基于时域的分数阶PID动态矩阵控制算法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模型预测控制(Model Predictive Control, MPC)是继经典控制理论和现代控制理论之后出现的一类基于模型的先进控制算法,在工业控制过程中得到广泛应用。它通过实验手段获取系统的模型,其基本思想为“模型预测——反馈校正——滚动优化”,通过系统的二次性能指标获取最优控制量。它的典型算法有三大类:模型算法控制(Model Algorithmic Control, MAC)、动态矩阵控制(Dynamic Matrix Control, DMC)、广义预测控制(Generalized Predictive Control, GPC).本文以DMC的状态空间描述为基础,主要对PID动态矩阵控制算法进行改进和研究。
     相对于传统的整数阶控制,分数阶控制是一种很好的概括和补充,它使传统的控制理论更具鲁棒性,使控制系统的静态和动态特性能够得到很好的改善,并且分数阶控制器可以在频域内进行设计。因此,本文在分析分数阶PID算法和动态矩阵控制算法的基础上,推导了分数阶PID动态矩阵控制算法(Fractional-order PID Dynamic Matrix Control, FOPIDDMC).该算法既具有分数阶PID算法的优点,结构简单,参数调节方便,又具有预测功能。在时域内分析了分数阶PIDDMC控制器的参数选择对控制性能的影响,给出参数选取范围。通过仿真说明了分数阶PIDDMC算法比基本DMC算法和PIDDMC算法具有更好的控制性能。
     目前,应用于EPA控制系统和电厂过热汽温系统的控制算法还是以传统PID算法为主,本文将改进的FOPIDDMC算法应用在EPA控制系统和过热汽温系统中,并在时域内分析了参数选择对系统控制性能的影响,为今后的工程实践打下基础。
     此外,大多数工业过程被控对象都有延迟特性,因为网络引入的通信延迟能导致系统性能退化甚至不稳定。针对这种网络控制系统中的延迟,本文分析了导致时延的原因,并引入时间标记的PIDDMC算法(Time-stamped PID Dynamic Matrix Control, TSPIDDMC),建立随同时间标记的通信延迟模型。通过时间标记测量网络延迟,在线校正系统的阶跃响应系数和控制系数,并给出了算法的推导过程。仿真实验证明,针对文章所研究的延迟,这种新算法能得到比PIDDMC算法更好的控制性能,改进了网络控制系统的可靠性。
Model predictive control is a type of advanced control algorithms based on model after the typical control algorithm and the modern control algorithm. It has been widely used in industrial process control. The models in this algorithm are gained through experimental methods. The main ideas of the algorithm are "model predicting—feedback revising—rolling optimizing". By calculating the quadratic performance index of the system, the optimal control variable will be got. The typical algorithms of model predictive control are model algorithmic control (MAC), dynamic matrix control (DMC), generalized predictive control (GPC). In this paper, base on State Space description of DMC, our discussions mainly focus on improving and researching PIDDMC algorithm.
     The factional-order control is supplement and summary to the traditional integer-order control theory. It makes the traditional control theory better in simulation and robustness and makes the static and dynamic performs of the control system can be improved. What's more, the fractional-order controller can be designed within the frequency domain. Base on analyzing the two control algorithm, this paper derives Fractional-order PID Dynamic Matrix Control (FOPIDDMC) algorithm. This algorithm has not only the advantage of the fractional-order PID, which is reliable in operation and convenient in regulating parameters, but also the prediction function. Simulation results show that this algorithm is better than basic DMC algorithm and PIDDMC algorithm in many performances.
     At present, the algorithm applied in EPA control system and superheated temperature system of power plants is mainly traditional PID algorithm. In this paper, the improved FOPIDDMC algorithm is applied in EPA control system. The influence of FOPIDDMC controller parameter tuning on system performance is investigated in time domain, which lays a good foundation for future engineering practice.
     Most industrial processes have characteristic of time delay. The communication delay introduced by the networks can lead to performance degradation and even instability. To address network-induced delays, a time-stamped PID dynamic matrix control (TSPIDDMC) algorithm which uses a communication delay model to improve reliability over network control systems is proposed. The network-induced delays are measured by a time-stamp method, based on which the step response coefficients and control coefficients ate corrected in each sampling period and the algorithm derivation is given. Simulative validation of this new algorithm resulted in improved performance and stability over PIDDMC control.
