基于时域的分数阶PID广义预测控制算法改进及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PID调节器作为一种应用广泛的控制器,具有原理简单,适用面广等优势,但是,很多系统对象的模型比较复杂,传统的PID控制对时变,非线性系统不能达到控制要求。分数阶PID控制器较传统整数阶PID控制器增加了两个可调参数,使得其控制器的设计更加灵活,控制性能更加优良。广义预测控制(Generalized Predictive Control, GPC)采用多步输出预测,需要获取的大量的信息,需要在线对控制矩阵求逆和求解丢番图方程,实时性比较低,因此对广义预测控制算法进行改进具有重要意义。
     本文分析了分数阶PID算法(FOPID)在工程实践中的应用,验证其优越性与实用性。在验证了FOPID控制算法优越性的基础上,并从已有学者研究出的PID算法和模型控制算法相结合推导出的各种新算法的过程中得到启发,提出算法的进一步改进,即FOPID-GPC算法,这种算法既具有FOPID算法的优点,稳定性好,又具有预测功能。文中给出了算法的具体推导过程,并以双容水箱液位控制系统和锅炉过热蒸汽控制系统两大典型系统为例,通过改进后的算法对这两个控制系统的数学模型进行仿真研究,在时域内讨论了FOPID-GPC控制器在参数的选择上对控制性能产生的影响,并通过Matlab仿真说明了FOPID-GPC算法比基本PID算法、GPC算法以及PIDGPC算法控制性能更好。本文尝试将改进算法应用于水箱液位控制系统以及锅炉过热蒸汽系统中,为探索新型控制算法在工程实践中的应用打下一定的理论基础。
As a widely used controller,the PID regulator has the advantages of simple principle,wide application range and so on,however,many models of the system's objects are complex,the traditional PID controller can not meet the control requirements that in controlling the nonlinear time variant system.Fractional order PID controller adds two adjustable parameters so that it is better than the traditional integer order PID controller, the controller design is more flexible,and it has more excellent control performance. Generalized predictive control (GPC) take multi step predictive output, and it needs to obtain a large mount of information, control the inverse matrix and compute the Diophantine equation, generalized predictive control has low realtime feature, so it is important to improve the generalized predictive control algorithm.
     This paper analyzes the use of fractional PID algorithm (FOPID) in the application of engineering practice, and it verified the superiority and practicability of the algorithm,it get inspired On the base of verified the FOPID control algorithm superiority and from the scholars that had studied all sorts of new algorithm process derive by the combine of the PID algorithm and model control algorithm,the paper improve the algorithm that named FOPID-GPC algorithm, the algorithm has the advantage of good stability that containted by FOPID algorithm, and has forecast function. This paper shows the specific derivation process of the algorithm, and take ed two typical systems of the double tank water level control system and the boiler superheated steam control system as an example,it used the improved algorithm and the two mathematical model of control system simulation in time domain analysis,the select of FOPID-GPC controller parameters on control performance, through Matlab simulation illustrates the FOPID-GPC algorithm has better control performance than the basic PID algorithm, GPC algorithm and PIDGPC algorithm. This paper attempts to apply the improved algorithm in tank liquid level control system and the boiler superheated steam system, to explore a new control algorithm in the application of engineering practice to lay a theoretical foundation.
引文
[1]诸静等,智能预测控制及其应用[M],浙江大学出版社,2002,143-201。
    [2]苏宏业,李林欢,褚健,预测控制的新进展[J],机电工程,2001(5),4-8。
    [3]许超,陈治刚,邵惠鹤,预测控制技术及应用发展综述[J],化工自动化及仪表,2002(3),1-10。
    [4]Ivo Petras. The fractional-order controllers:Methods for their synthesis and application[J]. Journal of Engineering,1999,50(9-10):284-288.
    [5]Wang Jifeng, Li Yuankai. Frequency Domain Analysis and Applications for Frctional-order Control System[J]. Journal of Physics:Conference Series,2005(13):268-173.
    [6]B.J.Lurie. Three-parameter tunable tilt-integral-derivative (TID) controller[J]. US Patent US5371670 [P],1944.
