铜铟硒和氧化锌关于拉曼光谱的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光谱技术是一种准确、快速、无损的分子结构信息分析手段。近年来,随着科技的不断发展,拉曼光谱技术被广泛地应用在众多领域中。本论文以半导体材料在拉曼光谱及表面增强拉曼光谱技术中的应用为主要内容,完成了以下两方面的工作:
     首先,应用一步电化学沉积工艺在ITO玻璃上制备了铜铟硒(CuInSe2)薄膜,并通过拉曼光谱对得到的薄膜进行了全面系统的分析。从光谱中的拉曼特征峰可以判断,生成的薄膜具有黄铜矿晶体结构;同时,对于由沉积电位改变和退火处理导致的其他二元相的生成及晶化率的变化等情况,都可以通过拉曼光谱清晰准确地观察到,并且变化的程度也灵敏地反映在光谱中。
     其次,应用水溶液法在(100)取向的单晶硅片上生长了由规则六边形氧化锌(ZnO)纳米片叠加形成的薄膜,之后在其表面修饰银作为新型的表面增强拉曼散射衬底。修饰银分为溅射银膜和光还原银粒子两种手段。以荧光大分子罗丹明6G(R6G)作为探针分子,通过对不同银膜厚度和银粒子衬底的表面形貌及其拉曼光谱的分析,证明了这两种衬底都具有高效的表面增强拉曼散射活性,但增强效果有着差别,而不同的银膜厚度同样对衬底的增强效果有着影响。同时,通过拉曼1mapping扫描表明衬底表面的拉曼“热点”分布均匀。
Raman spectroscopy is an analysis method which can get the information of molecular structure accurately and rapidly. With the development of science and technology, Raman spectroscopy is widely used in many fields these years. The main content of this paper is the application of semiconductor in Raman spectra and Surface Enhanced Raman Scattering. It has completed two aspect job.
     Firstly, Copper Indium Selenium (CuInSe2) thin film was deposited on ITO glass by electrochemical method. And a comprehensive research was taken dependent on the Raman spectra of the CIS film. The Raman characteristic peak can prove that the CIS film has chalcopyrite crystal structure. At the same time, the growth of other binary phase and the variation of crystallinity caused by the change of sedimentary potential and annealing process can be observed clearly and accurately from the Raman spectra.
     Secondly, a new kind of Surface Enhanced Raman Scattering (SERS) substrate was fabricated by covering silver on Zinc oxide (ZnO) film, which was made up of regular hexagon nano sheets on monocrystalline silicon of (100) orientation by aqueous solution. Covering silver on ZnO film can be divided into sputtering silver film and photoreduction of silver particles. This experiment used fluorescent molecules rhodamine6G (R6G) as the probes molecules. It is proved that the two kinds of substrate both have efficient SERS activity according to the analysis, which based on the Raman spectra and surface morphology of different silver thickness substrate and silver particles substrate. While the enhanced effect was not same, and different thickness of silver film also has different effect. Besides, the "hot spots" distribution on the substrate surface was proved to have high uniformity by Raman mapping scanning.
引文
[1]Raman C. V., Krishnan K. S. A new type of secondary radiation (Reprinted from Nature, vol 121, pg 501-502,1928) [J]. Current Science,1998,74(4):381-381.
    [2]Ellis G王建鑫.傅里叶转换拉曼光谱用于弹性分析[J].世界橡胶工业,1991(4).
    [3]Turrell G, Corset J. Raman microscopy:Developments and applications:Academic Press [C]. Lodon,1996.
    [4]Ma Green. Photovoltaics:Coming of age [C]. New South Wales Umiv., Kensington,1990.
    [5]Chapin D. M., Fuller C. S., Pearson G. L. A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics, 1954,25(5):676-677.
    [6]Jenny D. A., Loferski J. J., Rappaport P. Photovoltaic Effect in Gaas P-N Junctions and Solar Energy Conversion [J]. Physical Review,1956,101(3):1208-1209.
    [7]Shay J. L., Wagner S., Kasper H. M. Efficient Culnse2/Cds Solar Cells [J]. Applied Physics Letters,1975,27(2):89-90.
    [8]施敏.现代半导体器件物理[M].北京:科学出版社,2001.