引文
[1]诸静等.智能预测控制及其应用[M].杭州:浙江大学出版社,2002.
    [2]许超,陈治刚,邵惠鹤.预测控制技术及应用发展综述[J].化工自动化及仪表,2002,29(3):1-10.
    [3]A.Oustaloup, X.Motreau, M.Nouillant. The CRONE suspension[J]. Control Engineering Practice,1996,4(8):1101-1108.
    [4]Matignon. Stability results for fractional differential equations with applications to control processing[C]. Computational Engineering in Systems and Application Muticonference. Lille:IMACS IEEE-SMC,1996,963-968.
    [5]Matignon. Some results on control ability and observability of finite-demensional fractional differential systyems[C]. Computational Engineering in Systems and Application Multiconference. Lille:IMACS IEEE-SMC,1996,952-956.
    [6]Podlubny I. Fractional-order systems and PIλDμ controllers[J]. IEEE Transactions on Automatic Control,1999,44(1):208-214.
    [7]Valerio D, Sa'da Costa J. Time-domain implementation of fractional order controllers[J]. IEEE Proceedings:Control Theory and Applications,2005,152(5):539-552.
    [8]Zhao, C., Xue, D.,&Chen, Y.Q.. A fractional order PID tuning algorithm for a class of fractional order plants[J]. Proc.of the IEEE ICMA,2005,216-221.
    [9]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策,2009,24(2):162-169.
    [10]Kalman, R. E.. Contributions to the theory of optimal control[J]. Bulletin de la Societe Mathematique de Mexicana,1960,5:102-119.
    [11]Kalman, R. E.. A new approach to linear filtering and prediction problems[J]. Transactions of ASME, Journal of Basic Engineering,1960,87:35-45.
    [12]Propoi, A. I.. Use of linear programming methods for synthesizing sampled-data automatic systems[J]. Automatic Remote Control,1963,24 (7):837-844.
    [13]Lee, E. B., Markus, L.. Foundations of optimal control theory[M]. New York:Wiley,1967.
    [14]Richalet, J., Rault, A., Testud, J. L., Pagon, J.. Model predictive heuristic control: applications of industrial processes[J]. Automatica,1978,5:413-428.
    [15]Rouhani, R., Mehra, R. K.. Model algorithmic control (MAC)[J]. Basic Theoretical Properties[J]. Automatica,1982,4:401-414.
    [16]Culter, C.R.. Ramaker, B.L.. Dynamic matrix control-a computer control algorithm[J]. AIChE National Meeting, Houston, TX, April,1979.
    [17]Clark, D. W., Mohtadi, C, Tuffs, P. S.. Generalized predictive control[J]. Automatic,1987, 23(2):137-160.
    [18]Lelic M A, Zarrop M B. Generalized Pole Placement Self-running Controller[J]. Int J Control,1987,46(2):547-568.
    [19]Mills, P. M., Zomaya, A. Y., Tade, M. O.. Adaptive model-based control using neural networks[J]. International Journal of Control,1994,60(6):1163-1192.
    [20]Najim, K., Rusnak, A., Meszaros, A.. Constrained long-range predictive control based on artificial neural networks[J]. International Journal of System Science,1997, 28(2):1211-1226.
    [21]张海龙.基于神经网络的智能预测控制理论研究[D].大庆石油学院,2009.
    [22]李志斌.一种基于RBF神经网络预测模型的DMC预测控制[J].科学技术与工程,2010,10(7):1644-1647,1651.
    [23]Abonyi, J., Nagy, L., Szeifert, F.. Fuzzy model-based predictive control by instantaneous linearization[J]. Fuzzy Sets and System,2001,120(1):109-122.
    [24]Liu, B., Shen, Q., Su, H. Y., Chu, J.. A nonlinear predictive control algorithm based on fuzzy on-line modeling and discrete optimization[A]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2003,816-822.
    [25]孙乐文.基于T-S模型的模糊预测控制在线优化算法研究[D].中国石油大学,2009,222-282.
