pavement design by genetic algorithms.Computer and Structures,2001,79(2):1617-1624
    [26]Kim SM,B.Frank MC.Dynamic response of plate on viscous winkler foundation to moving loads of varying amplitude.Engineering Structures,2003,25(9):1179-1188
    [27]毛菊良,侯芸,郭忠印.动态荷载下刚柔复合路面结构变形和应力分析[J].同济大学学报(自然科学版),2004,32(10):1403-1407
    [28]王秉刚,邓学均.路面力学计算[M].北京:人民交通出版社,1985.
    [29]孙之芜.沥青路面早期破坏原因分析及预防措施.合肥工业大学硕士学位论文,2007,5.
    [30]陈常松,颜东煌,陈政清,涂光亚,田仲初.混凝土振弦式应变计测试技术研究[J].中国公路学报.2004,17(1):29-33
    [31]姚学亮.沥青类路面结构力学响应与检测技术研究.山东大学硕士学位论文,2007,5.
    [32]江修,张焕春,经亚枝.振弦式传感器的频率敏感机理与应用[J].传感器技术.2003,22(12):22-24
    [33]白泰礼,邓铁六,谢军,胡凤鹏.振弦式传感器的精确数学模型及其应用[J].岩石力学与工程学报.2005,24(2):5965-5969
    [34]吕惠卿,张湘伟,张荣辉,李德源,成思源.振弦式应变计在水泥混凝土路面力学性能测试中的应用.公路交通科技,应用技术版.2006,61-63
    [35]K.Majdzadeh.D.V.Ramsamooj,Refleetion Craeking:Analysis,Laboratory Studies and Design Considerations,1980,49.
    [36]DavidCroney,Paul Croney.Design and Performance of Road Pavement.The McGraw- Hill Companies.Inc.1997
    [37]Emmanue1G,Fermando,David R Luhretal.Analysis of Axle Loads and Axle Type for the Evaluation of Load Limits on Flexible Pavements.TRR.1136
    [38]侯芸,孙四平,郭忠印.移动荷载下刚性路面响应的参数影响分析[J].同济大学学报.2003,1(31):31-35
    [39]李艳,张林春,张文君,王效杰,刘素平.ANSYS在道路路面结构计算中的应用[J].城市道桥与防洪.2005,3(2):100-103
    [40]Zafir Z,Siddharthan R,Sebaaly P E.Dynamic pavement-strain histories from moving traffic load[J].Journal of Transportation Engineering,ASCE,1994,120(5):821-842
    [41]吴桂金.基于ANSYS的AC/CRC层间剪应力分析[J].公路与汽运.2005,109(4):69-71
    [42]陶向华,黄晓明,刘荫成.车辆荷载作用下路桥段结构的动态响应分析[J].公路交通科技.2005,9(22):7-11
    [43]胡少伟.结构振动理论及其应用[M].中国建筑工业出版社.2005(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700