    [9]Repins I., Contreras M. A., Egaas B., et al.19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics,2008, 16(3):235-239.
    [10]Jackson P., Hariskos D., Lotter E., et al. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics,2011, 19(7):894-897.
    [11]Powalla M., Voorwinden G., Hariskos D., et al. Highly efficient CIS solar cells and modules made by the co-evaporation process [J]. Thin Solid Films,2009, 517(7):2111-2114.
    [12]王长贵,王斯成.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005:31-32.
    [13]Trupke T., Green M. A., Wurfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light [J]. Journal of Applied Physics,2002, 92(7):4117-4122.
    [14]Green M. A. Third generation photovoltaics:Ultra-high conversion efficiency at low cost [J]. Progress in Photovoltaics,2001,9(2):123-135.
    [15]商连弟.国内外活性氧化锌的进展[M].现代化工,1995(7):12-14.
    [16]Chittofrati A., Matijevic E. Uniform Particles of Zinc-Oxide of Different Morphologies [J]. Colloids and Surfaces,1990,48(1-3):65-78.
    [17]Frenay J. Leaching of Oxidized Zinc Ores in Various Media [J]. Hydrometallurgy, 1985,15(2):243-253.
    [18]程光煦.拉曼布里渊散射-原理及应用[M].北京:科学出版社,2001.
    [19]田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J]Chemical Engineer,2008, 22(1):3-5.
    [20]Fleischm. M, Hendra P. J., Mcquilla. Aj. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode [J]. Chemical Physics Letters,1974,26(2):163-166.
    [21]Jeanmaire D. L., Vanduyne R. P. Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode [J]. Journal of Electroanalytical Chemistry,1977,84(1):1-20.
    [22]Vanduyne R. P., Jeanmaire D. L., Allen C. S. Molecular Characterization of Electrode Surfaces by Raman and Resonance Raman-Spectroscopy [J]. Abstracts of Papers of the American Chemical Society,1977,174(Sep):4-4.
    [23]张鹏翔,郭伟力,李秀英.表面增强Raman效应(SERS)[J].光谱学与光谱分析,1954,7(1):1-7.
    [24]King F. W., Vanduyne R. P., Schatz G. C. Theory of Raman-Scattering by Molecules Adsorbed on Electrode Surfaces [J]. Journal of Chemical Physics,1978, 69(10):4472-4481.
    [25]Kerker M., Wang D. S., Chew H. Surface Enhanced Raman-Scattering (Sers) by Molecules Adsorbed at Spherical-Particles [J]. Applied Optics,1980, 19(19):3373-3388.
    [26]Wang D. S., Chew H., Kerker M. Enhanced Raman-Scattering at the Surface (Sers) of a Spherical-Particle [J]. Applied Optics,1980,19(14):2256-2257.
    [27]Gersten J. I. The Effect of Surface-Roughness on Surface Enhanced Raman-Scattering [J]. Journal of Chemical Physics,1980,72(10):5779-5780.
    [28]Campion A., Kambhampati P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews,1998,27(4):241-250.
    [29]张树霖.近场光学显微镜及其应用[M].北京:科学出版社,2000:116-123.
    [30]李瑞,卢景霄,陈永生等.Raman散射和AFM对多晶硅薄结晶状况的研究[J].光散射学报,2005,17(2):6-11.
    [31]周鸿飞,马洪涛.使用拉曼光谱对类金刚石薄膜进行结构分析的方法[C].广东:真空学会学术会议论文集,2009.
    [32]Zaretskaya E. P., Gremenok V. F., Schmitz W., et al. Raman spectroscopy of (CuInSe2)(X)-(2ZnSe)(1-X) thin films [C].11th International Conference on Phonon Scattering in Condensed Matter, Proceedings,2004:3106-3109.
    [33]罗鹏,赵丽霞,徐键.Cu2ZnSnS4纳米颗粒及其薄膜的制备与表征[J].无机材料学报,2012,27(1):79-82.
    [34]李茂材,张燕,张鹏翔等.显微拉曼光谱在珍珠鉴定中的应用[J].光散射学报,2000,12(3):161-164.