    [26]张立,高宪文,李申明,赵娟平,王介生.基于Wang-Mendel模型的有约束模糊预测控制[J].控制与决策,2010,25(9):1385-1388.
    [27]Bing Zhang, Weidong Zhang. Adaptive predictive functional control of a class of nonlinear Systems[J]. ISA Transactions,2006,45(2):175-183.
    [28]Ridong Zhang, Pling Li, Anke Xue, A.ipeng Jiang, Shuqing Wang. A simplified linear iterative predictive functional control approach for chamber pressure of industrial coke furnace[J]. Journal of Process Control,2010,20:464-471.
    [29]Dejan Dovzan, Igor Skrjanc. Predictive functional control based on an adaptive fuzzy model of a hybrid semi-batch reactor[J]. Control Engineering Practice,2010,18:978-989.
    [30]姚培,郑恩让,陈蓓.多变量系统灰色预测函数控制方法研究[J].微计算机信息,2009,25:261-262.
    [31]郭颖,李昌海.基于GM(1,2)模型的多步自调节灰色预测控制算法[J].西安石油大学学报,2009,24:93-95.
    [32]杨马英,王树青,王骥程.大时滞过程的预测控制-催化裂化反应再生系统原料预热回路控制[J].控制理论及应用,2000,17(1):143-146.
    [33]Wisnewski, P. A., Doyle, F. J.. Model-based predictive control studies for a continuous pulp digester[J]. IEEE trans. On control systems technology,2001,9(3):435-444.
    [34]Qiang Tang, Xingua Zhang and Xichen Liu. TF/TA trajectory tracking using nonlinear predictive control approach[J]. Journal of Systems Engineering and Electrics,2006,17: 396-401.
    [35]Felilpe N.Martins, Wanderley C. Celeste, Ricardo Careli, Mario Sarcinelli-Filho, Teodiano F. Bastos-Filho. An adaptive dynamic controller for autonomous mobile robot trajectory tracking[J]. Control Engineering Practice,2008,36:1354-1363.
    [36]世梁,张华.基于预测控制的全向移动机器人轨迹跟踪[J].计算机测量与控制,2010,18:2281-2284.
    [37]李君.灰色预测控制在电机控制中的应用[J].自动化技术与应用,2010,29:8-11.
    [38]Bulut, B., et al. Industrial application of model based predictive control as a supervisory system[J]. proc. of the ACC, Chicago,2000,3763-3767.
    [39]赵春娜,薛定宇.一种分数阶线性系统求解方法[J].东北大学学报(自然科学版),2009,28(1):10-13.
    [40]Podlubny I. Fractional differential equations[M]. San Diego:Academic Press,1999.
    [41]Petras I, Podlubny I, O'Leary P, et al. Analogue realization of fractional order controllers[M]. Kosice:TU Kosice,2002,4-5.
    [42]B.J.Lurie. Three-parameter tunable tilt-integral-derivative (TID) controller[J]. US Patent US5371670[P],1944.
    [43]陈炎冬.分数阶微积分理论在车辆底盘控制中的应用研究[D].南京林业大学,2008.
    [44]Jocelyn Sabatier, Alain Oustaloup, Aitor Garcia Iturricha and Francois Levron. CRONE control of continuous linear time periodic systems:Application to a testing bench[J]. Transactions,2003,42(3):421-436.
    [45]Valerie Pommier, Jocelyn Sabtier, Patrick Lanusse and Alain Oustaloup. Crone control of a nonlinear hydraulic actuator[J]. Control of Engineering Practice,2002,10(4):391-420.
    [46]A.Oustaloup, P.Melchoir, P.Lanusse, C.Cois, F.Dancla. The CRONE Toolbox for Matlab[C]. Proc.of the 11th IEEE International Symposium on Computer Adied Control System Design-CACSD, Anchorage, USA,2000.
    [47]Li, H., Luo, Y.,& Chen, Y.. A fractional order proportional and derivative (FOPD) motion controller:Tuning rule and experiments[J]. IEEE Transactions on Control System Technology (in press),2008.