    [7]B.M. Vinare, I.Podlubny, A. Hernandez, et al. Some Approcimations of Fractional-order Operators Used in Control Theory and Applications[J]. Fractional Calculus and Applied Analysis,2000(3):231-248.
    [8]Carpinteri A, Chiaia B, Cornetti P. Numerical modelization of disordered media via fractional calculus[J]. Coputational Materials Science,2004,30(1-2):155-162.
    [9]Xue Dingyu, Chen Yangquan. A comparative introduction of four fractional-order controllers[J]. Proceeding of the 4th World Congress, Intelligent Control and Automation, 2002,2(4):3228-3235.
    [10]袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J],电子学报,2004,32(10),1658-1665。
    [11]Samadi S, Ahmad M O, Swamy M N S. Exact fractional-order differentiators for polynomial signal[J]. Signal Processing Letters, IEEE,2004,11 (6):529-532.
    [12]Petras I, Podlubny I, O'Leary P, et al. Analogue realization of fractional order controllers[M]. Kosice:TU Kosice,2002,4-5.
    [13]王振宾,曹广益,曾庆山,分数阶PID控制器及其数字实现[J],上海交通大学学报,2004(38),517-520。
    [14]葛化敏,周杏鹏,李宏胜,分数阶PIλDμ控制器的设计与实现[J],工业仪表与自动化装置,2009(1),3-6。
    [15]Podlubny I. Fractional-order systems and PIλDμ controllers[J]. IEEE Transactions on Automatic Control,1999,44(1):208-214.
    [16]庄德军,喻凡,林逸,基于分数阶PDμ控制器的车辆方向控制[J],上海交通大学学报,2007(41),279-283。
    [17]Podlubny I. Fractional differential equations[M]. San Diego:Academic Press,1999.
    [18]B.J.Lurie. Three-parameter tunable tilt-integral-derivative (TID) controller[J].US Patent US5371670 [P],1944.
    [19]陈炎冬,分数阶微积分理论在车辆底盘控制中的应用研究[D],南京林业大学,2008。
    [20]Jocelyn Sabatier, Alain Oustaloup, Aitor Garcia Iturricha and Francois Levron. CRONE control of continuous linear time periodic systems:Application to a testing bench[J]. Transactions,2003,42(3):421-436.
    [21]Valerie Pommier, Jocelyn Sabtier, Patrick Lanusse and Alain Oustaloup. Crone control of a nonlinear hydraulic actuator[J]. Control of Engineering Practice,2002,10(4):391-420.
    [22]A.Oustaloup, P.Melchoir, P.Lanusse, C.Cois, F.Dancla. The CRONE Toolbox for Matlab[C]. Proc.of the 11th IEEE International Symposium on Computer Adied Control System Design-CACSD, Anchorage, USA,2000.
    [23]Li, H., Luo, Y.,& Chen, Y.. A fractional order proportional and derivative (FOPD) motion controller:Tuning rule and experiments[J]. IEEE Transactions on Control System Technology (in press),2008.
    [24]Luo, Y.,& Chen, Y.. Fractional-order [proportional derivative] controller for robust motion control:Tuning procedure and validation. IEEE Transactions on Automatic Control (under revision),2008.
    [25]Ying Luo, Yang Quan Chen. Fractional order [proportional derivative] controller for a class of fractional order systems[J]. Automatica,2009,6(22):2-5.
    [26]Monje, C. A., Calderon, A. J., Vinagre, B. M., Chen, Y.,& Feliu, V.. On fractional PIλ controllers:Some tuning rules for robustness to plant uncertainties[J]. Nonlinear Dynamics,2004,38(1-4):369-381.
    [27]Mohammad Saleh Tavazoei. Notes on integral performance indices in fractional-order control systems[J]. Journal of Process Control,2010,20:285-291.
    [28]Goodwin G. C., Graebe S. F., Salgado M. E. Control system design[M]. Englewood Cliffs, NJ:Prentice Hall,2001.
    [29]Richalet, J., Rault, A., Testud, J. L., Papon, J. Algorithmic control of industrial processed [A]. In Proceedings of the 4th IFAC symposium on identification and system parameter estimation[C],1976,1119-1167.
    [30]Garcia, C. E., Prett, D. M., Morari, M. Model predictive control:Theory and practice-a survey[J]. Automatica,1989,25 (3):335-348.