    [35]范建良,郭守国,刘学良.拉曼光谱(785nm)在翡翠检测中的应用[J].光谱学与光谱分析,2007,27(10):2057-2060.
    [36]吴烨.宝石有机填充材料的拉曼光谱研究[D].昆明:昆明理工大学材料学院,2010.
    [37]唐玉龙,郭周义.激光拉曼光谱技术在生物分子DNA研究中的应用和进展[J].激光生物学报,2004,13(5):386-393.
    [38]吴世法,刘琨,潘石.蛋白质近场拉曼分子指纹分析技术[C].长春:中国蛋白质组第三届学术大会,2005,7:25-27.
    [39]张树霖.简介生物学领域中的拉曼散射研究[J].光散射学报,1995,7(1):47-51.
    [40]刘琨.近场表面增强拉曼散射实验技术与血清分析的研究[D].大连:大连理工大学大学物理学院,2008.
    [41]赵万利.拉曼光谱研究恶性肿瘤血清及其在生物医学中的应用[D].大连:大连理工大学大学物理学院,2007.
    [42]康颐璞,司民真,刘仁明.氯霉素在电解法制备纳米银膜上的表面增强拉曼光谱的研究[J].光散射学报,2009,21(1):25-28.
    [43]陶家友,黄鹰,廖高华等.甲醛浓度的激光拉曼光谱检测研究[J].光散射学报,2008,20(4):346-349.
    [44]孙云云,李永玉,彭艳昆等.基于拉曼光谱技术检测苹果农药残留的研究[C].北京:中国农业工程学会2011年学术年会论文集,2011.
    [45]马寒露,董英,张孝芳等.拉曼光谱法快速检测掺入梨汁的浓缩苹果汁[J].分析测试学报,2009,28(5):535-538.
    [46]张志坚,张文淮.碎屑岩储层中有机包裹体的形成机制研究[J].地质科技情报,1994,13(1):53-59.
    [47]王吉有,王闵,刘玲等.拉曼光谱在考古中的应用[J].光散射学报,2006,18(2):130-133.
    [48]Shay J. L., Buehler E., Wernick J. H. Electroreflectance Spectra of Chalcopyrite Crystals [J]. Bulletin of the American Physical Society,1970,15(11):1378-&.
    [49]Wagner S., Shay J. L., Migliora. P, et al. Culnse2-Cds Heterojunction Photovoltaic Detectors [J]. Applied Physics Letters,1974,25(8):434-435.
    [50]Kazmerski L. L., White F. R., Morgan G. K. Thin-Film Culnse2-Cds Heterojunction Solar-Cells [J]. Applied Physics Letters,1976,29(4):268-270.
    [51]Dhere N. G. Present status and future prospects of CIGSS thin film solar cells [J]. Solar Energy Materials and Solar Cells,2006,90(15):2181-2190.
    [52]Dhere N. G. Toward GW/year of CIGS production within the next decade [J]. Solar Energy Materials and Solar Cells,2007,91(15-16):1376-1382.
    [53]Kulkarni S. S., Shirolikar J. S., Dhere N. G. Preparation of CIGSS thin-film solar cells by rapid thermal processing [J]. Proceedings of the ASME International Solar Energy Conference,2007:193-196.
    [54]王希文,方小红.铜铟镓硒薄膜太阳能电池及其发展[J].可再生能源,2008,26(3):13-16.
    [55]Schock H. W., Noufi R. CIGS-based solar cells for the next millennium [J]. Progress in Photovoltaics,2000,8(1):151-160.
    [56]Loferski J. J. Stoichiometric Effects on the Properties of Copper Based Chalcopyrite I-Iii-Vi2 Semiconductor Thin-Films [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1992,13 (4):271-277.
    [57]Ullal H. S., Zweibel K., Von Roedern B. Polycrystalline thin film photovoltaics: Research, development, and technologies [J]. Conference Record of the Twenty-Ninth Ieee Photovoltaic Specialists Conference 2002,2002:472-477.
    [58]Zhang S. B., Wei S. H., Zunger A., et al. Defect physics of the CuInSe2 c halcopyrite semiconductor [J]. Physical Review B,1998,57(16):9642-9656.