    [48]Luo, Y.,& Chen, Y.. Fractional-order [proportional derivative] controller for robust motion control:Tuning procedure and validation. IEEE Transactions on Automatic Control (under revision),2008.
    [49]Ying Luo, Yang Quan Chen. Fractional order [proportional derivative] controller for a class of fractional order systems[J]. Automatica,2009,6(22):2-5.
    [50]Monje, C. A., Calderon, A. J., Vinagre, B. M., Chen, Y.,& Feliu, V.. On fractional PIλ controllers:Some tuning rules for robustness to plant uncertainties[J]. Nonlinear Dynamics,2004,38(1-4):369-381.
    [51]Mohammad Saleh Tavazoei. Notes on integral performance indices in fractional-order control systems[J]. Journal of Process Control,2010,20:285-291.
    [52]郭伟,姚少杰.基于时域的PID动态矩阵控制算法改进[J].仪器仪表学报,2007,28(12):2174-2178.
    [53]任正云,邵惠鹤,张立群.几种特殊动态特性对象的预测PI控制[J].仪器仪表学报,2004,25(5):615-619.
    [54]Akesson, B. M., Toivonen, H. T. A neural network model predictive controller[J]. Journal of Process Control,2006,16(9):937-946.
    [55]于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究[J].控制理论与应用,2002,19(2):264-267.
    [56]Zhu Qixin, Liu Hongli and Hu Shousong. Uniformed model of networked control systems with long time delay[J]. Journal of systems Engineering and Electronics,2008, 19(2):385-390.
    [57]Nikolai Vatanski, Jean.P.G, Christophe A, Eric R.and Sirkka L.J.J. Networked control with delay measurement and estimation[J]. Control Engineering Practice,2009,17(2):231-244.
    [58]Wen-An ZHANG and Li Yu. Aobust control approach to stabilization of networked control systems with short time-varying delays[J]. Acta Automatica Sinica,2010,36(1):87-91.
    [59]李嗣福.计算机控制基础[M].中国科学技术大学出版社,2001.
    [60]Kwok K E, Ping M C, Li P. A model-based augmented PID algorithm [J]. Journal of Process Control,2000,10(1):9-18.
    [61]赵春娜,薛定宇.一种分数阶线性系统求解方法[J].东北大学学报(自然科学版),2009,28(1):10-13.
    [62]庄德军,喻凡,林逸.基于分数阶PDμ控制器的车辆方向控制[J].上海交通大学学报,2007,41(2):278-283.
    [63]刘金琨.先进PID控制MATLAB仿真[M].电子工业出版社,2004.
    [64]李少远,李柠.复杂系统的模糊预测控制及其应用[M].科学出版社,2003.
    [65]仇韬,丁艳军,吴占松等.基于预测模型的多PID控制器模糊加权控制[J].中国电机工程学报,2006,26(24):121-124,
    [66]S. Matsumura, K. Ogata, S. Fujii, H. Shioya and H. Nakamura. Adaptive control for the steam temperature of thermal power plants[J]. Control Engineering Practice,1994, 2(4):567-575.
    [67]A. Sanchez-Lopez, G. Arroyo-Figueroa and A. Villavicencio-Ramirez. Advanced control algorithms for steam temperature regulation of thermal power plants[J]. International Journal of Electrical Power & Energy Systems,2004,26(10):779-785.
    [68]郭伟,姚少杰.基于PID的DMC算法性能分析及其在过热蒸汽汽温控制中的应用[J].热力发电,2007,4:50-53.
    [69]赵文杰,牛玉广,刘吉臻.基于多模型的过热汽温自适应串级控制[J].计算机仿真,2003,20(5):107-109.
    [70]Nilsson, J., Bernhardsson, B., Wittenmark, B.. Stochastic analysis and control of real-time systems with random time delays[J]. Automatica,1998,34(1):57-64.
    [71]张奇智,张彬,张卫东.随机延迟网络控制系统中的分段时戳动态矩阵控制[J].控制与决策,2005,20(8):873-877.
    [72]Srinivasagupta, D., Schattler, H., Joseph, B.. Time-stamped model predictive control:an algorithm for control of processes with random delays[J]. Computers and Chemical Engineering,2004, (28)8:1337-1346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700