    [31]李嗣福,计算机控制基础[M],合肥,中国科学技术出版社,2001,287-293。
    [32]Culter, C.R. Ramaker, B.L. Dynamic matrix control-a computer control algorithm[C]. AIChE National Meeting, Houston, TX, April,1979.
    [33]Culter, C.R.. Ramaker, B.L.. Dynamic matrix control-a computer control algorithm[A]. Proceeding of the Joint Automatic Control Conference. San Francisco, CA.1980.
    [34]Rouhani R., Mehra R. K. Model algorithmic control (MAC). Basic Theoretical Properties[J]. Automatica,1982 (4):401-414.
    [35]Richalet, J.Predictive functional control:application to fast and accurate robots[A]. In: Isermann R, ed. Automatic Control Tenth Triennial World Congress of IFACV.4.Oxford: Pergamon Press[C],1988,251-258.
    [36]Clark, D. W., Mohtadi, C., Tuffs, P. S.. Generalized predictive control[J]. Automatic,1987, 23(2):137-160.
    [37]李奇安,广义预测控制算法简化实现方法研究[D],浙江大学博士论文,2005,3-6。
    [38]Clark, D. W., Mohtadi, C.. Properties of generalized predictive control[J]. Automatic,1989, 25(6):859-875.
    [39]Clark, D. W.. Applications of generalized predictive control to industrial process[J]. IEEE Control System Magazine,1988(2):49-55.
    [40]诸静,模糊控制原理与应用[M],北京,机械工业出版社,1995,17-88。
    [41]舒迪前,预测控制系统及其应用[M],北京,机械工业出版社,2001。
    [42]Mills, P. M., Zomaya, A. Y., Tade, M. O.. Adaptive model-based control using neural networks[J]. International Journal of Control,1994,60(6):1163-1192.
    [43]Najim, K., Rusnak, A., Meszaros, A.. Constrained long-range predictive control based on artificial neural networks[J]. International Journal of System Science,1997, 28(2):1211-1226.
    [44]张海龙,基于神经网络的智能预测控制理论研究[D],大庆石油学院,2009。
    [45]李志斌,一种基于BF神经网络预测模型的DMC预测控制[J],科学技术与工程,2010(10),1644-1647。
    [46]Abonyi, J., Nagy, L., Szeifert, F.. Fuzzy model-based predictive control by instantaneous linearization[J]. Fuzzy Sets and System,2001,120(1):109-122.
    [47]Liu, B., Shen, Q., Su, H. Y., Chu, J.. A nonlinear predictive control algorithm based on fuzzy on-line modeling and discrete optimization[A]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2003,816-822.
    [48]孙乐文,基于T-S模型的模糊预测控制在线优化算法研究[D],中国石油大学,2009,222-282。
    [49]张立,高宪文,李中明,赵娟平,王介生,基于Wang-Mendel模型的有约束模糊预测控制[J],控制与决策,2010(25),385-1388。
    [50]Bing Zhang, Weidong Zhang. Adaptive predictive functional control of a class of nonlinear Systems[J]. ISA Transactions,2006,45(2):175-183.
    [51]Ridong Zhang, Pling Li, Anke Xue, A.ipeng Jiang, Shuqing Wang. A simplified linear iterative predictive functional control approach for chamber pressure of industrial coke furnace[J]. Journal of Process Control,2010,20:464-471.
    [52]Dejan Dovzan, Igor Skrjanc. Predictive functional control based on an adaptive fuzzy model of a hybrid semi-batch reactor[J]. Control Engineering Practice,2010,18:978-989.
    [53]姚培,郑恩让,陈蓓,多变量系统灰色预测函数控制方法研究[J],微计算机信息,2009(25),61-262。
    [54]郭颖,李昌海,基于GM(1,2)模型的多步自调节灰色预测控制算法[J],西安石油大学学报,2009(24),93-95。
    [55]杨马英,王树青,王骥程,大时滞过程的预测控制-催化裂化反应再生系统原料预热回路控制[J],控制理论及应用,2000(17),143-146。
    [56]Wisnewski, P. A., Doyle, F. J.. Model-based predictive control studies for a continuous pulp digester[J]. IEEE trans. On control systems technology,2001,9(3):435-444.