    [59]Han S. H., Hasoon F. S., Al-Thani H. A., et al. Effect of Cu deficiency on the optical properties and electronic structure of Culn1-xGaxSe2 [J]. Journal of Physics and Chemistry of Solids,2005,66(11):1895-1898.
    [60]郭杏元,许生,曾鹏举等.CIGS薄膜太阳能电池吸收层制备工艺综述[J].真空与低温,2008,14(3):125-133.
    [61]Hasoon F. S., Yan Y., Althani H., et al. Microstructural properties of Cu(In, Ga)Se2 thin films used in high-efficiency devices [J]. Thin Solid Films,2001, 387 (1-2):1-5.
    [62]Kapur V.K. Bansal A, Asensio O.I. Et Al. Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks[R]. DOE Solar Program Review Meeting 2004, 2004.
    [63]Lincot D., Guillemoles J. F., Taunier S., et al. Chalcopyrite thin film solar cells by electrodeposition [J]. Solar Energy,2004,77(6):725-737.
    [64]杜晶晶,龙飞,邹正光等.CIS (CIGS)薄膜材料的研究进展[J].材料导报,2007,27(4):9-12.
    [65]Fu Y. P., You R. W., Lew K. K. CuIn1-xGaxSe2 Absorber Layer Fabricated by Pulse-Reverse Electrodeposition Technique for Thin Films Solar Cell [J]. Journal of the Electrochemical Society,2009,156(12):D553-D557.
    [66]Kwak W. C., Han S. H., Kim T. G., et al. Electrodeposition of Cu (In, Ga)Se-2 Crystals on High-Density CdS Nanowire Arrays for Photovoltaic Applications [J]. Crystal Growth & Design,2010,10(12):5297-5301.
    [67]Tanino H., Maeda T., Fujikake H., et al. Raman-Spectra of CuinSe2 [J]. Physical Review B,1992,45(23):13323-13330.
    [68]董美荣,陆继东.碳元素形态的激光诱导击穿光谱特性[J].强激光与粒子束,2010,22(2):270-274.
    [69]张鹏翔,周小芳.两种激发波长下蔬菜水果的拉曼光谱对比研究[J].光散射学报,2004,16(2):136-140.
    [70]Lee P. C., Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols [J]. Journal of Physical Chemistry,1982,86(17):3391-3395.
    [71]Sondergaard T., Bozhevolnyi S. I., Novikov S. M., et al. Extraordinary Optical Transmission Enhanced by Nanofocusing [J]. Nano Letters,2010,10(8):3123-3128.
    [72]Schatz G. C. Theoretical-Studies of Surface Enhanced Raman-Scattering [J]. Accounts of Chemical Research,1984,17(10):370-376.
    [73]Haynes C. L., Van Duyne R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J]. Journal of Physical Chemistry B,2003,107(30):7426-7433.
    [74]Xu D. P., Dong Z. M., Sun J. L. Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method [J]. Nanotechnology, 2012,23(12).
    [75]Malinsky M. D., Kelly K. L., Schatz G. C., et al. Nanosphere lithography:Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles [J]. Journal of Physical Chemistry B,2001,105(12):2343-2350.
    [76]Wu Y. K., Liu K., Li X. F., et al. Integrate silver colloids with silicon nanowire arrays for surface-enhanced Raman scattering [J]. Nanotechnology,2011,22(21).
    [77]Ozgur U., Alivov Y. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005,98(4).
    [78]Kim H., Gilmore C. M., Horwitz J. S., et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices [J]. Applied Physics Letters,2000,76(3):259-261.
    [79]Jeong S. H., Kim B. S., Lee B. T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient [J]. Applied Physics Letters,2003,82(16):2625-2627.
    [80]李杰.ZnO纳米结构薄膜的水溶液法制备与研究[D].大连:大连理工大学大学物理学院,2010.
    [81]周增会,刘力.R6G单分子表面增强共振拉曼散射光谱探测研究[J].光谱学与光谱分析,2005,25(12):1986-1990.
    [82]Sondergaard T., Bozhevolnyi S. I., Beermann J., et al. Optical resonances and nanofocusing in triangular metal nano-grooves [J]. Plasmonics:Metallic Nanostructures and Their Optical Properties Viii,2010,7757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700