    [57]Qiang Tang, Xingua Zhang and Xichen Liu. TF/TA trajectory tracking using nonlinear predictive control approach[J]. Journal of Systems Engineering and Electrics,2006,17: 396-401.
    [58]Felilpe N.Martins, Wanderley C. Celeste, Ricardo Careli, Mario Sarcinelli-Filho, Teodiano F. Bastos-Filho. An adaptive dynamic controller for autonomous mobile robot trajectory tracking[J]. Control Engineering Practice,2008,36:1354-1363.
    [59]世梁,张华,基于预测控制的全向移动机器人轨迹跟踪[J],计算机测量与控制,2010(18),2281-2284。
    [60]李君,灰色预测控制在电机控制中的应用[J],自动化技术与应用,2010(29),29:8-11。
    [61]Bulut, B., et al. Industrial application of model based predictive control as a supervisory system[J]. proc. of the ACC, Chicago,2000,3763-3767.
    [62]Garcia C. E., Morari M. Internal Model Control[A]. Ind. Engng Chem, Process Des. Dev. 1982,21(2):308-332,472-494.
    [63]Wisnewski, P. A., Doyle, F. J.. Model-based predictive control studies for a continuous pulp digester[C]. IEEE trans. On control systems technology,2001,9(3):435-444.
    [64]Hoper, R., Otter, M.. A versatile C++ toolbox for model based real time control systems of robotics manipulators[A]. Proc. of IEEE In Intelligent Robots and Systems,2001(4): 2208-2214.
    [65]Veryha, Y. B., Kourtch, L. Neural network based manipulator control with time-optimal robot path tracking [A]. Proc. of the IEEE Int. Conf. On Control Applications[C],2000, 748-753.
    [66]郭旭,熊蓉,胡协和,全方位移动机器人的运动预测控制[J],电机与控制学报,2007(11),79-82。
    [67]窦汝振,许镇琳等,预测控制在异步电机直接转矩控制系统中的应用研究[J],电气自动化,2001(4),7-9。
    [68]刘妹琴,邓燕妮,基于时延RBFNN模型预测控制的交流伺服系统[J],中国电机工程 学报,2000(20),7-10。
    [69]王伟,广义预测控制理论及其应用[M],科学出版社,1998。
    [70]陈欣,模型预测控制算法的改进及其应用的研究[D],南京信息工程大学硕士论文,2010,12-14。
    [71]刘金琨,先进PID控制MATLAB仿真[M],电子工业出版社,2004,23-50。
    [72]郭伟,姚少杰,陈欣.基于时域的PID模型预测控制算法改进及仿真[J].控制工程,2008,15(5):511-513.
    [73]D. W. Clarke, P. J. Gawthrop. Self tuning Controller. IEE Proc. D,1975,122(9):929-934.
    [74]R. M. C. DE Keyser, A. R. Van Cauwenberghe. Extended Prediction Self adaptive
    Control[C]. Proc. Of IFAC Symp. Ident. Syst. Param. Est. York, UK,1985.
    [75]薛定宇,张晓华,控制系统计算机辅助设计[M],清华大学出版社,2006,260-281。
    [76]王莉,分数阶PID与分数阶PID-MAC控制算法的研究与应用[D],南京信息工程大学硕士论文,2011,17-19。
    [77]赵春娜,赵雨,张祥德,李英顺,分数阶控制器与整数阶控制器仿真研究[J],系统仿真学报,21(3),768-771。
    [78]严慧,分数阶PIλDμ控制器阶数变化对控制性能的影响[J],金陵科技学院学报,2008,24(4),13-18。
    [79]黄小锋,PID在发电机励磁控制系统中的应用[J],电机技术,2007(9),79-80。
    [80]工业测量与控制系统的EPA系统结构和通信标准[S],2005,报批稿。
    [81]IEC/PAS 62409:Real time Ethernet EPA(Ethernet for Plant Automation)[S],200.
    [82]牛培峰,张密哲,陈贵林等,自适应模糊神经网络控制在锅炉过热汽温控制中的应用[J],动力工程学报,2011(31),115-119。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700